Deep sentiment analysis: a case study on stemmed Turkish Twitter data

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

IEEE

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Sentiment analysis using stemmed Twitter data from various languages is an emerging research topic. In this paper, we address three data augmentation techniques namely Shift, Shuffle, and Hybrid to increase the size of the training data; and then we use three key types of deep learning (DL) models namely recurrent neural network (RNN), convolution neural network (CNN), and hierarchical attention network (HAN) to classify the stemmed Turkish Twitter data for sentiment analysis. The performance of these DL models has been compared with the existing traditional machine learning (TML) models. The performance of TML models has been affected negatively by the stemmed data, but the performance of DL models has been improved greatly with the utilization of the augmentation techniques. Based on the simulation, experimental, and statistical results analysis deeming identical datasets, it has been concluded that the TML models outperform the DL models with respect to both training-time (TTM) and runtime (RTM) complexities of the algorithms; but the DL models outperform the TML models with respect to the most important performance factors as well as the average performance rankings.

Açıklama

Anahtar Kelimeler

Social networking, Blogs, Sentiment analysis, Sosyal ağ, Bloglar, Duygu analizi, Soziales netzwerk, Stimmungsanalyse

Kaynak

IEEE Access

WoS Q Değeri

Q2

Scopus Q Değeri

N/A

Cilt

9

Sayı

Künye

Shehu, H. A., Sharif, M. H., Sharif, M. H. U., Datta, R., Tokat, S., Uyaver, Ş., ... & Ramadan, R. A. (2021). Deep Sentiment Analysis: A Case Study on Stemmed Turkish Twitter Data. IEEE Access, 9, 56836-56854.