Enhanced interface structure of electroformed copper/diamond composites for thermal management applications

dc.authoridEvren, Burak/0000-0003-3874-2803
dc.authoridUrgen, Mustafa/0000-0003-3549-0049
dc.authoridEvren, Gokce/0000-0001-6841-1744
dc.contributor.authorEvren, Burak
dc.contributor.authorEvren, Gokce
dc.contributor.authorKincal, Cem
dc.contributor.authorSolak, Nuri
dc.contributor.authorUrgen, Mustafa
dc.date.accessioned2025-02-20T08:42:14Z
dc.date.available2025-02-20T08:42:14Z
dc.date.issued2024
dc.departmentTürk-Alman Üniversitesien_US
dc.description.abstractAs the power density of electronic devices increases, the requirement for heat sinks with enhanced thermal properties becomes imperative for advanced heat dissipation. Copper/diamond composites are next-generation heat dissipators with high thermal conductivities, yet fabrication of these composites requires high energy and complex instruments. In this study, copper/diamond composites are fabricated by electroforming. The sediment co-deposition process is modified to obtain uniform diamond particle distribution with tailorable volume fraction. Diamond particles were initially settled on the cathode surface outside the electrolyte, and then the setup was immersed in an acidic copper sulfate electroforming bath. Varying amounts (0-100 mg l(-1)) of thiourea are introduced to the electrolyte to enhance the matrix-particle interface. The gaps between diamond particles are filled with electrodeposited copper using optimized deposition conditions. The composite structure detaches from the cathode by itself after the production with desired shape and dimensions. The effect of operating conditions on cathodic polarization, composite microstructure, and thermal properties are investigated. Thermal conductivity of 49 vol.% diamond containing sample fabricated with optimized parameters exceeds 667 W m(-1) K-1. The increase in thermal conductivity and enhanced interface structure is attributed to the excellent void-filling ability of the optimized electrolyte.
dc.description.sponsorshipScientific Research Projects Department of Istanbul Technical University; Research Laboratories Application and Research Center (ALUAM)
dc.description.sponsorshipThe authors would like to thank Turkish-German University, Research Laboratories Application and Research Center (ALUAM) for the support given for the characterization of the samples.
dc.identifier.doi10.1515/mt-2023-0236
dc.identifier.endpage432en_US
dc.identifier.issn0025-5300
dc.identifier.issn2195-8572
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85183919672
dc.identifier.scopusqualityQ2
dc.identifier.startpage422en_US
dc.identifier.urihttps://doi.org/10.1515/mt-2023-0236
dc.identifier.urihttps://hdl.handle.net/20.500.12846/1587
dc.identifier.volume66en_US
dc.identifier.wosWOS:001152464400001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.ispartofMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250220
dc.subjectelectroformingen_US
dc.subjectsediment co-depositionen_US
dc.subjectcopper diamond compositeen_US
dc.subjectthermal managementen_US
dc.subjectthermal conductivityen_US
dc.titleEnhanced interface structure of electroformed copper/diamond composites for thermal management applications
dc.typeArticle

Dosyalar