Improving Disease Diagnosis with Integrated Machine Learning Techniques

dc.authoridNAMLI, OZGE/0000-0001-7461-1304
dc.contributor.authorNamli, Ozge H.
dc.contributor.authorYanik, Seda
dc.date.accessioned2025-02-20T08:42:24Z
dc.date.available2025-02-20T08:42:24Z
dc.date.issued2022
dc.departmentTürk-Alman Üniversitesien_US
dc.description4th International Conference on Intelligent and Fuzzy Systems (INFUS) -- JUL 19-21, 2022 -- Bornova, TURKEYen_US
dc.description.abstractAs the digital transformation is constantly affecting every aspect of our lives, it is important to enhance and use machine learning models more effectively also in the healthcare domain. In this study, we focus on the application of machine learning algorithms for disease diagnosis in order to support decision making of physicians. Different classification methods are used to predict the diameter narrowing in the heart using an anonymous dataset. In order to increase the prediction ability of the machine learning algorithms, we employ different feature extraction methods such as Autoencoder, Stacked Autoencoder, Convolutional Neural Network, and Principal Component Analysis methods and integrate each feature extraction method with the classification methods. Then, we compare the prediction performances of individual and feature-extraction-integrated classification methods. It is shown that the prediction performance of the classification methods increase when integrated with feature extraction methods. However, it is concluded that not all feature extraction methods work as well with all classification methods. When a specific classification method is integrated with the appropriate feature extraction method, a better improvement in the prediction performance can be obtained.
dc.identifier.doi10.1007/978-3-031-09176-6_6
dc.identifier.endpage61en_US
dc.identifier.isbn978-3-031-09176-6
dc.identifier.isbn978-3-031-09175-9
dc.identifier.issn2367-3370
dc.identifier.issn2367-3389
dc.identifier.scopus2-s2.0-85135010445
dc.identifier.scopusqualityQ4
dc.identifier.startpage53en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-09176-6_6
dc.identifier.urihttps://hdl.handle.net/20.500.12846/1668
dc.identifier.volume505en_US
dc.identifier.wosWOS:000889132600006
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer International Publishing Ag
dc.relation.ispartofIntelligent and Fuzzy Systems: Digital Acceleration and the New Normal, Infus 2022, Vol 2
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250220
dc.subjectMachine learningen_US
dc.subjectFeature extractionen_US
dc.subjectClassificationen_US
dc.subjectDisease diagnosisen_US
dc.titleImproving Disease Diagnosis with Integrated Machine Learning Techniques
dc.typeConference Object

Dosyalar