An experimental and theoretical analysis of vapor-to-liquid phase change on microstructured surfaces

Yükleniyor...
Küçük Resim

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this work, an experimental and a theoretical study was carried out on condensation heat transfer on vertically aligned bare unstructured, micro V-grooved and square-grooved copper substrates. During the experiments, dropwise condensation and drop-film-wise condensation modes were achieved. The surface wettability was recorded by using a high-speed camera, while the overall thermal performance has been evaluated through determining heat flux and heat transfer coefficients. Experimental results show that although the condensation surface area increased by 50% utilizing micro-grooves, the thermal performance is approximately 30% lower than the unstructured surface. Additionally, experimentally measured data has been compared with two correlations for filmwise condensation and one correlation proposed for dropwise condensation as classical benchmarks found in open literature. The comparison for the unstructured surface on which dropwise condensation has been visually monitored reveals that the benchmark for dropwise condensation agrees well for the subcooling ranging between 7.5-10 K and 35-40 K. Beyond this range, the correlation either overestimates or underpredicts the heat flux values. Two other correlations show similar trend but exhibit weak agreement with the experimental data. In case of microstructured surfaces, predictions of correlations for filmwise condensation are found to be the best for square-grooved surface than for V-grooved surface. Furthermore, new correlations have been proposed for all three surfaces based on the experimental data obtained in the present study. The proposed correlations show rather a good agreement for the unstructured surface over the full range of sub-cooling, while for those developed for microstructured surfaces, accordance up to 93-95% has been reached.

Açıklama

BUDAKLI, Mete/0000-0003-1721-1245
WOS:000552131100002

Anahtar Kelimeler

Condensation, Phase Change, Microstructure, Thermal Management, Electronics Cooling

Kaynak

Applied Thermal Engineering

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

178

Sayı

Künye