Identification of food/nonfood visual stimuli from event-related brain potentials

dc.authorid0000-0003-1484-8603
dc.contributor.authorGüney, Selen
dc.contributor.authorArslan, Sema
dc.contributor.authorDuru, Adil Deniz
dc.contributor.authorDuru, Dilek Göksel
dc.date.accessioned2022-01-12T08:12:16Z
dc.date.available2022-01-12T08:12:16Z
dc.date.issued2021
dc.departmentTAÜ, Fen Fakültesi, Moleküler Biyoteknoloji Bölümüen_US
dc.description.abstractAlthough food consumption is one of the most basic human behaviors, the factors underlying nutritional preferences are not yet clear. The use of classification algorithms can clarify the understanding of these factors. This study was aimed at measuring electrophysiological responses to food/nonfood stimuli and applying classification techniques to discriminate the responses using a single-sweep dataset. Twenty-one right-handed male athletes with body mass index (BMI) levels between 18.5% and 25% (mean age: 21.05 +/- 2.5) participated in this study voluntarily. The participants were asked to focus on the food and nonfood images that were randomly presented on the monitor without performing any motor task, and EEG data have been collected using a 16-channel amplifier with a sampling rate of 1024 Hz. The SensoMotoric Instruments (SMI) iView XTM RED eye tracking technology was used simultaneously with the EEG to measure the participants' attention to the presented stimuli. Three datasets were generated using the amplitude, time-frequency decomposition, and time-frequency connectivity metrics of P300 and LPP components to separate food and nonfood stimuli. We have implemented k-nearest neighbor (kNN), support vector machine (SVM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Bayesian classifier, decision tree (DT), and Multilayer Perceptron (MLP) classifiers on these datasets. Finally, the response to food-related stimuli in the hunger state is discriminated from nonfood with an accuracy value close to 78% for each dataset. The results obtained in this study motivate us to employ classifier algorithms using the features obtained from single-trial measurements in amplitude and time-frequency space instead of applying more complex ones like connectivity metrics.
dc.identifier.citationGüney, S., Arslan, S., Duru, A. D., & Duru, D. Göksel (2021). Identification of Food/Nonfood Visual Stimuli from Event-Related Brain Potentials. Applied Bionics and Biomechanics, 2021.
dc.identifier.doi10.1155/2021/6472586
dc.identifier.issn1176-2322
dc.identifier.issn1754-2103
dc.identifier.scopus2-s2.0-85116621083
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://hdl.handle.net/20.500.12846/629
dc.identifier.volume2021en_US
dc.identifier.wosWOS:000704173800001
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorDuru, Dilek Göksel
dc.language.isoen
dc.publisherHindawi Publishing Corporation
dc.relation.ispartofApplied Bionics and Biomechanics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleIdentification of food/nonfood visual stimuli from event-related brain potentials
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
dilekgökselduru.pdf
Boyut:
1.83 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: