Detection of Web Attacks Using the BERT Model

dc.contributor.authorSeyyar, Yunus Emre
dc.contributor.authorYavuz, Ali Gokhan
dc.contributor.authorUnver, Halil Murat
dc.date.accessioned2025-02-20T08:42:15Z
dc.date.available2025-02-20T08:42:15Z
dc.date.issued2022
dc.departmentTürk-Alman Üniversitesien_US
dc.description30th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2022 -- Safranbolu, TURKEYen_US
dc.description.abstractThis paper presents a web intrusion detection system that addresses security threats with the increasing use of web applications in almost all domains, as well as the increase in attacks against web applications. Our web intrusion detection system consists of a model that can distinguish between normal and abnormal URLs. In the URL analysis phase, our model uses the BERT model of Transformers, a prominent natural language processing technique. In the classification phase, we use a CNN model, which is a popular deep learning technique. We utilize the CSIC 2010, FWAF, and HttpParams datasets for training and testing. The experimental results show that our model performs the classification of normal and abnormal requests in 0.4 ms, which is an extremely fast detection time when compared to the reported results in the literature and an accuracy of over 96%.
dc.description.sponsorshipIEEE,IEEE Turkey Sect,Bahcesehir Univ
dc.identifier.doi10.1109/SIU55565.2022.9864721
dc.identifier.isbn978-1-6654-5092-8
dc.identifier.issn2165-0608
dc.identifier.scopus2-s2.0-85138671304
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864721
dc.identifier.urihttps://hdl.handle.net/20.500.12846/1604
dc.identifier.wosWOS:001307163400060
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isotr
dc.publisherIEEE
dc.relation.ispartof2022 30th Signal Processing and Communications Applications Conference, Siu
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250220
dc.subjectweb attacken_US
dc.subjectdeep learningen_US
dc.subjectBERTen_US
dc.subjectnatural language processingen_US
dc.subjectattack detection systemen_US
dc.titleDetection of Web Attacks Using the BERT Model
dc.typeConference Object

Dosyalar