A stacked multi-sensor platform for real-time MRI guided interventions
[ X ]
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
We present a stacked temperature, pressure, and localization platform, targeted for minimally invasive surgical and diagnostic applications under Magnetic Resonance Imaging. The platform comprises a micro-fabricated three-layer (Titanium-Parylene-Titanium) membrane pressure sensor, a Gallium Arsenide band-gap temperature sensor, and a magnetic material on double prism retro-reflector that benefits from Magneto-Optic Kerr effect as a magnetic field sensor, to provide localization feedback under Magnetic Resonance Imaging. All sensors can be addressed with a single fiber optic cable, where the collected light is directed to a spectrometer and a polarimeter. For the three-layer microfabricated membrane sensor, an analytical formulation is derived, linking the pressure to optical intensity. Moreover, finite-element simulation results are provided, verifying analytical findings. Wavelength division multiplexing is exploited to address the sensors simultaneously. We measured sensitivities of 0.025 millidegree/Gauss rotation of polarization, 1.5 nm/mmHg displacement (in agreement with simulation results and analytical findings), 0.36 nm/degrees C. bandgap wavelength shift for magnetic field, pressure, and temperature sensors; respectively. With further development, the proposed device can be adapted to a clinical setting for use in Magnetic Resonance assisted surgical procedures.
Açıklama
Anahtar Kelimeler
Sensors, MEMS, Fiber Optics, Magnetic Resonance Imaging, Wavelength Division Multiplexing, Sensörler, Fiber Optik, Manyetik Rezonans Görüntüleme, Dalgaboyu Bölmeli Çoğullama, Sensoren, Faseroptik, Magnetresonanz Bildgebung, Wellenlängen Multiplexing
Kaynak
Optics and Lasers in Engineering
WoS Q Değeri
Q1
Scopus Q Değeri
Cilt
161
Sayı
Künye
We present a stacked temperature, pressure, and localization platform, targeted for minimally invasive surgical and diagnostic applications under Magnetic Resonance Imaging. The platform comprises a micro-fabricated three-layer (Titanium-Parylene-Titanium) membrane pressure sensor, a Gallium Arsenide band-gap temperature sensor, and a magnetic material on double prism retro-reflector that benefits from Magneto-Optic Kerr effect as a magnetic field sensor, to provide localization feedback under Magnetic Resonance Imaging. All sensors can be addressed with a single fiber optic cable, where the collected light is directed to a spectrometer and a polarimeter. For the three-layer microfabricated membrane sensor, an analytical formulation is derived, linking the pressure to optical intensity. Moreover, finite-element simulation results are provided, verifying analytical findings. Wavelength division multiplexing is exploited to address the sensors simultaneously. We measured sensitivities of 0.025 millidegree/Gauss rotation of polarization, 1.5 nm/mmHg displacement (in agreement with simulation results and analytical findings), 0.36 nm/degrees C. bandgap wavelength shift for magnetic field, pressure, and temperature sensors; respectively. With further development, the proposed device can be adapted to a clinical setting for use in Magnetic Resonance assisted surgical procedures.