Reactive capture and electrochemical conversion of CO2 with ionic liquids and deep eutectic solvents

dc.authoridZeeshan, Muhammad/0000-0002-2978-6807
dc.authoridYang, Jenny/0000-0002-9680-8260
dc.authoridRoss, R. Dominic/0000-0002-4192-8230
dc.authoridDongare, Saudagar/0000-0001-6782-0028
dc.authoridBanerjee, Avishek/0000-0001-5385-6580
dc.authoridUzun, Alper/0000-0001-7024-2900
dc.authoridKurtoglu Oztulum, Samira Fatma/0000-0001-9136-6988
dc.contributor.authorDongare, Saudagar
dc.contributor.authorZeeshan, Muhammad
dc.contributor.authorAydogdu, Ahmet Safa
dc.contributor.authorDikki, Ruth
dc.contributor.authorKurtoglu-Oztulum, Samira F.
dc.contributor.authorCoskun, Oguz Kagan
dc.contributor.authorMunoz, Miguel
dc.date.accessioned2025-02-20T08:42:17Z
dc.date.available2025-02-20T08:42:17Z
dc.date.issued2024
dc.departmentTürk-Alman Üniversitesien_US
dc.description.abstractIonic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
dc.description.sponsorshipCenter for Closing the Carbon Cycle, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0023427]; Basic Energy Sciences, award [DE-SC0022214]; Breakthrough Electrolytes for Energy Storage (BEES2) under award [DE-SC0019409]; Division of Chemical, Bioengineering, Environmental and Transport Systems [2045111]; Fulbright Tuerkiye's Visiting Scholar Program; Koc University Visiting Scholar Program; Scientific and Technological Research Council of Tuerkiye (TUBITAK) 2219 Program; Department of Energy, National Nuclear Security Administration (NNSA) grants [DE-NA0004112, DE-NA0004007]
dc.description.sponsorshipThis work was supported by the Center for Closing the Carbon Cycle, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award Number DE-SC0023427 (electrochemical conversion; S. D., A. B., M. G., R. D. R., J. S., R. S. B., J. M. V., J. Y. Y., C. H., C. G. M.-G., J. M. S., B. G.), Basic Energy Sciences, award # DE-SC0022214 (sorbents for CO2 capture; M. Z., R. D., B. G.), Breakthrough Electrolytes for Energy Storage (BEES2) under award # DE-SC0019409 (electrolyte properties; M. M., B. G.), and National Science Foundation Career award # 2045111 from the Division of Chemical, Bioengineering, Environmental and Transport Systems (interfacial analysis of ionic liquid electrolytes; O. K. C., B. G.). A. U. thanks the Fulbright Tuerkiye's Visiting Scholar Program, the Koc University Visiting Scholar Program, and the Scientific and Technological Research Council of Tuerkiye (TUBITAK) 2219 Program. B. K.'s efforts were supported by the Department of Energy, National Nuclear Security Administration (NNSA) grants (DE-NA0004112 and DE-NA0004007).
dc.identifier.doi10.1039/d4cs00390j
dc.identifier.issn0306-0012
dc.identifier.issn1460-4744
dc.identifier.issue17en_US
dc.identifier.pmid38912871
dc.identifier.scopus2-s2.0-85197906350
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1039/d4cs00390j
dc.identifier.urihttps://hdl.handle.net/20.500.12846/1627
dc.identifier.volume53en_US
dc.identifier.wosWOS:001252878200001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherRoyal Soc Chemistry
dc.relation.ispartofChemical Society Reviews
dc.relation.publicationcategoryDiğer
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250220
dc.subjectCarbon-Dioxide Captureen_US
dc.subjectGas Separation Performanceen_US
dc.subjectSelective Electrocatalytic Reductionen_US
dc.subjectMetal-Organic Frameworksen_US
dc.subjectThermal-Stability Limitsen_US
dc.subjectSum-Frequency Generationen_US
dc.subjectHighly-Efficienten_US
dc.subjectMesoporous Silicaen_US
dc.subjectCholine Chlorideen_US
dc.subjectPoly(Ionic Liquid)Sen_US
dc.titleReactive capture and electrochemical conversion of CO2 with ionic liquids and deep eutectic solvents
dc.typeReview

Dosyalar