Basit öğe kaydını göster

dc.contributor.authorShehu, Harisu Abdullahi
dc.contributor.authorSharif, Md Haidar
dc.contributor.authorUyaver, Şahin
dc.date.accessioned2021-12-30T08:30:27Z
dc.date.available2021-12-30T08:30:27Z
dc.date.issued2021en_US
dc.identifier.citationShehu, H. A., Sharif, Md. H., Uyaver, Ş. & (2021) Facial expression recognition using deep learning.In AIP Conference Proceedings (Vol. 2334, No. 1, p. 070005). AIP Publishing LLC.en_US
dc.identifier.issn0094-243X
dc.identifier.urihttps://hdl.handle.net/20.500.12846/613
dc.description.abstractFacial expression recognition has become an increasingly important area of research in recent years. Neural network-based methods have made amazing progress in performing recognition-based tasks, winning competitions set up by various data science communities, and achieving high performance on many datasets. Miscellaneous regularization methods have been utilized by various researchers to help combat over-fitting, to reduce training time, and to generalize their models. In this paper, by applying the Haar Cascade classifier to crop faces and focus on the region of interest, we hypothesize that we would attain a fast convergence without using the whole image to analyze facial expressions. We also apply label smoothing and analyze its effect on the databases of CK+, KDEF, and RAF. The ResNet model has been employed as an example of a neural network model. Label smoothing has demonstrated an improvement of the recognition accuracy up to 0.5% considering CK+ and the KDEF databases. While the application of Haar Cascade has shown to decrease the achieved accuracy on KDEF and RAF databases with a small margin, fast convergence of the model has been observed.en_US
dc.language.isoengen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.isversionof10.1063/5.0042221en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep Learningen_US
dc.subjectEmotionen_US
dc.subjectFacial Expressionen_US
dc.subjectHaar Cascadeen_US
dc.subjectLabel Smoothingen_US
dc.subjectRecognitionen_US
dc.subjectTiefes Lernenen_US
dc.subjectGesichtsausdrucken_US
dc.subjectHaarkaskadeen_US
dc.subjectEtikettenglättungen_US
dc.subjectErkennungen_US
dc.subjectDerin Öğrenmeen_US
dc.subjectDuyguen_US
dc.subjectYüz İfadesien_US
dc.subjectHaar Şelalesien_US
dc.subjectEtiket Yumuşatmaen_US
dc.titleFacial expression recognition using deep learningen_US
dc.typeconferenceObjecten_US
dc.relation.journalFourth International Conference of Mathematical Sciences (ICMS 2020)en_US
dc.contributor.authorID0000-0001-8776-3032en_US
dc.identifier.volume2334en_US
dc.identifier.issue1en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.departmentTAÜ, Fen Fakültesi, Enerji Bilimi ve Teknolojileri Bölümüen_US
dc.contributor.institutionauthorUyaver, Şahin
dc.identifier.wosqualityN/Aen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster