Basit öğe kaydını göster

dc.contributor.authorGöksel Duru, Dilek
dc.contributor.authorÖzkan, Mehmed
dc.date.accessioned2021-03-09T11:55:12Z
dc.date.available2021-03-09T11:55:12Z
dc.date.issued2013en_US
dc.identifier.citationGöksel Duru, D., & Özkan, M. (2013). Application of self-organizing artificial neural networks on simulated diffusion tensor images. Mathematical Problems in Engineering, 2013.en_US
dc.identifier.issn1024-123X
dc.identifier.issn1563-5147
dc.identifier.urihttps://hdl.handle.net/20.500.12846/540
dc.description.abstractDiffusion tensor magnetic resonance imaging (DTMRI) as a noninvasive modality providing in vivo anatomical information allows determination of fiber connections which leads to brain mapping. The success of DTMRI is very much algorithm dependent, and its verification is of great importance due to limited availability of a gold standard in the literature. In this study, unsupervised artificial neural network class, namely, self-organizing maps, is employed to discover the underlying fiber tracts. A common artificial diffusion tensor resource, named “phantom images for simulating tractography errors” (PISTE), is used for the accuracy verification and acceptability of the proposed approach. Four different tract geometries with varying SNRs and fractional anisotropy are investigated. The proposed method, SOFMAT, is able to define the predetermined fiber paths successfully with a standard deviation of (0.8–1.9) × 10−3 depending on the trajectory and the SNR value selected. The results illustrate the capability of SOFMAT to reconstruct complex fiber tract configurations. The ability of SOFMAT to detect fiber paths in low anisotropy regions, which physiologically may correspond to either grey matter or pathology (abnormality) and uncertainty areas in real data, is an advantage of the method for future studies.en_US
dc.language.isoengen_US
dc.publisherHindawi Publishing Corporationen_US
dc.relation.isversionof10.1155/2013/690140en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectYapay Sinir Ağlarıen_US
dc.subjectKünstliche Neurale Netzwerkeen_US
dc.titleApplication of self-organizing artificial neural networks on simulated diffusion tensor imagesen_US
dc.typearticleen_US
dc.relation.journalMathematical Problems in Engineeringen_US
dc.contributor.authorID0000-0003-1484-8603en_US
dc.identifier.volume2013en_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US
dc.contributor.departmentTAÜ, Fen Fakültesi, Moleküler Biyoteknoloji Bölümüen_US
dc.contributor.institutionauthorGöksel Duru, Dilek
dc.identifier.wosqualityN/Aen_US
dc.identifier.scopusqualityQ2en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster