Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction
Access
info:eu-repo/semantics/closedAccessDate
2017Author
Shokr, Mohammad MahdiSchlosser, Dieter Michael
Abboud, Ali
Algashi, Alaa
Tosson, Amir
Çonka Yıldız, Tuba
Pietsch, Ullrich
Metadata
Show full item recordAbstract
Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 mu m. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV. This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128 x 128 pixels pnCCD detector with 75 x 75 mu m(2) pixel size coupled to a 700 mu m thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV. The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.