dc.contributor.author | Kaya, Ali Can | |
dc.contributor.author | Zaslansky, Paul | |
dc.contributor.author | İpekoğlu, Mehmet | |
dc.contributor.author | Fleck, Claudia | |
dc.date.accessioned | 2021-01-08T21:51:24Z | |
dc.date.available | 2021-01-08T21:51:24Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0264-1275 | |
dc.identifier.issn | 1873-4197 | |
dc.identifier.uri | http://doi.org/10.1016/j.matdes.2018.02.009 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12846/224 | |
dc.description | Ipekoglu, Mehmet/0000-0002-0019-3346; Fleck, Claudia/0000-0002-8160-2710; zaslansky, paul/0000-0002-8714-4992; Kaya, Ali Can/0000-0003-2856-5508 | en_US |
dc.description | WOS:000425879300032 | en_US |
dc.description.abstract | Strain hardening significantly affects the mechanical function of steel foams. We compare hardening and failure of two commercially available austenitic stainless steel foams (316L and 310) spanning strut porosities of 9.4 to 144%. Damage is correlated with strut microstructure and geometry, combining in-situ quasi-static compression testing in the SEM, 3D-evaluation by synchrotron mu CT and bending simulations. We provide an analytical model for the experimentally observed strain hardening. Upon compression, 316L steel foams exhibit a plateau regime of continuously increasing stress due to the hardening effect, whereas 310 steel foams show almost constant plateau stress This is explained by the much less ductile behaviour of the 310 steel foam struts as compared to 316L steel foam struts. Finite element modelling suggests that significant stress concentrations develop around micro porosities in the 310 struts. Due to its finer and less porous microstructure, the 316L foam exhibits a larger energy absorption capacity than the 310 foams. This results in distinctly different efficiency-strain curves. However, up to about 25% strain, the efficiency values are surprisingly similar. Thus, modification of microstructure and/or pore micro-geometry can be used to optimise the stress-strain response to achieve the desired energy absorption property of steel foams. (C) 2018 Elsevier Ltd. All rights reserved. | en_US |
dc.description.sponsorship | Turkish Ministry of EducationTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [1416] | en_US |
dc.description.sponsorship | The authors acknowledge Martina Schaube, Martin Richter and Nils Putscher for their great support in metallographic preparation of the specimens, Sun Zhe for sample preparation, and Christoph Fahrenson at ZELMI, TU Berlin for the SEM investigations and EDX analyses. Ali Can Kaya thanks the Turkish Ministry of Education for the doctoral grant [Grant Nr. 1416]. We further thank the Julius Wolff Institute, Charite - Universitatsmedizin Berlin, for use of the DANTEC Istra DIC system. We are thankful for the excellent support of Ralf Britzke and for beamtime access to the BAMline imaging beamline of the Helmholtz Zentrum Berlin (HZB). Additional data used for some of the FE simulations was obtained through the generous support of Dr. Alexander Rack on ID19 of the European Synchrotron Radiation Facility (ESRF), for which beamtime is gratefully acknowledged. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier Sci Ltd | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Stainless Steel Metal Foam | en_US |
dc.subject | Strain Hardening | en_US |
dc.subject | Porosity | en_US |
dc.subject | Strut Fracture | en_US |
dc.title | Strain hardening reduces energy absorption efficiency of austenitic stainless steel foams while porosity does not | en_US |
dc.type | article | en_US |
dc.relation.journal | Materials & Design | en_US |
dc.identifier.volume | 143 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.department | TAÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü | en_US |
dc.contributor.department | TAÜ, Mühendislik Fakültesi, Mekatronik Mühendisliği Bölümü | |
dc.identifier.doi | 10.1016/j.matdes.2018.02.009 | |
dc.identifier.startpage | 297 | en_US |
dc.identifier.endpage | 308 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.wos | WOS:000425879300032 | en_US |