Basit öğe kaydını göster

dc.contributor.authorHabiboğlu, Mehmet Gökhan
dc.contributor.authorCoşkuner Weber, Orkid
dc.date.accessioned2024-05-07T06:14:33Z
dc.date.available2024-05-07T06:14:33Z
dc.date.issued2019en_US
dc.identifier.citationHabiboğlu, Mehmet G., Coşkuner Weber, O. (2019). Quantum chemistry meets deep learning for complex carbohydrate and glycopeptide species I. Zeitschrift für Physikalische Chemie, 223 (4).en_US
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/zpch-2018-1251/html
dc.identifier.urihttps://hdl.handle.net/20.500.12846/1219
dc.description.abstractCarbohydrate complexes are crucial in many various biological and medicinal processes. The impacts of N-acetyl on the glycosidic linkage flexibility of methyl β-D-glucopyranose, and of the glycoamino acid β-D-glucopyranose-asparagine are poorly understood at the electronic level. Furthermore, the effect of D- and L-isomers of asparagine in the complexes of N-acetyl-β-D-glucopyranose-(L)-asparagine and N-acetyl-β-D-glucopyranose-(D)-asparagine is unknown. In this study, we performed density functional theory calculations of methyl β-D-glucopyranose, methyl N-acetyl-β-D-glucopyranose, and of glycoamino acids β-D-glucopyranose-asparagine, N-acetyl-β-D-glucopyranose-(L)-asparagine and N-acetyl-β-D-glucopyranose-(D)-asparagine for studying their linkage flexibilities, total solvated energies, thermochemical properties and intra-molecular hydrogen bond formations in an aqueous solution environment using the COnductor-like Screening MOdel (COSMO) for water. We linked these density functional theory calculations to deep learning via estimating the total solvated energy of each linkage torsional angle value. Our results show that deep learning methods accurately estimate the total solvated energies of complex carbohydrate and glycopeptide species and provide linkage flexibility trends for methyl β-D-glucopyranose, methyl N-acetyl-β-D-glucopyranose, and of glycoamino acids β-D-glucopyranose-asparagine, N-acetyl-β-D-glucopyranose-(L)-asparagine and N-acetyl-β-D-glucopyranose-(D)-asparagine in agreement with density functional theory results. To the best of our knowledge, this study represents the first application of density functional theory along with deep learning for complex carbohydrate and glycopeptide species in an aqueous solution medium. In addition, this study shows that a few thousands of optimization frames from DFT calculations are enough for accurate estimations by deep learning tools.en_US
dc.language.isoengen_US
dc.relation.isversionof10.1515/zpch-2018-1251en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectLinkage flexibilityen_US
dc.subjectGlucopyranoseen_US
dc.subjectDensity functional theoryen_US
dc.subjectAsparagineen_US
dc.titleQuantum chemistry meets deep learning for complex carbohydrate and glycopeptide species Ien_US
dc.typearticleen_US
dc.relation.journalZeitschrift für Physikalische Chemieen_US
dc.contributor.authorID0000-0002-0772-9350en_US
dc.identifier.volume223en_US
dc.identifier.issue4en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.departmentTAÜ, Fen Fakültesi, Moleküler Biyoteknoloji Bölümüen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster