Parameter and feature selection in decision trees for the classification of musical impressions from EEG records

dc.contributor.authorOzaltun, Emir Atakan
dc.contributor.authorMoghaddamnia, Sanam
dc.contributor.authorHabiboğlu, Mehmet Gökhan
dc.date.accessioned2024-11-13T18:07:52Z
dc.date.available2024-11-13T18:07:52Z
dc.date.issued2023
dc.departmentTAÜ, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractReliable classification of different emotions is an important issue for emotional interaction between humans and computers. Therefore, this study aims at assessing the performance of decision trees in classifying musical impressions from EEG records of 20 subjects, who listened to songs in different music styles. First, features extracted from the clean EEG data used to train the classifier, where different feature combinations and parameter settings are considered. Next, the impact of various hyperparameter values on the classification accuracy is examined and the relevant feature combination is specified. According to the results, an accuracy rate of 76,12% is achieved, when all time domain features are included in the classification.
dc.identifier.citationOzaltun, Emir A, Moghaddamnia, S., Habiboğlu, M. G. (2022). Parameter and feature selection in decision trees for the classification of musical impressions from EEG records, 6th International Conference of Mathematical Sciences (ICMS 2022), 2879 (1).
dc.identifier.doi10.1063/12.0023974
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85183306533
dc.identifier.urihttps://hdl.handle.net/20.500.12846/1399
dc.identifier.volume2879en_US
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartof6th International Conference of Mathematical Sciences (ICMS 2022)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.titleParameter and feature selection in decision trees for the classification of musical impressions from EEG records
dc.typeConference Object

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
m_apc.2023.2879.issue-1.largecover.jpeg
Boyut:
34.36 KB
Biçim:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
Açıklama:
Konferans Kapağı
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: