Mechanical performance of reverse-engineered resin foam structures developed by image processing on the computed tomography data: A revisit

Yükleniyor...
Küçük Resim

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Using digital design methods, additive manufacturing processes enable us to create novel complex structures. In the current study, 3 and 10 ppi, density-graded, and merged foams (digitally joined 3 and 10 ppi) were reproduced from computed tomography data of the commercially available steel foams using MSLA (masked stereolithography). The mechanical performance of the foams has been characterized by quasi-static compression testing. Density grading increases the slope of the plateau regime and reduces the densification strain. Merged foams at high relative densities (?rel~35 %) showed the highest energy absorption capacity, specific strength, and densification strain. 3,10 and density-graded foams deform by bending of struts. In the case of merged foams, the bending-dominated structure has been transformed into a stretch-dominated structure. The power exponent (n = 0.72) delivers the deformation mode of the strut, revealing stretch-dominated behavior. Moreover, additively manufactured resin foams have a lower scattering in mechanical properties than conventionally manufactured metal foams because structures can be remanufactured with the same cell/strut dimensions and imperfections.

Açıklama

Anahtar Kelimeler

Reverse engineering, Tomography, Resin foams 3d printing, Compression

Kaynak

Materials Today Communications

WoS Q Değeri

Scopus Q Değeri

Cilt

36

Sayı

Künye

Kaya, Ali C., Rastanawi, N., Korucu, A. (2024). Mechanical performance of reverse-engineered resin foam structures developed by image processing on the computed tomography data: A revisit. Materials Today Communications, 36