Improving customer experience for an internet service provider: a neural networks approach

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Today one of the challenges of companies is to decrease call center costs while improving the customer experience. In this study, we make prediction and proactively take action in order to solve customer problems before they reach the customer call center. We use machine learning techniques and train models with a dataset of an internet service provider’s several different systems. We first use supervised techniques to classify the customers having slow internet connection problems and normal internet connection. We apply two classification approaches, multi perceptron neural networks and radial basis neural networks. Then, we cluster the same dataset using unsupervised techniques, namely Kohonnen’s neural networks and Adaptive Resonance Theory neural networks. We evaluate the classification and clustering results using measures such as recall, accuracy and Davies-Bouldin index, respectively. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

Açıklama

International Conference on Intelligent and Fuzzy Systems, INFUS 2020, 21 July 2020 through 23 July 2020, , 242349

Anahtar Kelimeler

Artificial neural networks, Call center problem prediction, Classification, Clustering

Kaynak

Advances in Intelligent Systems and Computing

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

1197 AISC

Sayı

Künye