Quantum chemistry meets deep learning for complex carbohydrate and glycopeptide species I

dc.authorid0000-0002-0772-9350
dc.contributor.authorHabiboğlu, Mehmet Gökhan
dc.contributor.authorCoşkuner Weber, Orkid
dc.date.accessioned2024-05-07T06:14:33Z
dc.date.available2024-05-07T06:14:33Z
dc.date.issued2019
dc.departmentTAÜ, Fen Fakültesi, Moleküler Biyoteknoloji Bölümüen_US
dc.description.abstractCarbohydrate complexes are crucial in many various biological and medicinal processes. The impacts of N-acetyl on the glycosidic linkage flexibility of methyl ?-D-glucopyranose, and of the glycoamino acid ?-D-glucopyranose-asparagine are poorly understood at the electronic level. Furthermore, the effect of D- and L-isomers of asparagine in the complexes of N-acetyl-?-D-glucopyranose-(L)-asparagine and N-acetyl-?-D-glucopyranose-(D)-asparagine is unknown. In this study, we performed density functional theory calculations of methyl ?-D-glucopyranose, methyl N-acetyl-?-D-glucopyranose, and of glycoamino acids ?-D-glucopyranose-asparagine, N-acetyl-?-D-glucopyranose-(L)-asparagine and N-acetyl-?-D-glucopyranose-(D)-asparagine for studying their linkage flexibilities, total solvated energies, thermochemical properties and intra-molecular hydrogen bond formations in an aqueous solution environment using the COnductor-like Screening MOdel (COSMO) for water. We linked these density functional theory calculations to deep learning via estimating the total solvated energy of each linkage torsional angle value. Our results show that deep learning methods accurately estimate the total solvated energies of complex carbohydrate and glycopeptide species and provide linkage flexibility trends for methyl ?-D-glucopyranose, methyl N-acetyl-?-D-glucopyranose, and of glycoamino acids ?-D-glucopyranose-asparagine, N-acetyl-?-D-glucopyranose-(L)-asparagine and N-acetyl-?-D-glucopyranose-(D)-asparagine in agreement with density functional theory results. To the best of our knowledge, this study represents the first application of density functional theory along with deep learning for complex carbohydrate and glycopeptide species in an aqueous solution medium. In addition, this study shows that a few thousands of optimization frames from DFT calculations are enough for accurate estimations by deep learning tools.
dc.identifier.citationHabiboğlu, Mehmet G., Coşkuner Weber, O. (2019). Quantum chemistry meets deep learning for complex carbohydrate and glycopeptide species I. Zeitschrift für Physikalische Chemie, 223 (4).
dc.identifier.doi10.1515/zpch-2018-1251
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85054583731
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/zpch-2018-1251/html
dc.identifier.urihttps://hdl.handle.net/20.500.12846/1219
dc.identifier.volume223en_US
dc.identifier.wosWOS:000462973800004
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.relation.ispartofZeitschrift für Physikalische Chemie
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectArtificial intelligenceen_US
dc.subjectLinkage flexibilityen_US
dc.subjectGlucopyranoseen_US
dc.subjectDensity functional theoryen_US
dc.subjectAsparagineen_US
dc.titleQuantum chemistry meets deep learning for complex carbohydrate and glycopeptide species I
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
product_pages.jfif
Boyut:
55.58 KB
Biçim:
Unknown data format
Açıklama:
Kitap Kapağı
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: