Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Datta, Ripon" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Deep sentiment analysis: a case study on stemmed Turkish Twitter data
    (IEEE, 2021) Shehu, Harisu Abdullahi; Sharif, Md. Haidar; Sharif, Md. Haris Uddin; Datta, Ripon; Tokat, Sezai; Uyaver, Şahin; Kusetoğulları, Hüseyin; Ramadan, Rabie A.
    Sentiment analysis using stemmed Twitter data from various languages is an emerging research topic. In this paper, we address three data augmentation techniques namely Shift, Shuffle, and Hybrid to increase the size of the training data; and then we use three key types of deep learning (DL) models namely recurrent neural network (RNN), convolution neural network (CNN), and hierarchical attention network (HAN) to classify the stemmed Turkish Twitter data for sentiment analysis. The performance of these DL models has been compared with the existing traditional machine learning (TML) models. The performance of TML models has been affected negatively by the stemmed data, but the performance of DL models has been improved greatly with the utilization of the augmentation techniques. Based on the simulation, experimental, and statistical results analysis deeming identical datasets, it has been concluded that the TML models outperform the DL models with respect to both training-time (TTM) and runtime (RTM) complexities of the algorithms; but the DL models outperform the TML models with respect to the most important performance factors as well as the average performance rankings.

| Türk-Alman Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Türk-Alman Üniversitesi, Beykoz, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim