Basit öğe kaydını göster

dc.contributor.authorÇakıroğlu, Celal
dc.contributor.authorIslam, Kamrul
dc.contributor.authorBekdaş, Gebrail
dc.contributor.authorKim, Sanghun
dc.contributor.authorGeem, Zong Woo
dc.date.accessioned2022-11-04T08:34:29Z
dc.date.available2022-11-04T08:34:29Z
dc.date.issued2022en_US
dc.identifier.citationÇakıroğlu, C., Islam, K., Bekdaş, G., Kim, S., & Geem, Z. W. (2022). Interpretable machine learning algorithms to predict the axial capacity of frp-reinforced concrete columns. Materials, 15(8), 2742.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12846/668
dc.description.abstractFiber-reinforced polymer (FRP) rebars are increasingly being used as an alternative to steel rebars in reinforced concrete (RC) members due to their excellent corrosion resistance capability and enhanced mechanical properties. Extensive research works have been performed in the last two decades to develop predictive models, codes, and guidelines to estimate the axial load-carrying capacity of FRP-RC columns. This study utilizes the power of artificial intelligence and develops an alternative approach to predict the axial capacity of FRP-RC columns more accurately using data-driven machine learning (ML) algorithms. A database of 117 tests of axially loaded FRP-RC columns is collected from the literature. The geometric and material properties, column shape and slenderness ratio, reinforcement details, and FRP types are used as the input variables, while the load-carrying capacity is used as the output response to develop the ML models. Furthermore, the input-output relationship of the ML model is explained through feature importance analysis and the SHapely Additive exPlanations (SHAP) approach. Eight ML models, namely, Kernel Ridge Regression, Lasso Regression, Support Vector Machine, Gradient Boosting Machine, Adaptive Boosting, Random Forest, Categorical Gradient Boosting, and Extreme Gradient Boosting, are used in this study for capacity prediction, and their relative performances are compared to identify the best-performing ML model. Finally, predictive equations are proposed using the harmony search optimization and the model interpretations obtained through the SHAP algorithm.en_US
dc.language.isoengen_US
dc.publisherMDPI-Multidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionof10.3390/ma15082742en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFiber Reinforced Polymer (FRP) Rebaren_US
dc.subjectReinforced Concrete Columnsen_US
dc.subjectAxial Capacityen_US
dc.subjectFaserverstärktes Polymer (FRP) Bewehrungen_US
dc.subjectStahlbetonsäulenen_US
dc.subjectAxiale Kapazitäten_US
dc.subjectFiber Takviyeli Polimer (FRP) İnşaat Demirien_US
dc.subjectBetonarme Kolonlaren_US
dc.subjectEksenel Kapasiteen_US
dc.titleInterpretable machine learning algorithms to predict the axial capacity of frp-reinforced concrete columnsen_US
dc.typearticleen_US
dc.relation.journalMaterialsen_US
dc.contributor.authorID0000-0001-7329-1230en_US
dc.identifier.volume15en_US
dc.identifier.issue8en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.departmentTAÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.contributor.institutionauthorÇakıroğlu, Celal
dc.identifier.wosqualityQ2en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.wosWOS:000786856000001en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster