Basit öğe kaydını göster

dc.contributor.authorCivelek, Cem
dc.date.accessioned2022-01-11T05:50:48Z
dc.date.available2022-01-11T05:50:48Z
dc.date.issued2021en_US
dc.identifier.citationCivelek, C. (2021), "Observability, controllability and stability analysis of discrete time engineering dynamic systems by means of Lagrangian, Hamiltonian and dissipative functions in discrete forms", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 40(4), pp. 837-855.en_US
dc.identifier.issn0332-1649
dc.identifier.urihttps://hdl.handle.net/20.500.12846/620
dc.description.abstractPurpose - The purpose of this paper is to analyze the dynamical state of a discrete time engineering/physical dynamic system. The analysis is performed based on observability, controllability and stability first using difference equations of generalized motion obtained through discrete time equations of dissipative generalized motion derived from discrete Lagrange-dissipative model [{L,D}-model] for short of a discrete time observed dynamic system. As a next step, the same system has also been analyzed related to observability, controllability and stability concepts but this time using discrete dissipative canonical equations derived from a discrete Hamiltonian system together with discrete generalized velocity proportional Rayleigh dissipation function. The methods have been applied to a coupled (electromechanical) example in different formulation types. Design/methodology/approach - An observability, controllability and stability analysis of a discrete time observed dynamic system using discrete equations of generalized motion obtained through discrete {L, D}-model and discrete dissipative canonical equations obtained through discrete Hamiltonian together with discrete generalized velocity proportional Rayleigh dissipation function. Findings - The related analysis can be carried out easily depending on the values of classical elements. Originality/value - Discrete equations of generalized motion and discrete dissipative canonical equations obtained by discrete Lagrangian and discrete Hamiltonian, respectively, together with velocity proportional discrete dissipative function are used to analyze a discrete time observed engineering system by means of observability, controllability and stability using state variable theory and in the method proposed, the physical quantities do not need to be converted one to another.en_US
dc.language.isoengen_US
dc.publisherEmerald Group Publishingen_US
dc.relation.isversionof10.1108/COMPEL-08-2020-0272en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectControl Systemsen_US
dc.subjectCircuit Analysisen_US
dc.subjectSensorsen_US
dc.subjectCoupled Systemsen_US
dc.subjectMechatronicsen_US
dc.subjectMEMS Modellingen_US
dc.subjectKontroll Systemeen_US
dc.subjectSchaltungsanalyseen_US
dc.subjectSensorenen_US
dc.subjectGekoppelte Systemeen_US
dc.subjectMechatroniken_US
dc.subjectMEMS Modellierungen_US
dc.subjectKontrol Sistemlerien_US
dc.subjectDevre Analizien_US
dc.subjectSensörleren_US
dc.subjectMEMS Modellemeen_US
dc.titleObservability, controllability and stability analysis of discrete time engineering dynamic systems by means of Lagrangian, Hamiltonian and dissipative functions in discrete formsen_US
dc.typearticleen_US
dc.relation.journalCOMPEL - The International Journal For Computation And Mathematics İn Electrical And Electronic Engineeringen_US
dc.contributor.authorID0000-0003-0017-8661en_US
dc.identifier.volume40en_US
dc.identifier.issue4en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.departmentTAÜ, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.contributor.institutionauthorCivelek, Cem
dc.identifier.startpage837en_US
dc.identifier.endpage855en_US
dc.identifier.wosqualityQ4en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.wosWOS:000690294100001en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster