Basit öğe kaydını göster

dc.contributor.authorShehu, Harisu Abdullahi
dc.contributor.authorSharif, Md. Haidar
dc.contributor.authorSharif, Md. Haris Uddin
dc.contributor.authorDatta, Ripon
dc.contributor.authorTokat, Sezai
dc.contributor.authorUyaver, Şahin
dc.contributor.authorKusetoğulları, Hüseyin
dc.contributor.authorRamadan, Rabie A.
dc.date.accessioned2021-04-29T09:05:28Z
dc.date.available2021-04-29T09:05:28Z
dc.date.issued2021en_US
dc.identifier.citationShehu, H. A., Sharif, M. H., Sharif, M. H. U., Datta, R., Tokat, S., Uyaver, Ş., ... & Ramadan, R. A. (2021). Deep Sentiment Analysis: A Case Study on Stemmed Turkish Twitter Data. IEEE Access, 9, 56836-56854.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12846/583
dc.description.abstractSentiment analysis using stemmed Twitter data from various languages is an emerging research topic. In this paper, we address three data augmentation techniques namely Shift, Shuffle, and Hybrid to increase the size of the training data; and then we use three key types of deep learning (DL) models namely recurrent neural network (RNN), convolution neural network (CNN), and hierarchical attention network (HAN) to classify the stemmed Turkish Twitter data for sentiment analysis. The performance of these DL models has been compared with the existing traditional machine learning (TML) models. The performance of TML models has been affected negatively by the stemmed data, but the performance of DL models has been improved greatly with the utilization of the augmentation techniques. Based on the simulation, experimental, and statistical results analysis deeming identical datasets, it has been concluded that the TML models outperform the DL models with respect to both training-time (TTM) and runtime (RTM) complexities of the algorithms; but the DL models outperform the TML models with respect to the most important performance factors as well as the average performance rankings.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/ACCESS.2021.3071393en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSocial networkingen_US
dc.subjectBlogsen_US
dc.subjectSentiment analysisen_US
dc.subjectSosyal ağen_US
dc.subjectBloglaren_US
dc.subjectDuygu analizien_US
dc.subjectSoziales netzwerken_US
dc.subjectStimmungsanalyseen_US
dc.titleDeep sentiment analysis: a case study on stemmed Turkish Twitter dataen_US
dc.typearticleen_US
dc.relation.journalIEEE Accessen_US
dc.contributor.authorID0000-0001-8776-3032en_US
dc.identifier.volume9en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.departmentTAÜ, Fen Fakültesi, Enerji Bilimi ve Teknolojileri Bölümüen_US
dc.contributor.institutionauthorUyaver, Şahin
dc.identifier.startpage56836en_US
dc.identifier.endpage56854en_US
dc.identifier.wosqualityQ2en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.wosWOS:000641943600001en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster