Basit öğe kaydını göster

dc.contributor.authorShehu, Harisu Abdullahi
dc.contributor.authorHaidar, Sharif
dc.contributor.authorUyaver, Şahin
dc.contributor.authorTokat, Sezai
dc.contributor.authorRamadan, Rabie A.
dc.date.accessioned2021-01-08T21:51:31Z
dc.date.available2021-01-08T21:51:31Z
dc.date.issued2020
dc.identifier.isbn9783030600358
dc.identifier.issn1867-8211
dc.identifier.urihttps://doi.org/10.1007/978-3-030-60036-5_8
dc.identifier.urihttps://hdl.handle.net/20.500.12846/326
dc.description3rd International Conference on Emerging Technologies in Computing, iCEtiC 2020, 19 August 2020 through 20 August 2020, , 249509en_US
dc.description.abstractSentiment analysis is a process of computationally detecting and classifying opinions written in a piece of writer’s text. It determines the writer’s impression as achromatic or negative or positive. Sentiment analysis became unsophisticated due to the invention of Internet-based societal media. At present, usually people express their opinions by dint of Twitter. Henceforth, Twitter is a fascinating medium for researchers to perform data analysis. In this paper, we address a handful of methods to prognosticate the sentiment on Turkish tweets by taking up polarity lexicon as well as artificial intelligence. The polarity lexicon method uses a dictionary of words and accords with the words among the harvested tweets. The tweets are then grouped into either positive tweets or negative tweets or neutral tweets. The methods of artificial intelligence use either individually or combined classifiers e.g., support vector machine (SVM), random forest (RF), maximum entropy (ME), and decision tree (DT) for categorizing positive tweets, negative tweets, and neutral tweets. To analyze sentiment, a total of 13000 Turkish tweets are collected from Twitter with the help of Twitter’s application programming interface (API). Experimental results show that the mean performance of our proposed methods is greater than 72%. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectEntropyen_US
dc.subjectSentimenten_US
dc.subjectSVMen_US
dc.subjectTurkishen_US
dc.subjectTwitteren_US
dc.titleSentiment analysis of turkish twitter data using polarity lexicon and artificial intelligenceen_US
dc.typeconferenceObjecten_US
dc.relation.journalLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICSTen_US
dc.identifier.volume332 LNICSTen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.departmentTAÜ, Fen Fakültesi, Enerji Bilimi ve Teknolojileri Bölümüen_US
dc.contributor.institutionauthorUyaver, Şahin
dc.identifier.doi10.1007/978-3-030-60036-5_8
dc.identifier.startpage113en_US
dc.identifier.endpage125en_US
dc.identifier.scopusqualityQ4en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster