Basit öğe kaydını göster

dc.contributor.authorDağ, Özge Hüsniye Namlı
dc.contributor.authorYanık, Seda
dc.contributor.authorNouri, Faranak
dc.contributor.authorŞengör, N. Serap
dc.contributor.authorKoyuncu, Yusuf Mertkan
dc.contributor.authorKüçükali, İrem
dc.date.accessioned2021-01-08T21:51:30Z
dc.date.available2021-01-08T21:51:30Z
dc.date.issued2021
dc.identifier.isbn9783030511555
dc.identifier.issn2194-5357
dc.identifier.urihttps://doi.org/10.1007/978-3-030-51156-2_109
dc.identifier.urihttps://hdl.handle.net/20.500.12846/308
dc.descriptionInternational Conference on Intelligent and Fuzzy Systems, INFUS 2020, 21 July 2020 through 23 July 2020, , 242349en_US
dc.description.abstractToday one of the challenges of companies is to decrease call center costs while improving the customer experience. In this study, we make prediction and proactively take action in order to solve customer problems before they reach the customer call center. We use machine learning techniques and train models with a dataset of an internet service provider’s several different systems. We first use supervised techniques to classify the customers having slow internet connection problems and normal internet connection. We apply two classification approaches, multi perceptron neural networks and radial basis neural networks. Then, we cluster the same dataset using unsupervised techniques, namely Kohonnen’s neural networks and Adaptive Resonance Theory neural networks. We evaluate the classification and clustering results using measures such as recall, accuracy and Davies-Bouldin index, respectively. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectCall center problem predictionen_US
dc.subjectClassificationen_US
dc.subjectClusteringen_US
dc.titleImproving customer experience for an internet service provider: a neural networks approachen_US
dc.typeconferenceObjecten_US
dc.relation.journalAdvances in Intelligent Systems and Computingen_US
dc.identifier.volume1197 AISCen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.departmentTAÜ, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.contributor.institutionauthorDağ, Özge Hüsniye Namlı
dc.identifier.doi10.1007/978-3-030-51156-2_109
dc.identifier.startpage941en_US
dc.identifier.endpage948en_US
dc.identifier.scopusqualityN/Aen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster