Basit öğe kaydını göster

dc.contributor.authorKaya, Burak
dc.contributor.authorHabiboğlu, Mehmet Gökhan
dc.contributor.authorMoghaddamnia, Sanam
dc.date.accessioned2024-11-13T19:21:06Z
dc.date.available2024-11-13T19:21:06Z
dc.date.issued2023en_US
dc.identifier.citationKaya, B., Habiboğlu, Mehmet G., Moghaddamnia, S. (2022). On the efficiency of LSTM in classifying musical impressions from EEG recordings. 6th International Conference of Mathematical Sciences (ICMS 2022), 2879 (1).en_US
dc.identifier.urihttps://pubs.aip.org/aip/acp/article-abstract/2879/1/040014/2928673/On-the-efficiency-of-long-short-term-memory-in?redirectedFrom=PDF
dc.identifier.urihttps://hdl.handle.net/20.500.12846/1400
dc.description.abstractThe objective of this study is the classification of musical impressions with long short-term memory (LSTM) approach using EEG recordings of 20 subjects, while listening to different music genres. For this purpose, a deep learning model was developed, where relevant features extracted from intrinsic mode functions (IMF) of the clean EEG data are used as the input signals. The classification accuracy of the proposed model is evaluated with various feature sets. The highest classification accuracy is 73.33%, which is achieved by combining higher-order statistics and the first difference of IMF features.en_US
dc.language.isoengen_US
dc.relation.isversionof10.1063/12.0023973en_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.titleOn the efficiency of LSTM in classifying musical impressions from EEG recordingsen_US
dc.typeconferenceObjecten_US
dc.relation.journal6th International Conference of Mathematical Sciences (ICMS 2022)en_US
dc.identifier.volume2879en_US
dc.identifier.issue1en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.departmentTAÜ, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster