Basit öğe kaydını göster

dc.contributor.authorÇakıroğlu, Celal
dc.contributor.authorDemir, Sercan
dc.contributor.authorÖzdemir, Mehmet Hakan
dc.contributor.authorAylak, Batin Latif
dc.contributor.authorSariisik, Gencay
dc.contributor.authorAbualigah, Laith
dc.date.accessioned2024-04-04T18:41:59Z
dc.date.available2024-04-04T18:41:59Z
dc.date.issued2023en_US
dc.identifier.citationÇakıroğlu, C., Demir, S., Özdemir, Mehmet H., Aylak, Batin L., Sariisik, G., Abualigah, L. (2023). Data-driven interpretable ensemble learning methods for the prediction of wind turbine power incorporating SHAP analysis. 237, 1-12. Elsevier.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12846/1030
dc.description.abstractWind energy increasingly attracts investment from many countries as a clean and renewable energy source. Since wind energy investment cost is high, the efficiency of a potential wind power plant should be determined using wind power prediction models and wind speed data before installation. Accurate wind power estimation is crucial to set up comprehensive strategies for wind power generation. This study estimated the power produced in a wind turbine using six different regression algorithms based on machine learning using temperature, humidity, pressure, air density, and wind speed data. The proposed estimation model was evaluated on the data received between 2011 and 2020 at station 17,112 in Çanakkale, Turkey. XGBoost, Random Forest, LightGBM, CatBoost, AdaBoost, and M5-Prime algorithms were used to create predictive models. Furthermore, model explanations were presented using the SHAP methodology. Among the regression algorithms evaluated according to the R2 performance metric, the best performance was obtained from the XGBoost algorithm. Regarding computational speed, the LightGBM model emerged as the most efficient model. The wind speed wasen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.eswa.2023.121464en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRenewable energyen_US
dc.subjectWind poweren_US
dc.subjectMachine learningen_US
dc.subjectPredictive modelingen_US
dc.titleData-driven interpretable ensemble learning methods for the prediction of wind turbine power incorporating SHAP analysisen_US
dc.typearticleen_US
dc.contributor.authorIDCelal Cakiroglu a,* , Sercan Demir b , Mehmet Hakan Ozdemir c , Batin Latif Aylak d , Gencay Sariisik b , Laith Abualigahen_US
dc.identifier.issue237en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.departmentTAÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.identifier.startpage1en_US
dc.identifier.endpage12en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster