Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Zerdo, Zaid" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Classification and detection of various geographical features from satellite imagery
    (International University of Sarajevo, 2018) Sharif, Haidar; Uyaver, Şahin; Zerdo, Zaid
    It is a challenging task to classify and detect various geographical features from the satellite imagery of the Earth as well as the celestial bodies. This paper puts forward several pixel based classification algorithms to classify geographical features from the satellite images of the Earth. The recorded experimental results, from a total of 606 satellite images to classify miscellaneous geographical features, demonstrate that the maximum algorithmic performances can approximate to 87%. This paper also addresses a simple algorithm based on edge approximation and circular Hough transformation to detect craters from the satellite imagery of celestial bodies. An online available dataset to detect craters evaluates the performance of the algorithm. In general, all the proposed algorithms are straightforward but in many ways effective. © 2018, International University of Sarajevo.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Classification of geographical features from satellite imagery
    (Springer Verlag, 2019) Sharif, Haidar; Uyaver, Şahin; Sharif, Haris Uddin; İnce, İbrahim Furkan; Zerdo, Zaid
    It is a challenging task to classify heterogeneous geographical features from satellite imagery. This paper addresses 31 straightforward classification algorithms based on predominantly pixels to classify miscellaneous geographical features from satellite imagery. The addressed algorithms can extract and process the features of a large dataset with high-resolution images expeditiously. A total of 606 red-green-blue satellite images of the Bosnian city of Banja Luka are exercised to comprehend their performances for classifying cemeteries, fields, houses, industries, rivers, and trees. The recorded experimental results demonstrate that the best average performance can come into possession of 87%. © Springer Nature Singapore Pte Ltd. 2019.

| Türk-Alman Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Türk-Alman Üniversitesi, Beykoz, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim