Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Singh, Manjeet" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Application of machine learning methods for pallet loading problem
    (MDPI-Multidisciplinary Digital Publishing Institute, 2021) Aylak, Batin Latif; İnce, Murat; Oral, Okan; Almasarwah, Najat; Singh, Manjeet; Salah, Bashir; Süer, Gursel
    Because of continuous competition in the corporate industrial sector, numerous companies are always looking for strategies to ensure timely product delivery to survive against their competitors. For this reason, logistics play a significant role in the warehousing, shipments, and transportation of the products. Therefore, the high utilization of resources can improve the profit margins and reduce unnecessary storage or shipping costs. One significant issue in shipments is the Pallet Loading Problem (PLP) which can generally be solved by seeking to maximize the total number of boxes to be loaded on a pallet. In many previous studies, various solutions for the PLP have been suggested in the context of logistics and shipment delivery systems. In this paper, a novel two-phase approach is presented by utilizing a number of Machine Learning (ML) models to tackle the PLP. The dataset utilized in this study was obtained from the DHL supply chain system. According to the training and testing of various ML models, our results show that a very high (>85%) Pallet Utilization Volume (PUV) was obtained, and an accuracy of >89% was determined to predict an accurate loading arrangement of boxes on a suitable pallet. Furthermore, a comprehensive analysis of all the results on the basis of a comparison of several ML models is provided in order to show the efficacy of the proposed methodology.

| Türk-Alman Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Türk-Alman Üniversitesi, Beykoz, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim