Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Rasch, Janine" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Novel cycloheximide derivatives targeting the moonlighting protein Mip exhibit specific antimicrobial activity against Legionella pneumophila
    (Frontiers Media Sa, 2015) Rasch, Janine; Theuerkorn, Martin; Ünal, Can Murat; Heinsohn, Natascha; Tran, Stefan; Fischer, Gunter; Steinert, Michael
    Macrophage infectivity potentiator (Mip) and Mip-like proteins are virulence factors in a wide range of pathogens including Legionella pneumophila. These proteins belong to the FK506 binding protein (FKBP) family of peptidyl-prolyl-cis/trans-isomerases (PPIases). In L. pneumophila, the PPIase activity of Mip is required for invasion of macrophages, transmigration through an in vitro lung-epithelial barrier, and full virulence in the guinea pig infection model. Additionally, Mip is a moonlighting protein that binds to collagen IV in the extracellular matrix. Here, we describe the development and synthesis of cycloheximide derivatives with adamantyl moieties as novel FKBP ligands, and analyze their effect on the viability of L. pneumophila and other bacteria. All compounds efficiently inhibited PPIase activity of the prototypic human FKBP12 as well as Mip with IC50-values as low as 180nM and 1.7 mu M, respectively. Five of these derivatives inhibited the growth of L. pneumophila at concentrations of 30-40 mu M, but exhibited no effect on other tested bacterial species indicating a specific spectrum of antibacterial activity. The derivatives carrying a 3,5-dimethyladamantan-1-[yl]acetamide substitution (MT_30.32), and a 3-ethyladamantan1-[yl]acetamide substitution (MT_30.51) had the strongest effects in PPIase- and liquid growth assays. MT_30.32 and MT_30.51 were also inhibitory in macrophage infection studies without being cytotoxic. Accordingly, by applying a combinatorial approach, we were able to generate novel, hybrid inhibitors consisting of cycloheximide and adamantane, two known FKBP inhibitors that interact with different parts of the PPIase domain, respectively. Interestingly, despite the proven Mip-inhibitory activity, the viability of a Mip-deficient strain was affected to the same degree as its wild type. Hence, we also propose that cycloheximide derivatives with adamantyl moieties are potent PPIase inhibitors with multiple targets in L. pneumophila.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Peptidylprolyl cis-trans isomerases of Legionella pneumophila: virulence, moonlighting and novel therapeutic targets
    (Portland Press Ltd, 2014) Rasch, Janine; Ünal, Can Murat; Steinert, Michael
    Legionella pneumophila, typically a parasite of free-living protozoa, can also replicate in human alveolar macrophages and lung epithelial cells causing Legionnaires' disease in humans, a severe atypical pneumonia. The pathogen encodes six peptidylprolyl cis-trans isomerases (PPIases), which generally accelerate folding of prolyl peptide bonds, and influence protein folding. PPIases can be divided into three classes, cyclophilins, parvulins and FK506-binding proteins (FKBPs). They contribute to a multitude of cellular functions including bacterial virulence. In the present review, we provide an overview of L. pneumophila PPIases, discussing their known and anticipated functions as well as moonlighting phenomena. By taking the example of the macrophage infectivity potentiator (Mip) of L. pneumophila, we highlight the potential of PPIases as promising drug targets.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Polyketide synthase (PKS) reduces fusion of Legionella pneumophila-containing vacuoles with lysosomes and contributes to bacterial competitiveness during infection
    (Elsevier Gmbh, Urban & Fischer Verlag, 2014) Shevchuk, Olga; Paegelow, Dennis; Rasch, Janine; Döhrmann, Simon; Günther, Gabriele; Hoppe, Julia; Steinert, Michael; Ünal, Can Murat; Bronietzki, Marc; Gutierrez, Maximiliano Gabriel
    L. pneumophila-containing vacuoles (LCVs) exclude endocytic and lysosomal markers in human macrophages and protozoa. We screened a L. pneumophila mini-Tn10 transposon library for mutants, which fail to inhibit the fusion of LCVs with lysosomes by loading of the lysosomal compartment with colloidal iron dextran, mechanical lysis of infected host cells, and magnetic isolation of LCVs that have fused with lysosomes. In silico analysis of the mutated genes, D. discoideum plaque assays and infection assays in protozoa and U937 macrophage-like cells identified well established as well as novel putative L. pneumophila virulence factors. Promising candidates were further analyzed for their colocalization with lysosomes in host cells using fluorescence microscopy. This approach corroborated that the O-methyltransferase, PilY1, TPR-containing protein and polyketide synthase (PKS) of L pneumophila interfere with lysosomal degradation. Competitive infections in protozoa and macrophages revealed that the identified PKS contributes to the biological fitness of pneumophila strains and may explain their prevalence in the epidemiology of Legionnaires' disease. (C) 2014 Elsevier GmbH. All rights reserved.

| Türk-Alman Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Türk-Alman Üniversitesi, Beykoz, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim