Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Herzog, Walter" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Direct validation of model-predicted muscle forces in the cat hindlimb during locomotion
    (Journal of Biomechanical engineering-transactions of the asme, 2020) Arslan, Yunus Ziya; Karabulut, Derya; Doğru, Suzan Cansel; Herzog, Walter; Pandy, Marcus G.; Lin, Yi-Chung
    Various methods are available for simulating the movement patterns of musculoskeletal systems and determining individual muscle forces, but the results obtained from these methods have not been rigorously validated against experiment. The aim of this study was to compare model predictions of muscle force derived for a cat hindlimb during locomotion against direct measurements of muscle force obtained in vivo. The cat hindlimb was represented as a 5-segment, 13-degrees-of-freedom (DOF), articulated linkage actuated by 25 Hill-type muscle-tendon units (MTUs). Individual muscle forces were determined by combining gait data with two widely used computational methods—static optimization and computed muscle control (CMC)—available in opensim, an open-source musculoskeletal modeling and simulation environment. The forces developed by the soleus, medial gastrocnemius (MG), and tibialis anterior muscles during free locomotion were measured using buckle transducers attached to the tendons. Muscle electromyographic activity and MTU length changes were also measured and compared against the corresponding data predicted by the model. Model-predicted muscle forces, activation levels, and MTU length changes were consistent with the corresponding quantities obtained from experiment. The calculated values of muscle force obtained from static optimization agreed more closely with experiment than those derived from CMC.
  • [ X ]
    Öğe
    Sensitivity of muscle force response of a two-state cross-bridge model to variations in model parameters
    (Sage Publications, 2022) Örteş, Faruk; Jinha, Azim; Herzog, Walter; Arslan, Yunus Ziya
    Muscle models based on the cross-bridge theory (Huxley-type models) are frequently used to calculate muscle forces for different contractile conditions. Dynamic and nonlinear characteristics of muscle forces produced during isometric, concentric, and eccentric contractions can be represented to a limited extent by using cross-bridge models. Cross-bridge models use various parameters to simulate force responses. However, there remains uncertainty as to the effect of changes in model parameters on force responses in Huxley-type models. In this study, we aimed to analyze the sensitivity of force response to changes in model parameters in Huxley-type models. A two-state Huxley model was used to determine the cross-bridge attachment distributions and forces for shortening and lengthening contractions. Sensitivity of muscle force to changes in attachment rate, detachment rate, and cross-bridge binding distance was examined within a range of +/- 20% of the nominal value using Monte Carlo simulations. Changes in the detachment rate influenced the predicted muscle forces the most for lengthening contractions, while changes in attachment rate and binding distance affected forces the most for shortening contractions. These results show once more the asymmetry between shortening and lengthening contractions and the difficulty in using a single cross-bridge model to predict forces during shortening and elongation accurately.

| Türk-Alman Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Türk-Alman Üniversitesi, Beykoz, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim