Yazar "Gholami, Hamed" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An improvement on selective separation by applying ultrasound to rougher and re-cleaner stages of copper flotation(Mdpi, 2020) Hassanzadeh, Ahmad; Sajjady, Sayed Ali; Gholami, Hamed; Amini, Saeed; Özkan, Şafak GökhanIt has been known that the power ultrasound is used as a pretreatment and rarely applied as a simultaneous method to improve grade and recovery during froth flotation processes. This work aimed at investigating the impact of simultaneously used ultrasonic waves under variant operating configurations on the flotation of representative porphyry copper ore during rougher and re-cleaner stages. For this purpose, four different operating outlines were examined as (I) conventional flotation, (II) homogenizer, (III) ultrasonic bath, and (IV) combination of a homogenizer and an ultrasonic bath. The ultrasonic vibration was generated by the homogenizer (21 kHz, 1 kW) in the froth zone and ultrasonic bath (35 kHz, 0.3 kW) in the bulk zone. The rougher and re-cleaner flotation experiments were conducted using Denver-type mechanically agitated cells with 4.2 and 1 L capacities, respectively. The results showed that using the homogenizer (at 0.4 kW) slightly affected the selectivity separation index of chalcopyrite and pyrite, although it positively increased the grade of chalcopyrite from 21.5% to 25.7%. The ultrasonic-assisted flotation experiments with the ultrasonic bath and its combination with the homogenizer (0.4 kW) (i.e., configurations III and IV) led to an increase of approximately 16.1% and 26.9% in the chalcopyrite selectivity index compared to the conventional flotation, respectively. At the cleaning stage, a lower grade of aluminum silicate-based minerals was obtained desirably in every ultrasonic-treated configuration, which was supported with the water recoveries. Finally, applying the homogenizer and its combination with the ultrasonic bath were recommended for re-cleaner and rougher stages, respectively. Further fundamental and practical knowledge gaps required to be studied were highlighted.Öğe Effect of power ultrasound on wettability and collector-less floatability of chalcopyrite, pyrite and quartz(MDPI-Multidisciplinary Digital Publishing Institute, 2021) Hassanzadeh, Ahmad; Gholami, Hamed; Özkan, Şafak Gökhan; Niedoba, Tomasz; Surowiak, AgnieszkaNumerous studies have addressed the role of ultrasonication on floatability of minerals macroscopically. However, the impact of acoustic waves on the mineral hydrophobicity and its physicochemical aspects were entirely overlooked in the literature. This paper mainly investigates the impact of ultrasonic power and its time on the wettability and floatability of chalcopyrite, pyrite and quartz. For this purpose, contact angle and collectorless microflotation tests were implemented on the ultrasonic-pretreated and non treated chalcopyrite, pyrite and quartz minerals. The ultrasonic process was carried out by a probe-type ultrasound (Sonopuls, 20 kHz and 60 W) at various ultrasonication time (0.5-30 min) and power (0-180 W) while the dissolved oxygen (DO), liquid temperature, conductivity (CD) and pH were continuously monitored. Comparative assessment of wettabilities in the presence of a constant low-powered (60 W) acoustic pre-treatment uncovered that surface of all three minerals became relatively hydrophilic. Meanwhile, increasing sonication intensity enhanced their hydrophilicities to some extent except for quartz at the highest power-level. This was mainly related to generation of hydroxyl radicals, iron-deficient chalcopyrite and elemental sulfur (for chalcopyrite), formation of OH and H radicals together with H2O2 (for pyrite) and creation of SiOH (silanol) groups and hydrogen bond with water dipoles (for quartz). Finally, it was also found that increasing sonication time led to enhancement of liquid temperature and conductivity but diminished pH and degree of dissolved oxygen, which indirectly influenced the mineral wettabilities and floatabilities. Although quartz and pyrite ultrasound-treated micro-flotation recoveries were lower than that of conventional ones, an optimum power-level of 60-90 W was identified for maximizing chalcopyrite recovery.