Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Duru, Dilek Göksel" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Evaluation of deep transfer learning methodologies on the COVID-19 radiographic chest images
    (International Information and Engineering Technology Association, 2023) Duru, Dilek Göksel; Duru, Adil Deniz; Uçan, Osman Nuri; Al-azzaw, Athar; Al-jumaili, Saif
    In 2019, the world had been attacked with a severe situation by the new version of the SARSCOV-2 virus, which is later called COVID-19. One can use artificial intelligence techniques to reduce time consumption and find safe solutions that have the ability to handle huge amounts of data. However, in this article, we investigated the classification performance of eight deep transfer learning methodologies involved (GoogleNet, AlexNet, VGG16, MobileNet-V2, ResNet50, DenseNet201, ResNet18, and Xception). For this purpose, we applied two types of radiographs (X-ray and CT scan) datasets with two different classes: non-COVID and COVID-19. The models are assessed by using seven types of evaluation metrics, including accuracy, sensitivity, specificity, negative predictive value (NPV), F1- score, and Matthew’s correlation coefficient (MCC). The accuracy achieved by the X-ray was 99.3%, and the evaluation metrics that were measured above were (98.8%, 99.6%, 99.6%, 99.0%, 99.2%, and 98.5%), respectively. Meanwhile, the CT scan model classified the images without error. Our results showed a remarkable achievement compared with the most recent papers published in the literature. To conclude, throughout this study, it has been shown that the perfect classification of the radiographic lung images affected by COVID19.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Identification of food/nonfood visual stimuli from event-related brain potentials
    (Hindawi Publishing Corporation, 2021) Güney, Selen; Arslan, Sema; Duru, Adil Deniz; Duru, Dilek Göksel
    Although food consumption is one of the most basic human behaviors, the factors underlying nutritional preferences are not yet clear. The use of classification algorithms can clarify the understanding of these factors. This study was aimed at measuring electrophysiological responses to food/nonfood stimuli and applying classification techniques to discriminate the responses using a single-sweep dataset. Twenty-one right-handed male athletes with body mass index (BMI) levels between 18.5% and 25% (mean age: 21.05 +/- 2.5) participated in this study voluntarily. The participants were asked to focus on the food and nonfood images that were randomly presented on the monitor without performing any motor task, and EEG data have been collected using a 16-channel amplifier with a sampling rate of 1024 Hz. The SensoMotoric Instruments (SMI) iView XTM RED eye tracking technology was used simultaneously with the EEG to measure the participants' attention to the presented stimuli. Three datasets were generated using the amplitude, time-frequency decomposition, and time-frequency connectivity metrics of P300 and LPP components to separate food and nonfood stimuli. We have implemented k-nearest neighbor (kNN), support vector machine (SVM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Bayesian classifier, decision tree (DT), and Multilayer Perceptron (MLP) classifiers on these datasets. Finally, the response to food-related stimuli in the hunger state is discriminated from nonfood with an accuracy value close to 78% for each dataset. The results obtained in this study motivate us to employ classifier algorithms using the features obtained from single-trial measurements in amplitude and time-frequency space instead of applying more complex ones like connectivity metrics.

| Türk-Alman Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Türk-Alman Üniversitesi, Beykoz, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim