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Diffusion tensor magnetic resonance imaging (DTMRI) as a noninvasive modality providing in vivo anatomical information allows
determination of fiber connections which leads to brain mapping. The success of DTMRI is very much algorithm dependent, and
its verification is of great importance due to limited availability of a gold standard in the literature. In this study, unsupervised
artificial neural network class, namely, self-organizing maps, is employed to discover the underlying fiber tracts. A common
artificial diffusion tensor resource, named “phantom images for simulating tractography errors” (PISTE), is used for the accuracy
verification and acceptability of the proposed approach. Four different tract geometries with varying SNRs and fractional anisotropy
are investigated. The proposed method, SOFMAT, is able to define the predetermined fiber paths successfully with a standard
deviation of (0.8-1.9) x 10~* depending on the trajectory and the SNR value selected. The results illustrate the capability of SOFMAT
to reconstruct complex fiber tract configurations. The ability of SOFMAT to detect fiber paths in low anisotropy regions, which
physiologically may correspond to either grey matter or pathology (abnormality) and uncertainty areas in real data, is an advantage

of the method for future studies.

1. Introduction

Diffusion tensor magnetic resonance imaging (DTMR], also
called DTI) is a fundamental technique that allows in vivo
structural brain imaging by white matter estimation [1, 2].
Differing from the weighted MR images, DTT provides direc-
tional information that could be used to compute nerve path-
ways. The modality is unique in its ability to provide in
vivo anatomical fiber tract information noninvasively. How-
ever, the accurate estimation of white matter fibers is highly
dependent on the tractography algorithm used. DT is advan-
tageous in clinical neuroscience, for quantitative comparison
of specific white matter pathways in disease, in guided inter-
ventions, for the exploration of the normal brain anatomy [3].
Tractography however, should be used with care because of
the limitations of the technique. A complete and validated
neural fiber map of human brain is still not available in the
literature, which makes the adequate verification of the post-
processing a challenging and a critical task.

An important drawback in the determination of the fiber
paths for tractography purposes occurs in uncertainty regions
where at least two fiber paths intersect. This study proposes an
artificial neural network approach named SOFMAT based on
self-organizing feature mapping (SOFM or SOM) to define
the fiber tracts based on their diffusivity and to clarify, espe-
cially, the fiber tracts in these uncertainty regions [4, 5]. The
locally computed diffusion tensors shape the randomly dis-
tributed artificial neuronal topology.

The developed novel SOM-based tractography approach
self-organizing feature mapping tractography (SOFMAT) is
based on unsupervised learning method, which is used in the
training of artificial neural networks (ANNs) [4, 5]. Unsup-
ervised learning is preferred for the fact that we do not have
a reliable training set either for the pathological or for the
normal human brain.

Especially in studies dealing with complex data, ANN
is very useful and preferable. The use of ANN has a wide
range, such as analyzing seismic signals [6], wind speed



forecasting [7], feature prediction in urban traffic flow [8], in
sludge bulking [9], and in founding of reference voltage of
maximum power point under different atmospheric condi-
tions [10].

In our study, SOM is selected to train the ANN, because
SOM as a classifier demonstrated successful identification of
structured topologies in various domains [4, 5]. Representing
a subset of ANNs, SOM is particularly useful in investigating
multidimensional topologies. In this study, the topology
sought is actually the tracts of localized diffusion eigenvec-
tors, which define the principal diftusivity of the fibers in
the DTMR images. The available anatomical atlases depicting
nerve tracts have poor resolution capable of distinguishing
millions of axons contained in unit imaging voxel. Clinical
validation data is hard to come by for the intended clinical
utilization. Instead, it is a common practice to employ artifi-
cially produced data to evaluate proposed tractography algo-
rithms. Therefore, in this study, a common diffusion tensor
resource named phantom images for simulating tractography
errors (PISTE) is used for benchmarking the accuracy and
acceptability of the proposed approach.

The idea of SOFMAT is to accomplish the fiber pathways
by considering each individual voxel’s contribution taking
into account the neighboring voxels’ behavior in the topology.
This is achieved by both the competing and the cooperating
behavior of SOM nodes (neurons) in forming the topology.
The proposed method has been tested on four phantom
images from PISTE with various signal to noise (SNR) values.
The images represent various levels of complexities involving
crossovers, kisses, and direction changes. The results were
then compared against well-accepted tractography algo-
rithms reported in the literature (i.e., streamline (SLT) [1]
method and Guided Tensor Restore Anatomical Connectivity
Tractography (GTRACT) algorithm [11].

Preliminary studies indicate that SOFMAT method gives
promising and relatively superior results compared to the tra-
ditionally implemented and well-accepted tractography algo-
rithms mentioned above. SOFMAT has the ability to gene-
rate tracts in complex fiber structures such as the spiral phan-
tom utilized and represented in this study. The main reason
for the development of the SOFMAT method was to tract
complex architectures like spiral trajectory where the stand-
ard streamline approaches were failing. A typical SLT algo-
rithm follows only a single direction, where SOFMAT evalu-
ates multiple directions regarding the topological neighbor-
hood function [4]. The GTRACT algorithm is affected by
noise and crossing fibers as mentioned in the reference [11],
where SOFMAT results are relatively superior compared to
GTRACT results.

The sections of the paper are organized as follows.
In the next section, a brief background work related to
the proposed method is introduced including the synthetic
data resource utilized for evaluation. Section 3 describes the
method of the presented work in detail addressing how SOM
is implemented to detect synthetic tracts and how we valid-
ated the results. Section 4, results, presents quantitative com-
parison of the proposed method against the commonly used
algorithms. The discussions are given in Section 5.
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2. Background

2.1. Principles of Diffusion Tensor Analysis. The principles of
DTI are based on the Stejskal-Tanner imaging sequence [1].
Physically, the diffusion tensor estimation can be obtained by
taking the arithmetic average of the diffusion images in all
possible directions [1]. The 3 x 3 symmetric diffusion tensor
D is calculated from a set of these diffusion weighted images
for each pixel as in the following [1].

T m
S, = S,e P9 Pai, )
where

S; is the signal received with the ith diffusion gradient
pulse, where i = 1 to N, (N = 6 typically),

Sp is the signal received without the diffusion gradient
pulse,

b is the diffusion weighting factor,

|g;| is the strength of the ith diffusion gradient pulse,
and

g; is the ith diffusion gradient vector.

The diagonal and off-diagonal elements of 3 x 3D can
be displayed as an image. The 6 diagonal and oft-diagonal
elements’ detection is only possible with at least 6 diffusion
weighted images. These images with diffusion gradient are
required to detect diffusion in all directions. The required 6
independent elements of D are achieved by applying diffusion
gradients g; along at least six noncollinear, noncoplanar
directions.

Principal component analysis (PCA) is used to perform
the diffusion tensor analysis and compression. The diagonal-
ization of the diffusion tensor as in (2) results in a set of three
eigenvalues A, > A, > A; associated with the three eigen-
vectors €, &,, and €; corresponding to the principal diffusion
vectors for each voxel under the study [1, 2, 12]. The eigenvec-
tors, €;, for a voxel x can be computed as

D.g =M1g¢, (i = 1,23), (2)

1

|D, - Al =0, 3)

where D is the diffusion tensor (1) of the standardized data
and I is the identity matrix. The eigensystem calculation
of the analyzed image data provides information about the
diffusion distribution throughout the investigated image. The
first principal component A, shows the dominant diffusivity
direction. The second and third principal components A, and
A provide information of the intermediate and smallest prin-
cipal diftusivity, respectively. In diffusion tensor literature,
tracking methods rely mainly on the dominant principal
diffusivity A,. The assumption is that the fibers’ orientation
is along the principal diffusivity [2, 13-15].

2.2. PISTE: DTI Artificial Data. In an attempt to identify
nerve fiber trajectories, several DTI based tractography
techniques have been proposed to propagate diffusion tensor
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fields. Since it is difficult to validate the findings of a tractogra-
phy method on brain images, artificially produced validated
phantom images are used for benchmarking. One such
commonly utilized dataset in DT-MRI tractography literature
is called “phantom images for simulating tractography errors”
(PISTE). PISTE comprises a set of simulated fiber trajectories
designed for testing, validating, and comparing tractography
algorithms allowing the investigation of various geometries
like linear, linear break, orthogonal crossing, and spiral [16].
Here, the linear trajectory is defined as a straight-forward
linear tract, where the so called linear break trajectory of
PISTE has a complete break at the tract [16]. As will be
explained in detail in Section 4, orthogonal crossing is an
example of intersecting fiber structures. This PISTE trajectory
is a crossing sample of two fibers intersecting each other
at a right angle. Each of these trajectory sets contains a
T2 weighted image, with 6 elements of the diffusion tensor
achieved by application of 30 different diffusion directions
[14,15], and an image of the corresponding eigensystem [16].
The tensor images of different geometries were fed into the
proposed tractography system testing for varying SNR levels
of 5, 15, and 30 as well as the noise-free condition. The
PISTE images used in this study correspond to MR images
acquired with TE = 90ms, diffusion tract having a T2 of
65 ms, and the background with a T2 of 95ms. 30 diffusion
directions were represented in 16 slices of 150 x 150 images.
The diffusion directions are obtained using an algorithm
analog to electrostatic repulsion [14, 15].

The DT images are generated on the investigated trajec-
tory with a decreasing anisotropy along the length of the tract,
which is overlaid on a homogeneous anisotropic background.
The data used in this study is available as 32 bit float binary
files at http://cubric.psych.cf.ac.uk/commondti/ [16].

3. Methods

3.1. SOEMAT: Self-Organizing Feature Mapping Tractography.
Self-organizing feature mapping tractography (SOFMAT)
is proposed as a tractography algorithm in this study. It is
based on self-organizing feature map (SOM), a family in
artificial neural networks. The advantage of SOM lies in its
ability of mapping high dimensional data into a 1D, 2D, or
3D data space, subject to a topological ordering constraint
[4, 5]. SOM is able to learn an input pattern in terms of the
patterns’ regularities and correlations. As will be explained in
Section 3.4, the network adapts the output pattern according
to its input. One important feature of SOM is that it is able to
process noisy data. This makes the learning rule applicable
in diffusion tensor fiber tract analysis. Based on this special
class of ANN, the proposed SOFMAT algorithm aims to
map the brain’s diffusion tensor data into fiber paths using an
unsupervised learning method. Unsupervised nature of the
learning is essential, since the ultimate challenge is to iden-
tify the tractography of brain nerve pathways with no apriori
anatomical or pathological information.

SOM orders the data into meaningful topologies corre-
sponding to the given input data. SOFMAT uses this ability in
terms of retaining the underlying structure of the input space
and enabling a mapped match of the investigated imaging

space resulting in nerve fiber tracts as an output. The final
tractography is the converged state of an artificial neuronal
map obtained by the iterative synaptic weight update process
(4, 5].

SOFMAT, in an attempt to discover nerve fiber tracts,
utilizes an artificial neural network learning scheme inspired
by the self-organization in a neurobiological system [17].
This is achieved by implementing the characteristics and
basics of SOM unsupervised learning methodology onto the
DT eigensystem. Here, each neuron’s spatial location in the
resulting feature map corresponds to a particular topology of
the input data. Differing from a classical SOM application,
SOFMAT utilizes the orientation information (A;,A,, s,
e;, €, e;) inherent in the DT images, along with the positional
dependency. In other words, SOFMAT enables the analysis
of correlated neighboring nodes with respect to both their
spatial locations and the direction of their diffusivities. The
“diffusivity informed” SOFMAT uses this information as a
topological ordering constraint.

The feature mapping model which SOFMAT implements
in this study is arranged in a number of 1D lattice, as described
by Kohonen [5]. In this topology, each neuron has a set of
neighbors which are influenced by the motion of a target
neuron defined by a weighted Gaussian distance function,
as explained in detail in Section 3.3. The lattices formed as a
result can take any arbitrary shape in the n-dimensional input
space, even though they are nothing more than strings, as is
also the case for axons forming a nerve tract. The proposed
method benefits from this feature in detecting the topological
nerve fiber map.

3.2. Competitive Process in SOFMAT. SOFMAT inherits un-
supervised competitive learning from SOM with the follow-
ing principles [4, 5].

(i) The output neurons of the network compete among
themselves to be fired, for a given input pattern.

(ii) Only one output neuron is activated at any one time,
called the winning neuron.

(iii) The winning output node is processed by the self-
organization progressing towards the input pattern I,
while dragging its neighbors.

(iv) As an outcome of this self-organized competition
and cooperation, the topological connectivity in I is
maintained and reflected in the output.

(v) The input pattern, I, selected randomly is represented
as

I=[xzApinAs] (4)

where x, y, and z correspond to the three position
coordinates and A, A,, and A5 are the three eigen-
vectors of the diffusion tensor computed for the simu-
lated diffusion tensor images.

(vi) The input space pattern I and an output node simi-
larity or distance is determined in relation to the asso-
ciated synaptic weight vector of each output neuron
(node) expressed as [4] in (5). Here similarity match
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FIGURE I: [llustration of the training process. (a) Initial random state of the lattice. The input data vector is displayed here as I(t). Randomly
initialized network after a learning step; intermediate stage of self-organization. Best match is assigned as winning node. Updating the weight
allows the network to find its best matching nodes in the discrete output space (5). The nodes within the neighborhood h ? learn from the
winning node. (b) Fully trained network after n iterations: Structured input space.

is reached by identifying the node that best matches
the input I, and this winning neuron P(I) is found ata
time step t by using the minimum-distance Euclidean
criterion [4], where # is the total number of neurons
in the network:

P(I)=argrrljjn'|1(t)—wj|', j=12,...,n, (5)

where w; is the weight vector for the jth node as

o T
w] = [le,U)jz, ..,wjm] . (6)

In SOFMAT, m is defined as 6 corresponding to the
number of diffusion gradient pulses (1). The first three
elements of w i describe the position of jth node, and the last
three correspond to the orientation of the vector connecting
the jth node to the j + 1st node.

SOFMAT identifies the winning neuron by computing
a distance function comparing an input pattern I with the
synaptic weight vectors, w; for each node (5). The training
process is illustrated in Figure 1. First, the weight vectors are
mapped randomly onto a two-dimensional lattice. Figure 1(a)
represents this initial random state of the lattice. Training
of the network gives the closest match to the input data
vector I(t) in the node (Figure 1(b)). The nodes within the
neighborhood h learn from the winning node (Figure 1(c)).
The weight vectors within the neighborhood /4 learn from the
input data vector and get updated. In Figure 1(d), the final,
fully trained network is displayed.

3.3. Cooperative Process in SOFMAT. Cooperation in SOM
algorithm is also inherited in SOFMAT. The level of coopera-
tion of the neighborhood neurons is decided by the winning
neuron (5).

(i) The topological neighborhood h;; is typically chosen
as a Gaussian function [4]:

i (1) = 2, 7)

o (t) = gy, (8)

where r is the sequential distance and d;; is the
Euclidean distance between the winning neuron P(I)
and the other neurons (j) in the string and calculated
by the sequential distance » of I and j as given in the
following:

= | (j) - r . )

The width, o(n), of the Gaussian neighborhood function
decreases for facilitating convergence at an exponential rate,
and the neighborhood shrinks in each iteration. The depen-
dence of o in discrete time ¢ (¢t = 0, 1,2,...) in (8) contributes
to the convergence of SOM learning algorithm by excluding
more nodes from the neighborhood iteratively. g, is the initial
value of 0, and 7; is the time constant, which are determined
by ad hoc methods, influenced by the size of the input space
and the number of output nodes as described in [5].

3.4. Adaptive Process in SOFMAT. For a given input pattern
I, all the neurons in the vicinity of the winning neuron P(I)
are updated by a distance coefficient decreasing with the
neighboring function, h;;. Note that h;; is 1 for the winning
neuron and decreases exponentially as the nodes gets away
from the winning neuron. The iterative learning process is
actually representing the adaptation of the weight vectors
towards an input pattern I and given as

Wi (t+1)=d; () +n (O hyy O (T-D; ). (10)
Equation (10) gives the computation of the updated weight
vector w;(f + 1) at time ¢ + 1, with a time varying learning
rate #(t), where w;(t) is the synaptic weight vector of neuron
j at time t [4, 5]. As introduced in (4), our input space I
consists of the positional elements x, y, and z and directional
elements A;, A,, and A; for each voxel. The SOFMAT is
shaped by comparing each input vector I, to every node, in
the neighborhood (Figure 1). The comparison is based on
both position and orientation according to (5). Once the
winning neuron is determined, the positions of the nodes
are updated according to (10). The directional vectors of the
SOFMAT nodes are updated according to the newly formed
neuronal topology as in Figure 2. Assuming that nerve
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wj-l[t]

wj,l[t+ 1]

‘ V[t +1]

Input pattern

F1GURE 2: The pixel with the weight w; at time ¢, nearest to the input
pixel, is winning and is moving towards this input pixel according
to (10) as shown with an arrow in the figure. Its neighbors, w;_; and
w;,, at time ¢ on the string, are also moving to a lesser extent. The
update in the orientation can be recognized through initial weight
vector v[t] and updated resulting vector v[t + 1]. Units close to
the winner as well as the winner itself have their weights updated
significantly. Weights associated with far away output pixels do not
change significantly. The update continues until the sought topology
is found and the feature map is consistent.

tracts are formed from multiple axons, we provided multiple
strings with an expectation to detect the underlying neuronal
pathways. Multiple strings implementation methodology is
summarized as follows:

SOFMAT with multiple strings:

(i) initially there are N , strings each of which is made of
N, nodes;

(ii) initial position and orientation of each node (w) are
randomly initialized;

(iii) for each node of the input pattern, I, the winning
neuron is computed based on the minimization of the
cost function as given in (5). The winning node also
determines the winning string;

(iv) once the winning neuron and its string are deter-
mined,

(a) a weight update matrix wj(t) is computed
for that string using the position information
according to (7), (8), and (10),

(b) the weight update matrix is computed for that
string for updating the orientation information
according to the new position as in Figure 2;

(v) this procedure is repeated from step (iii) until the
maximum number of predefined iteration or conver-
gence is reached;

(vi) the converging weight matrix that includes the posi-
tion and orientation information of the multiple
strings is the resulting topology of SOFMAT.

The aim of the implementation is to map the underlying
topology of a discrete input space. Initially, the weights
are assigned randomly and the SOM pattern is arbitrarily
positioned. A starting input node is randomly picked among
the inputs for training (Figure 2). The node with the closest
reference vector represents the winning neuron w; (). At the
iteration at discrete time £, the winning neuron w; moves
towards the input pattern (Figure 2), and the two neighboring

neurons w;_; and w;,, in its Gaussian neighborhood move in
smaller steps. The goal is to train the net until the topology is
stable.

For each position update of a node the directional
convergence of orientation vector is also achieved.

Following the three processes of the unsupervised learn-
ing method, taking into account both the position and the
direction of a candidate node, SOFMAT enables the deter-
mination of neural fiber tracts having similar diffusivity. The
updated neighborhood helps to compute the proper neighbor
of each winning neuron, which enables the algorithm to
calculate the neural paths with respect to the underlying
diffusivity.

3.5. Experimental Methods. The number of inputs is deter-
mined by the image dimensions, which is 150 x 150 pixels in
PISTE. The number of strings and the number of nodes in
each string have been changed between 2-80 and 50-3200,
respectively, for experimenting the convergence behavior of
different PISTE topologies. The learning rate in (10) was set
as 0.1, a typical rate for safe and stable convergence in the
expense of slow learning and increased risk of local minima.
Each individual PISTE pattern is examined for a number of
iterations. For linear and linear break PISTE patterns, 500
iterations were sufficient. For the spiral trajectory the number
of iterations was 6000 as expected. By varying iterations, the
best match and the determination of the most reliable track is
aimed. The more complex the investigated pattern becomes,
the more iterations are needed. This is a natural characteristic
of a self-organizing network. The main constraint here is the
convergence. In each experiment the convergence is checked
upon both the position and orientational training results.
More detailed explanations and their discussions on exper-
iments and their results are presented in Sections 4 and 5.
The tracking results for SOFMAT are shown on four
exemplary synthetic data sets. The PISTE trajectories
described in Section 2.2 were selected for the evaluation and
comparison purposes when GTRACT and SLT methods were
employed in the literature [11]. Both GTRACT and SLT are
diffusion tensor fiber tracking suites like SOFMAT. The main
difference is that these suites include streamline tracking
tools. These fiber tracking methods include a guided tracking
tool that integrates apriori information into a streamline
algorithm. SOFMAT in contrast enables the tracking by
detecting and following the orientation of the weighted
neighbors. Especially the spiral trajectory which is known
to be problematic for fiber tracking methods is also analyzed
with SOFMAT. The reconstructed tracts are represented in
the results section, overlaid on the T2 weighted MR images
or fractional anisotropy (FA) maps of the reconstructed tract.

4. Results

4.1. Experimental Scenarios and Targets. In this study, the
linear, linear break, orthogonal crossing, and spiral PISTE
data sets each of them with individual FA were examined
with SOFMAT. Varying FA values give information about
the anisotropy and as a result about the anatomy of the tissue
investigated. A change in the FA map shows clues about
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FIGURE 3: Linear PISTE trajectory. (a) T2 weighted image; (b) input corresponding to the computed eigenvectors (blue). Initial weights w;,
are seen in red. (c) Pink tracts on the T2 weighted image are SOFMAT’s implementation results.
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FIGURE 4: Linear break trajectory. Eigenvectors representing the diffusivity are superimposed on T2 image in blue. SOFMAT results with
single string trial are seen in green (right). The gap in the middle of the tract is zoomed to give an idea about the implementation result of the

algorithm.

the investigated trajectory. In PISTE, images are created
on homogeneous anisotropic background, and decreasing
anisotropy along tracts is applied. Therefore, the FA maps
serve as filters where the routinely applied homogeneous ani-
sotropic background can be extracted from the image. This
process also acts as a noise removal highlighting the diffusion
pattern. The eigensystem of D (2) is determined by principal
component analysis (PCA) [I, 2, 12], and the principle
diffusion direction is interpreted graphically in Figure 3.
The entire DT resource is investigated with the proposed
SOFMAT method. The search process of the pattern in the
selected limits is completed in examining the eigenvectors of
each pixel based on the predefined similarity measure. This
examined dataset sample might be a whole image data or a
single ROL In this study, the trajectories are not separated
into ROIs, they are examined on whole. The details of the
investigated geometries are as follows.

Linear Trajectory with and without Break. The linear tra-
jectory is a straight-forward linear tract (Figure 3(a)). Its

background is homogenously anisotropic. One has a com-
plete break at the tract (Figure 4). Along the length of the
tract, its FA is linearly decreasing. The reconstructed tracts
are plotted over the FA map of the investigated linear fiber
trajectory (Figure 3). SOFMAT resolves the break on the
linear break trajectory (Figures 4 and 5), and it successfully
calculates and reconstructs the tracts on the investigated fiber
and not on the break (Figure 5).

Orthogonal Crossing Trajectory. This PISTE trajectory is a
crossing sample of two fibers intersecting each other at a
right angle. The FA values of each of these two orthogonal
linear tracts have a slight difference as represented in the
orthogonal elements in diffusion tensor image (Figure 6).
In this simulated data, the difference on fibers with higher
and lower FA values is observed. The SOFMAT results are
evaluated with respect to their cost functions by means of
spatial distance and angular similarity (Figure 8). SOFMAT
reconstruction is displayed in Figure 7. Here, the network has
converged with 40 x 20 nodes in 500 iterations.
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FIGURE 5: Linear break trajectory with multiple strings. SOFMAT
results are seen in blue. The trajectory and the gap in the middle of
it are determined by SOFMAT as represented.

TaBLE 1: The tracking errors (in mm) of the three tracking tools for
linear trajectory.

SLT GTRACT SOFMAT
SNR =30 0.63 0.60 0.46
SNR =15 0.90 0.65 0.48
SNR =5 1.40 0.70 0.56

Spiral Trajectory. The spiral trajectory of PISTE is an in-plane
spiral tract overlaid on a homogenous isotropic background.
It has a high FA value. Here, not only the noise-free sample
is investigated by SOFMAT but also the curvy trajectory
is examined for SNR values of 30 and 15. Spiral tracts are
especially problematic for streamline tractography [1, 13]
because curvy trajectory cannot be reconstructed accurately
by this method. So it is not able to follow the relatively high
curvature of the fiber. SOFMAT, however, has the ability to
follow the curvature (Table 3). The reconstruction results are
presented in Figure 9.

The proposed SOFMAT algorithm is compared with the
two well-known fiber tracking suits, GTRACT [11] and SLT
[1] using PISTE dataset as a benchmark. The tracking results
for the three algorithms were compared qualitatively and
quantitatively. As indicated in the reference papers [18, 19],
the error in fiber tracking is proportional to the square root
of the distance along the track. The evaluation of GTRACT
algorithm [11] has been performed regarding the predefined
error definition as in [18, 19]. Also in this work, the error
is computed based on distance measure as in the definition
in the literature. In GTRACT [11], the tracking error was
accessed on the linear trajectory and the orthogonal crossing
trajectory. For that reason, error of SOFMAT is computed for
the two phantom trajectories, the linear and the orthogonal
crossing, and computation results are presented in Tables 1
and 2. Results indicate that SOFMAT gives promising and
relatively superior results compared to SLT and GTRACT

TABLE 2: The tracking errors (in mm) of the three tracking tools for
orthogonal crossing trajectory.

SLT GTRACT SOFMAT
SNR = 30 0.675 0.65 0.46
SNR =15 0.875 0.66 0.48
SNR =5 1.45 0.70 0.65

TABLE 3: The mean tracking errors (in mm) of SOFMAT reconstruc-
tion of spiral trajectory.

SOFMAT
Spatial Angular
Noise free 0.699 0.1151
SNR =30 0.743 0.1127
SNR =15 1.611 0.3416
SNR =5 6.298 0.5087

results. SOFMAT has the ability to generate complex tracts.
Aside from the linear, linear break, and orthocrossing trajec-
tories mentioned in [11], spiral trajectory is also investigated
in this study (Figure 9; Table 3).

The results for all the three tracking tools are represented
in Tables 1 and 2 for all the existing linear and orthogonal
PISTE trajectories, respectively. The mean tracking errors
in SLT, GTRACT, and SOFMAT for linear PISTE trajectory
with an SNR of 30 are 0.63mm, 0.60 mm, and 0.46 mm,
respectively (Table1). With an SNR of 5, again for the
linear trajectory, the tracking errors for SLT, GTRACT, and
SOFMAT are 1.40 mm, 0.70 mm, and 0.56 mm, respectively
(Table 1). The mean tracking errors in SLT, GTRACT, and
SOFMAT for orthogonal crossing phantom with an SNR
of 30 are 0.675mm, 0.65mm, and 0.46 mm, respectively
(Table 2). The mean tracking error in SLT and GTRACT
for orthogonal crossing phantom (SNR = 5) are 1.45 and
0.7 mm, respectively. SOFMAT’s tracking error for SNR = 5
for orthocrossing phantom is 0.65mm (Table 2). Here, the
SOFMAT parameters N, and N, are in each experiment
80 and 40, respectively. The parameters are assigned based
on the network’s convergence status. The updated network
parameters are given in detail in Table 6.

To observe the effectiveness of the ANN based algorithm,
the convergence of the cost function is detected as SOFMAT
weights are stabilized. The SOFMAT tracking results of an
uncertainty region, namely, an orthocrossing trajectory, are
also presented in Figure 7.

In all examinations, the input pattern is the T2 weighted
image of spiral trajectory with input matrix size of 150 x 150.
In order to compare SOFMAT’s results, the network in all of
the three cases has 50 strings, where the number of iterations
is 6000 and unique in all three exams.

For each of the investigated trajectory, the network’s
parameters are methodically and carefully determined. The
determination of parameters effect the phases of the network
and its ability to converge safe and stably. As mentioned
previously, each individual PISTE pattern is examined for a
number of iterations. The aim of varying iterations is to find
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FIGURE 6: Diffusion tensor representation of the orthogonal PISTE trajectory. The different diffusivities for this geometry are seen on the
diagonal images. Upper left: Dxx—the anisotropy of D in x direction and in the middle: Dyy—the anisotropy of D in y direction.

the best match and so to determine the most reliable tract. The
more the investigated pattern gets complex, iteration number
increases. This also explains why the spiral trajectory’s itera-
tion number (=6000) was the highest among all the trajecto-
ries. This is a natural characteristic of a self-organizing net-
work.

In each experiment, the convergence is checked upon
both the position and orientational training results. Here, the
orthogonal crossing trajectory with 150 x 150 original input
size is selected as a sample. In Tables 4-6, various network
parameter selections and their results are represented. First,
a network with 2 strings created from 50 to 200 nodes is
analyzed. The mean spatial distance between the known val-
ues of the input pattern and those calculated with SOFMAT
as output vary from 5.7429 to 1.819 pixels. In all of these
cases, the iteration number is kept constant with 500 steps.
As expected, with increased number of strings, the trajectory
is more precisely determined (Table 6).

TaBLE 4: The validation results of the SOFMAT implementation. The
orthogonal crossing trajectory is selected as sample. Here, analysis
results for 2-string case are shown.

Node x string

Mean spatial distance Angular norm

N, xN,

50 x 2 5.7429 0.1206
100 x 2 3.5785 0.0999
150 x 2 2.2843 0.1003
200 x 2 1.8195 0.0965

5. Discussion

Several studies aim to investigate the synchronization, infor-
mation transmission, and signal sensitivity in concept of the-
oretical neuroscience using neural networks [20-23]. There
are studies which concentrate on the synchronization on
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FIGURE 7: The SOFMAT result superimposed on T2 images for
orthogonal crossing trajectory. The tracts are defined along the

paths through the total trajectory. Both of the orthogonal tracts are
reconstructed completely.

TaBLE 5: The validation results of the SOFMAT implementation
for orthogonal crossing. A wider network for orthogonal crossing
trajectory is investigated and represented.

Node x string

Mean spatial distance Angular norm

N, XN,

20 x 20 8.17 0.0923
25 %20 3.3412 0.0943
30 x 20 2.8286 0.0883
40 x 20 2.1506 0.0910
60 x 20 1.7862 0.0917

TABLE 6: The validation results of the SOFMAT implementation for
orthogonal crossing with updated network parameters.

Node x string

Mean spatial distance Angular norm

N, XN,

20 x 40 1.49455 0.0996
40 x 40 1.1065 0.0971
60 x 40 1.0391 0.0969
80 x 40 0.8346 0.0885
100 x 40 0.6577 0.0330
150 x 40 0.8480 0.0890
200 x 40 0.4263 0.0415
250 x 40 0.3729 0.0436
300 x 40 0.3603 0.0504

scale-free neuronal networks with phase-repulsive coupling
and delay [20-23]. These studies focus on the dependency of
synchronization transitions on the information transmission
delay over scale-free neuronal networks with attractive or
repulsive coupling [24]. Other than biological neuronal stud-
ies, our study aims to explore the structural fiber tractography
to define the brain fiber paths properly using artificial neural
networks. To analyze the complex dynamics of the biological

neuronal networks such as excitability delay and complex
topologies, it is adequate to develop additional theoretical and
experimental studies.

Unlike the functional magnetic resonance imaging
(fMRI), DTI highlights the anatomical connectivity patterns
of the brain and does not include any information about the
function of the brain activity directly. Generally, clinical DTI
studies measure the data voxel wise where the size of each
voxel is on the order of millimeters. But it’s well-known that
there are millions of fibers passing through each image voxel.
Thus, the spatiotemporal dynamics within a voxel can be
explored by using the Hudgkin-Huxley neuronal networks
[24, 25]. In the concept of our paper, the anatomical relation-
ship and connectivity are tried to be estimated among the
voxels. The mathematical model that is proposed in [24] can
be modified and optimized for the voxel DTT data to deduce
the anatomical connectivity in the brain. It may hold signi-
ficant value for future brain imaging studies.

Our study proposes an artificial neural network approach
named SOFMAT based on self-organizing feature mapping
to generate simulated tracts based on their diffusivity and to
clarify, especially, the fiber tracts in complex fiber architec-
tures. The artificial neuronal topology based on unsupervised
learning method is used as a classifier to identify the struc-
tured simulated topologies.

Mapping the brain’s white matter noninvasively is possi-
ble through proper analysis of DTMR images. The algorithms
proposed for fiber mapping and fiber tractography are to
be examined by synthetically simulated datasets for accurate
validation. In this study, a common synthetic DT dataset,
namely, PISTE, which is specially generated for verification
purposes of DT and tractography algorithms, is used for
verification and validation. One of the main constraints in
the accuracy of the mapping results is the determination
of intersecting fiber tracts in uncertainty regions. In DTI
literature these intersecting regions generate a critical track-
ing problem. Providing a solution for identification of the
orientations of the brain fibers in these uncertainty regions
in diffusion tensor analysis is of great importance [26, 27].
Methods and updates are to be researched to define these
uncertainty regions. Streamline tractography (SLT) is recalled
as an accepted basis method for diffusion tensor tractography
(DTT). For that reason, SLT is one of the algorithms selected
for comparison with SOFMAT (Tables 1 and 2). Secondary,
the DTT algorithm chosen for evaluation is the GTRACT
software implementation. The SLT uses the principle eigen-
vector, e;, to compute Euler’s method approximation to the
parameterized tract [1, 13].

In this study, we proposed a tracking tool for detecting
real brain fibers later as a future study according to unsuper-
vised learning method SOFM. The main idea of SOFMAT
is to track the complex fibers according to unsupervised
learning while keeping the structural information of the
underlying tissue. The methodology is applied and examined
firstly on computer simulated trajectories PISTE for verifica-
tion and validation of the algorithm.

The proposed fiber reconstruction method SOFMAT
clarifies the diftusivities in the previously mentioned uncer-
tainty regions (Figures 3, 5, and 9). Quantitative results are
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FIGURE 8: The SOFMAT results are investigated, and the determined neighborhood’s coordinates and their related calculated eigenvectors
are evaluated. The histogram shows the similarity of the original input and the SOFMAT’s reconstructed tract for orthocrossing trajectory:
noise free (a) and SNR = 5 (b). The angular cost function results inform that the input and the output are nearly the same. Here, the input
pattern is 150 x 150, where in both cases noise free and SNR = 5, the parameters N, and N,, are 80 and 40, respectively.

listed in Tables 1 and 2 with respect to well accepted tracto-
graphy techniques [1, 11, 13]. These results are relatively sup-
erior to the results of SLT and GTRACT. The figures in the
result section are represented to give an idea of how (well)
the SOFMAT results match the input patterns. The method
is tested with varying SNR values and also in low anisotropy
regions. Low anisotropy regions are studied more intensely
focusing on the problematic crossings on the phantoms. The
fractional anisotropy (max. FA = 1) represents the degree of
anisotropy, in other words the deviation from isotropic diffu-
sion (FA = 0). The grey matter in the brain is nearly isotropic
(0.37 > FA > 0.15). In uncertainty regions, it is hard to define
the direction of the fiber tracts. Therefore, the detection of fib-
ers in regions having low fractional anisotropy is an advan-
tage of the proposed method. Because in real brain studies,
aside from grey matter, low anisotropy regions are uncer-
tainty areas or injured regions. Therefore, the ability to recon-
struct the fiber structures in low anisotropy regions is an
important benefit of SOFMAT. Optimizing the cost function
and neuron selection, the algorithm is able to detect small
tract changes and curvy trajectories (Figure 9 and Table 3).
Fiber tracking in SOFMAT begins by identifying seed
voxels to be used as potential starting positions for the recon-
structed fibers. Based on the predetermined eigensystem of
the sample trajectories, fiber tract is estimated within each
voxel regarding to the diffusivity defined by this eigensystem.
Here, the knowledge in diffusion literature suggests that the
eigensystem defines the diffusivity [1, 13]. Each node (neuron)
in the region of interest (ROI) is considered as part of a
potential fiber tract. The computed winning neurons define
the possible nerve tract a fiber can follow with respect to both
the coordinate and the directional information of the winning
neurons. In other words, a winning neuron determines the

newly gained voxel to the tract in terms of its coordinate and
direction. The estimation follows by evaluating each node’s
neighboring function in terms of the similarity criteria.

The novel algorithm SOFMAT is being evaluated
throughout the study. The validation study performed on
PISTE gives promising results, and they have been compared
to the well-known SLT method and the GTRACT algorithm.
In the literature, as it has been represented in [11] by GTRACT
evaluation, the error is investigated along the resulting tract,
and quantitative results are given in Tables 1 and 2. SOFMAT
is able to handle fiber crossings and also the spiral trajec-
tory. SOFMAT results to highlight to propagation of fibers
through the intersecting and curvy regions are represented in
Figures 3, 4, 5,7, and 9. The minimization of the error is suc-
cessfully managed where the characteristics can be tracked
in related cost function of the network. The increasing num-
ber of neurons and iterations selected in the SOM imple-
mentation results more reliable tractography outputs (Tables
4,5, and 6).

Investigating samples with both varying noise and differ-
ent geometry is important for evaluation, because the devia-
tion from the original fiber path is caused mainly by the
noise. The relationship between the tracking error to SNR is
acceptable in all examinations. Also dependency on the geo-
metry is seen (Figures 3 and 9). Considering that every tra-
jectory in PISTE has a different diffusivity characteristics, it
is meaningful that the cost functions representing the fiber
determination performance for linear and orthocrossing geo-
metries vary from each other. The SOFMAT algorithm
improves the performance of the fiber tracking even in the
presence of noise discussed in Tables 1 and 2. SOFMAT also
allows tracking branching fibers. In conclusion, SOFMAT is
able to describe two or more fiber tracts simultaneously and
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FIGURE 9: The spiral trajectory results are represented. (a): T2 weighted images; from left to right: noise free T2; SNR = 30; SNR = 15. (b): FA
images of each input data. (c): SOFMAT results superimposed on respective T2 weighted images. (d): SOFMAT reconstructions exclusively.
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to reconstruct tracts in uncertainty regions. SOFMAT, on the
other hand, does not lose the fiber tractography in relatively
high SNRs.

The SOFMAT method gives promising results, compared
to the traditionally implemented and well-accepted tractog-
raphy algorithms mentioned above (Tables 1 and 2). As a
future work we plan to implement SOFMAT on real brain.

6. Conclusion

This paper represents a novel approach namely self-organiz-
ing feature mapping tractography (SOFMAT) for complex
fiber tracking purposes in diffusion tensor analysis. The algo-
rithm is based on unsupervised learning in artificial neural
networks. As an alternative to the existing methods, SOF-
MAT is also effective in low anisotropy regions and less
affected to noise and curvature complexity than GTRACT
and SLT methods. Also, unlike some DTT studies established
with PISTE [28, 29], the presented SOFMAT study provides
performance evaluation other than just visual inspection. The
error analysis of the SOFMAT results compared to the exist-
ing methods gives improved tract determination and follow-
up. In crossing regions with intersecting fiber distributions
and varying SNR values, SOFMAT is able to define the pre-
determined fiber paths successfully with a standard deviation
of (0.8-1.9) x 10~ depending on the trajectory and the SNR
value selected. The results illustrate the capability of SOFMAT
to reconstruct complex fiber tract configurations.
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