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ABSTRACT

The plethora of photometric data collected by the Kepler space telescope has pro-

moted the detection of tens of thousands of stellar rotation periods. However, these

periods are not found to an equal extent among different spectral types. Interest-

ingly, early G-type stars with near-solar rotation periods are strongly underrepre-

sented among those stars with known rotation periods. In this study we investigate

whether the small number of such stars can be explained by difficulties in the period

determination from photometric time series. For that purpose, we generate model

light curves of early G-type stars with solar rotation periods for different inclination

angles, metallicities and (magnitude-dependent) noise levels. We find that the de-

tectability is determined by the predominant type of activity (i.e. spot or faculae

domination) on the surface, which defines the degree of irregularity of the light curve,

and further depends on the level of photometric noise. These two effects significantly

complicate the period detection and explain the lack of solar-like stars with known

near-solar rotation periods. We conclude that the rotation periods of the majority of

solar-like stars with near-solar rotation periods remain undetected to date. Finally,

we promote the use of new techniques to recover more periods of near-solar rotators.

1. INTRODUCTION
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Stellar brightness variations at the timescale of stellar rotation are caused by transits

of magnetic features (such as dark spots or bright faculae) rotating across the visible

disk. These variations have routinely been observed by transit photometry missions.

In particular, the Kepler telescope obtained light curves of roughly 150,000 main-

sequence stars. Some of these light curves exhibit clear signatures of stellar rotation,

which can be extracted by standard frequency analysis tools such as Lomb-Scargle

periodograms, auto-correlation functions, or wavelet transforms. The biggest survey

of rotation periods based on the Kepler data has been published by McQuillan et al.

2014 (hereafter MMA14), who detected rotation periods for 34,030 presumably main-

sequence stars.

However, for the majority of the main-sequence stars the light curves were either

too noisy or too irregular for the rotation period to be determined. MMA14 found

that the fraction of stars with detectable periods strongly depends on the effective

temperature. Interestingly, this fraction appeared to be lowest for stars with near-

solar effective temperature (between 5500–6000 K, hereafter referred to as early G-

type stars), reaching only 16% (see Table 3 in MMA14). On the contrary, van Saders

et al. (2019) used Galactic evolution models to predict that ∼59% of the early G-type

stars should have detectable rotation periods.

The lack of stars with known rotation period becomes even more severe for early

G-type stars of near-solar age. Recently, Reinhold et al. (2020) showed that only

a dozen Kepler stars with near-solar fundamental parameters and rotation periods

between 20–30 days (i.e. encompassing the solar rotation period of ∼25 days) exhibit

rotational variability levels similar to that of the Sun. In contrast, the majority of

these stars are substantially more variable than the Sun and also show more regular

light curves patterns. It has been proposed that such a conspicuous difference between

the Sun and other solar-like stars can be explained by a detection bias towards more

active stars in bulk rotation period measurements (see the discussion in Amazo-Gómez

et al. 2020), thus missing the majority of early G-type stars with near-solar rotation

periods and small variabilities.

In this Letter we address the question whether the ”missing” solar-like stars (i.e.

stars with solar fundamental parameters and rotation periods) do not exist or sim-

ply go undetected. Our approach is based on the solar paradigm, i.e. we build on

the comprehensive understanding of solar brightness variability (see, e.g., reviews by

Ermolli et al. 2013; Solanki et al. 2013), and extend solar models to solar-like stars.

Namely, we combine two recently developed physics-based models by Witzke et al.

(2020) and Nèmec et al. (2020). This allows calculating light curves of stars with a

solar distribution of active regions and solar effective temperature, but various metal-

licities and observed at arbitrary inclination angles. These light curves are used to

identify obstacles in the period determination of solar-like stars, and to discuss pos-

sible limitations of period measurements in real data sets. We further compare the
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number of actual period measurements in Kepler data to predictions from Galactic

evolution models using the detection rate obtained from the model light curves.

2. METHODS

2.1. The curious case of the Sun

The morphology of the solar light curve (as it would be observed in the Total

Solar Irradiance or in the broad-band spectral passband like those of CoRoT, Kepler,

or TESS) changes significantly depending on the phase of the solar activity cycle.

While it appears to be quite regular at 11-year cycle minima when activity is low,

the regularity disappears at periods of intermediate and high solar activity (Lanza

& Shkolnik 2014; Aigrain et al. 2015; He et al. 2015). In particular, Amazo-Gómez

et al. (2020) showed that if the Sun were observed by Kepler, the standard frequency

analysis tools would most probably fail to detect the correct rotation period (unless

observations are done during epochs of low solar activity). The causes for this inability

are manifold: solar rotational variability is mainly brought about by spots (see, e.g.,

Shapiro et al. 2016). The relatively short lifetimes of sunspots from days to weeks (see,

e.g., Solanki 2003) implies that most of the spots transit the visible solar disk only

once, which leads to irregularities in the solar light curve, and hampers the detection

of the solar rotation period. Furthermore, the brightness changes of dark spots and

bright faculae partly compensate each other, which decreases the amplitude of the

rotational signal, further hindering the period determination (Shapiro et al. 2017;

Witzke et al. 2020; Nèmec et al. 2020). The exception from this general tendency are

epochs of low solar activity with a small number of active regions. At these times the

rotational variability is attributed to long-lived facular features and the light curve

pattern becomes more periodic.

2.2. The model

While the irregularity of the solar light curve is quite well understood, the situation

gets more complicated for other early G-type stars. Their light curves look different,

partly because the stars are observed at various inclinations. For example, faculae

appear brighter at the limb and therefore contribute more strongly to the variability

when the star is observed out of the ecliptic plane (Nèmec et al. 2020). Addition-

ally, stellar metallicity [Fe/H] affects facular (and to a smaller degree spot) contrasts

(Witzke et al. 2018), which eventually has an impact on the period detectability

(Witzke et al. 2020).

To synthesize the light curves of solar-like stars, we built on recent calculations

by Nèmec et al. (2020) and by Witzke et al. (2018). Nèmec et al. (2020) utilized

a semi-empirical sunspot-group record by Jiang et al. (2011) and the Surface Flux

Transport Model by Cameron et al. (2010) to reconstruct the distribution of active

regions on the solar surface from the year 2010 back to 1700 with a daily cadence. By

applying an appropriate geometrical transformation, Nèmec et al. (2020) calculated

the distribution of active regions on the solar disk as it would be observed at arbitrary
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inclinations. Witzke et al. (2018) calculated the brightness contrasts of faculae and

spots relative to the quiet Sun (i.e. free from any apparent manifestations of magnetic

activity) as a function of wavelength and position on the visible disk for stars with

different metallicities and solar effective temperature.

All in all, by combining the reconstructed disk distribution of active regions with

their brightness contrasts, we generated light curves with a time span of 310 years

as they would be seen in the passband of the Kepler telescope. The light curves

were calculated for ten inclination angles 0◦ ≤ i ≤ 90◦ (with a step of 10◦), and

nine different metallicities −0.4 ≤ [Fe/H] ≤ 0.4 dex (with a step of 0.1 dex). The

solar record from 1700–2010 covers epochs of both low solar activity (like the Dalton

minimum around 1790–1830), and very high solar activity (like the modern grand

maximum around 1950–2000, see Solanki et al. 2004; Usoskin et al. 2007), which

allows studying rotation period detectability during activity cycles of very different

strengths. We note that, by assuming a solar disk distribution of active regions,

we only account for the metallicity effect on the contrasts of magnetic features. A

change in metallicity also affects the depth of the convective zone, which in turn could

influence the stellar dynamo, in particular the length of the stellar activity cycle or the

emergence latitudes of magnetic bipoles (Schuessler & Solanki 1992). However, this

effects is rather weak, e.g. doubling the metallicity of a star with solar temperature

will deepen the convective zone by only ca. 8% (van Saders & Pinsonneault 2012;

Karoff et al. 2018). Therefore, we expect these effects to be relatively small. Studying

them is beyond the scope of the present paper, but would be an interesting future

exercise.

2.3. Monte Carlo approach

We take a Monte Carlo approach to analyze light curves with different realizations of

inclination angles and metallicities. The distribution of inclination angles is uniform

in cos i, where i = 0◦ denotes a pole-on view and i = 90◦ an equator-on view. The

input distribution of metallicities was adapted for solar-like stars in the Kepler field

(see Fig. A.1 and Reinhold et al. 2020). For each (random) parameter combination

(i, [Fe/H]), we chose the model light curve from the grid with the closest parameters

in metallicity and inclination angle.

Following the observing strategy of the Kepler telescope, we pick a random 4-year

segment of the full time series (see top row of Fig. 1 for example). This light curve is

then cut into 90-day segments (i.e. similar to the Kepler observing quarters), where

each 90-day chunk is normalized by its median, and appended to the previous one, to

form a 4-year time series. These Keplerized light curves (Fig. 1, middle row) will be

analyzed for rotation in the next step. The detrending is necessary because it filters

out brightness variations on the activity-cycle timescale, and renders the light curves

comparable to detrended Kepler data.
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In addition to the various inclination and metallicity combinations, we study the

impact of noise on the period detectability. The model light curves are by definition

noise-free. In real observations, the visual stellar magnitude defines the noise level.

We use the distribution of Kepler magnitudes Kp of solar-like stars to compute dif-

ferent noise realizations σ (see Reinhold et al. 2020 for details). A noise time series

with zero mean and standard deviation σ is then added to the time series in the

Monte-Carlo simulation. In total, we conducted 50,000 Monte Carlo runs, both for

the noise-free and the noisy cases to study them separately.

3. RESULTS

3.1. Period detection

From among the various period detection methods, we chose the auto-correlation

function (ACF) to search for periodicity in the time series (i.e. the same method as

employed by MMA14). The ACF returns peaks of different power as a measure of the

periodicity in the light curve. To quantify the strength of the periodicity, we adapt the

measure of MMA14, where the local peak height (LPH) is computed as the difference

between the highest peak and the mean of the two troughs on either side (see Fig. 1,

bottom row). We only search for peaks at periods less than 70 days, consistent with

MMA14. If the highest ACF peak lies between 24–30 days and LPH > 0.1, we count

it as a detection. If the peak lies outside this period range or is smaller (LPH < 0.1),

it is counted as a false or non-detection.

Fig. 1 illustrates the difficulty of detecting the correct rotation period of the Sun

from the photometric time series obtained in the Kepler passband. The top row

of Fig. 1 shows the modeled light curve computed for a star with solar metallicity,

[Fe/H] = 0, as it would be observed outside of its equatorial plane at i = 40◦. The

bottom row gives the ACF and the computed LPH for three different 4-year segments

of the same light curve. Depending on the selected segment, the ACF shows the

highest peak at different periods. The first panel shows a peak with a moderate LPH

but outside the range of 24–30 days (red dashed lines), i.e. a false detection. The

second panel shows a peak close to the model rotation period of 27 days, although

with a rather low LPH. The last panel shows a clear peak within the range 24–30 days,

although this period is found to be the first harmonic of the highest peak at twice

the correct rotation period (so that this panel corresponds to a false detection again).

The light curve segment shown in this panel corresponds to an epoch of relatively

low magnetic activity when the rotational variability of the Sun becomes faculae-

dominated. Since faculae have significantly longer lifetimes than spots, this segment

shows a more stable periodicity but even in such cases the correct rotation period is

not necessarily associated with the highest ACF peak.

We now consider how the apparent magnitude of a star affects the period detection.

For that purpose, Fig. 2 shows the same light curve as Fig. 1, but with different

noise levels to simulate the star as observed at different magnitudes. To demonstrate
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Figure 1. Top row: Model light curve (black) with an inclination of i = 40◦ and solar
metallicity [Fe/H] = 0, with three randomly chosen 4-year segments (green). Middle row:
Keplerized light curves of the chosen segment from the top row (see Sect. 2.3 for details).
Bottom row: auto-correlation function (ACF) of the selected 4-year segment. The measured
period is indicated by the red asterisk, and the local peak height (LPH) is shown as the
vertical gray line between the peak and the two troughs on either side. The vertical dashed
red lines indicate the period detection window from 24 to 30 days.

the effect of noise on the ACF, we chose a segment during solar minimum1 where the

correct period was detected, and added Poisson noise to the light curve, representative

of a solar-like star at 11th, 13th, and 15th Kepler magnitude (see Reinhold et al. 2020

for details). In all cases, the correct period was detected. While from 11th to 13th

magnitude the LPH only slightly decreases, it decreases by more than half at 15th

magnitude.

3.2. LPH dependence on spot area

The two examples in Sect. 3.1 illustrated how the period detection is affected by the

activity level (Fig. 1) and the amount of observational noise (Fig. 2). Fig. 3 combines

both of these effects by showing the LPH when the highest peak was found between

24–30 days, as a function of the sunspot coverage on the visible solar disc, averaged

over the 4-year segment (in ppm), for different magnitudes. The red diamonds show

1 The chosen segment slightly differs from the one chosen in the third panel Fig. 1 to demonstrate the
effect of noise on the LPH.
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Figure 2. Same as Fig. 1 but choosing the same light curve segment for three different noise
realizations corresponding to 11th (left), 13th (middle), and 15th (right) Kepler magnitude.
The LPH decreases towards fainter stars.

the median LPH values for the selected spot area bins to better illustrate the LPH

dependence.

The upper left panel shows only stars brighter than 12th Kepler magnitude (i.e.

with small noise levels). The LPH increases with decreasing spot area. As mentioned

above, small spot coverages are typically found during activity minima when variabil-

ity becomes faculae-dominated. Consequently, the light curves become more regular.

A similar trend is found for stars between 12th and 13th magnitude but with larger

scatter (upper right panel). Between 13th to 14th magnitude (lower left panel), the

noise level becomes comparable to the variability amplitude during epochs of small

spot coverages. As a result, the LPH drops for small coverages and the increase of the

LPH with decreasing spot area can only be identified down to spot areas of 100 ppm.

For the faintest stars down to 15th magnitude (lower right panel), the larger noise

further decreases the LPH for small spot areas, and for spot areas above 100 ppm no

trend can be identified any longer.

3.3. Period distribution

As shown in the previous section, the position of the highest peak and the associated

LPH determine the period detection. The percentages of correct and false detections

are given in Table 1. The period distribution is shown in Fig. 4 for different LPH
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Figure 3. Local peak height (LPH) vs. spot area fraction for different Kepler magnitudes.
The red diamonds show the median LPH values for the selected spot area bins. The very
few peaks with LPH < 0.01 were excluded from the analysis.

constraints for the noise-free (black) and the noisy (red) case. From the upper left

to the lower right panel, the LPH threshold increases from 0.1 to 0.4. Consequently,

the detection fraction decreases, but also the number of false detections drops. The

decrease of detections is even stronger for the noisy case. We note that also the false

detections decrease more strongly for the noisy case (see Table 1). This is caused by

the fact that a peak is more easily found in the noise-free case, but the associated

period lies outside the range of 24–30 days, and is therefore counted as false detection.

When measuring rotation periods in real data, the period is a priori unknown,

and one has to assign a certain LPH threshold, for which periods are considered

as significant. The upper left panel in Fig. 4 shows that even for small values

(0.1 < LPH < 0.2), most detections are found at the correct (model) rotation period

of 27 days. However, the number of false detections is also quite high (see Table 1).

Further increasing the LPH threshold significantly decreases the number of false de-

tections but also lowers the number of correct detections. Finding an optimal LPH

threshold that compromises between discarding correct detections and not having

too many false periods is non-trivial. We stress that MMA14 required LPH > 0.3

to count the period as a real detection. As seen in the lower left panel, this thresh-
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Figure 4. Rotation period distribution for different local peak heights of the noise-free
(black) and noisy (red) cases. The blue dashed-dotted line indicates the model rotation
period of 27 days.

LPH Detection False detection

Noise-free Noisy Noise-free Noisy

>0.1 23.8% 17.3% 35.2% 27.4%

>0.2 15.5% 7.4% 9.0% 4.5%

>0.3 9.5% 2.9% 1.9% 0.5%

>0.4 6.1% 1.0% 0.4% 0.0%

Table 1. Detections and false detections for different LPH for both the noise-free and noisy
cases.

old eliminates almost all false detections but strongly decreases the number of real

detections (see discussion below).

3.4. Detection rate

We now turn to the question how the period detectability is affected by stellar

inclination and metallicity. For that purpose, we define the detection rate as the

number of detections divided by the number of different Monte Carlo runs at a given

parameter. In Fig. 5 we show the detection rate as a function of the inclination of

the rotation axis of the model star (integrated over all metallicities) for different LPH

values. The error bars indicate the square root of the number of detections divided
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Figure 5. The detection rate as a function of inclination angle, integrated over all metal-
licities, for different LPH thresholds. The error bars show the square root of the number of
detections divided by the number of models at a given inclination.

by the number of models. As before, we consider the noise-free (left panel) and the

noisy (right panel) cases separately.

The noise-free case qualitatively displays the same behavior for all LPH thresholds.

As expected, the detection rate is zero for the pole-on view. However, when increas-

ing the inclination angle the detection rate steeply increases to the maximum at an

inclination near 20◦, and gradually decreases towards the equator-on view at 90◦.

This result might be surprising at first glance but can be explained by the dominant

contribution of faculae to brightness variability for stars with near-equatorial activity

belts (similar to those on the Sun) observed close to the pole-on view (Shapiro et al.

2016). In such stars each facular feature spends roughly half a rotation period on the

far-side of a star and the remaining half of the time near the limb on the visible disk.

Faculae appear especially bright near the limb, and usually last for several stellar

rotations. Consequently, the light curves of such stars appear more regular, leading

to higher LPH values. We note that the calculations are performed assuming a solar

latitudinal distribution of active regions. A change of the distribution would affect the

visibility of the active regions, and consequently, the inclination angle corresponding

to the maximum of the detection rate. However, we expect that a solar distribution

is typical for stars with solar rotation period and temperature (see Sect. 2.2).

In the noisy case (right panel) the detection rates are generally smaller (cf. Table 1

and Fig. 4). While the curves have a similar shape to the noise-free cases, their

maxima are shifted to higher inclinations. Such a shift is caused by the decrease

of the amplitude of brightness variability with decreasing inclination (Nèmec et al.

2020), and consequently a decrease of the signal-to-noise ratio. Consequently, the

detection peak near 20◦ is suppressed, leaving a residual peak near 40◦. As already

shown in Figs. 3 and 4, the noise decreases the LPH such that only a few cases with

LPH > 0.3 remain.

In Fig. 6 we show the detection rate as a function of metallicity (integrated over

all inclinations) for different LPH values. We note that the qualitative shape of
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Figure 6. The detection rate as a function of metallicity, integrated over all inclinations, for
different LPH thresholds. The error bars show the square root of the number of detections
divided by the number of models at a given metallicity.

the LPH > 0.1 curve is consistent with the one found in Witzke et al. (2020),

who considered the noise-free case (see Sect. C in the appendix for the difference

between the calculations in this study and those employed in Witzke et al. 2020).

Fig. 6 shows that for both the noise-free (left panel) and the noisy (right panel)

case, the detection rate increases with metallicity. This is caused by the stronger

contribution of the faculae to the overall variability. Only for the cases LPH > 0.1

and LPH > 0.2, does the detection rate show a minimum at [Fe/H] = −0.3 dex or

−0.2 dex (noisy), increasing again towards smaller metallicity values. We expect that

this trend continues towards even smaller metallicities.

3.5. Comparison with observations

We now compare our detection rates (see Table 1) to period detections of solar-

like stars in the MMA14 sample. As mentioned above, MMA14 used a relatively

conservative detection threshold of LPH > 0.3. The bottom left panel of Fig. 4

and Table 1 indicate that this threshold represents only the tip of the iceberg: for

LPH > 0.3 (noisy case), the rotation periods can be correctly detected for only 2.9%

of our modeled light curves.

Galactic evolution models (van Saders et al. 2019) predict that 16% of the (dwarf)

stars in the Kepler field with effective temperatures 5500 < Teff < 6000 K should

have rotation periods between 24–30 days (van Saders, private communications).

Using the latest Kepler parameter catalog (Mathur et al. 2017), we select stars in

this temperature range, with surface gravities log g > 4.2 to exclude more evolved

stars, and brighter than 15th Kepler magnitude (following the selection criteria used

in Reinhold et al. 2020). We further restrict the catalog metallicities to −0.45 <

[Fe/H] < 0.45 dex, which corresponds to the range of simulated metallicities (see

Fig. A.1). Selecting such stars from tables 1 and 2 in MMA14 yields N = 16890

stars. Among those, only 16% will have periods between 24–30 days, and according
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to our analysis, only 2.9% of these stars will have detectable periods. Thus, we

estimate that Ndet = N ∗ 0.16 ∗ 0.029 = 78 stars should have detectable periods.

MMA14 found 455 stars in this parameter range with periods 24 ≤ Prot ≤ 30 days.

However, the vast majority of these stars exhibits variability levels much higher than

the Sun, and represent a regime of variability very different from that of the Sun

(Reinhold et al. 2020; Zhang et al. 2020; Is, ık et al. 2020). Consequently, the light

curves of these stars cannot be accounted for by our model. To correct for such stars,

we followed the approach of Witzke et al. (2020) and selected the stars with variability

(regressed to solar values of effective temperature, metallicity, and rotation period,

see Fig. S8 and its detailed discussion in Reinhold et al. 2020) below 0.18%, which

corresponds to the maximum variability of the Sun over the last 140 years. All in

all, only 73 out of the 455 stars satisfied such a criterion. This number is gratifyingly

close to our estimate of 78 stars.

4. CONCLUSIONS

In this study we identified biases in the period determination of stars with solar-

like variability. The detection rates among these stars are lower than for stars of

other spectral types. In particular, only 2.9% of them would be detectable using the

thresholds set in MMA14. This is mainly caused by the small variability amplitudes

of the rotational tracers and their relatively short lifetimes compared to the rotation

period.

The very low detection rate explains the large discrepancy between the number

of measured rotation periods (MMA14), and those predicted by Galactic evolution

models (van Saders et al. 2019). The predicted number of stars with detectable

periods (78), and that for which rotation periods have actually been measured (73),

is remarkably similar. Fig. 4 shows that many more rotation periods of solar-like

stars may be measured when lowering the thresholds in the automated period surveys.

However, this will also add a number of false periods, depending on how the thresholds

are set.

Our study revealed that the rotation periods of most solar-like stars will go unde-

tected using standard frequency analysis tools. Thus, we emphasize the importance of

alternative methods for period detection such as the GPS method (Shapiro et al. 2020;

Amazo-Gómez et al. 2020) or new approaches based on Gaussian process regression

(Foreman-Mackey et al. 2017; Angus et al. 2018; Kosiarek & Crossfield 2020).
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Figure A.1. Input distributions of inclination angles (left) and metallicities (middle), and
Kepler magnitudes (right) of the Monte Carlo simulation.
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APPENDIX

A. MONTE CARLO INPUT DISTRIBUTION

Fig. A.1 shows the distributions of input parameters used in the Monte Carlo sim-

ulation. The first panel shows the distribution of inclination angles. It can be shown

that isotropic inclination angles i exhibit a uniform distribution in cos i (see e.g.

http://keatonb.github.io/archivers/uniforminclination for a detailed derivation). The

last bin of the distribution (85 − 90◦) only contains half the number of realizations

because no inclination angles greater than 90◦ exist. The same argument applies to

the first bin from 0 − 5◦.

The middle panel shows the distribution of metallicities of the solar-like stars in

the Kepler field. The catalog values were adapted from Mathur et al. (2017) and the

selection of solar-like stars can be found in Reinhold et al. (2020). We note that the

Sun ([Fe/H] = 0) is slightly more metal-rich than the peak of the distribution.

The last panel shows the apparent magnitudes of the stars in the Kepler field. It is

obvious that the majority of stars is very faint. Since the stellar magnitudes define

the noise in the light curves, it is crucial to adapt this distribution for the noise model

(see Reinhold et al. 2020) to make realistic predictions about stars in the Kepler field.

http://keatonb.github.io/archivers/uniforminclination
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B. GENERATING LIGHT CURVES

The total spectral flux at a certain time is composed of fluxes emerging from surface

areas with different levels of magnetic activity. Following the detailed description in

Shapiro et al. (2014), we decompose the spectral flux from a star, F , into contributions

from the quiet stellar region (FQ), faculae (Ffac), and spots (Fspot):

F (λ) = FQ(λ) + Ffac(λ) + Fspot(λ), (B1)

where λ is the wavelength. For the quiet stellar region, the disc-integrated flux FQ(λ)

is obtained by integrating

FQ(λ) =

∫ 1

0

IQ(λ, µ)ω(µ)dµ, (B2)

where ω(µ) = 2πµ(rstar/dstar)
2 is a weighting function with the stellar radius, rstar,

and the distance between the star and the observer, dstar. The emergent intensity,

IQ(λ, µ), also depends on µ, which is the cosine of the angle between the observer’s

direction and the local stellar radius. In this formulation the stellar disc center is

associated with µ = 1 and the limb with µ = 0.

Both faculae and spots are taken into account through their contrast with respect

to the quiet regions. Therefore, the contribution of faculae is defined as

FFac(λ) =

∫ 1

0

αFac(µ) [IFac(λ, µ) − IQ(λ, µ)]ω(µ)dµ, (B3)

where the fractional coverage of the ring corresponding to a given µ by faculae is

given by the function αFac(µ).

The contribution from spots consists of those from spot umbrae and spot penum-

brae:

Fspot(λ)=

∫ 1

0

αpen(µ) (Ipen(λ, µ) − IQ(λ, µ))ω(µ)dµ

+

∫ 1

0

αumb(µ) (Iumb(λ, µ) − IQ(λ, µ))ω(µ)dµ, (B4)

where Iumb and Ipen are the emergent intensities from the spot umbrae and spot

penumbrae, respectively, and the αumb and αpen denote the corresponding surface

coverages.

The surface coverages for the magnetic features (i.e. αFac, αumb and αpen) used

in this work are taking from Nèmec et al. (2020). Furthermore, calculations of the

emergent intensities for all stellar regions follow the approach used in Witzke et al.

(2020), but with a small modification which is explained in Appendix C.

C. CALCULATING EMERGENT INTENSITIES

The model atmospheres and corresponding emergent spectra computed by Unruh

et al. (1999) for the solar faculae, spots, and quiet regions (hereafter, original models)
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model effective surface mixing over

temperature [K] gravity -length -shoot

Quiet region 5777 4.43777 1.25 on

Spot umbra 4500 4.0 1.25 on

Spot penumbra 5450 4.0 1.25 on

Table 2. Input parameters for model atmospheres in radiative equilibrium.

proved to be very successful in reproducing the solar brightness variations with high

accuracy (Krivova et al. 2003; Solanki et al. 2013; Ermolli et al. 2013).

Here, we extend the intensities for different surface components to different metal-

licities following the approach outlined in Witzke et al. (2018, 2020), but with slight

modifications to cover a broader metallicity range. In our modeling approach, we

aim to match the intensity contrasts for the solar metallicity as closely as possible

to the original models. Thus, in the first step we searched for the model parameters

(input parameters for calculating stellar atmospheres with ATLAS9), such as con-

vection settings, surface gravity and continuum opacity sources for the quiet Sun,

spot-umbra and spot-penumbra, to match the original models and spectra by Unruh

et al. (1999). The closest match is achieved by the parameters listed in Table 2. Then

for the generation of the faculae model we assumed that the temperature difference,

∆T, and pressure difference, ∆P , as a function of column mass between the original

facular and quiet Sun models are the same as between our new facular and quiet Sun

models.

Finally, to calculate atmospheric models for different metallicity values, we first

generated atmosphere models for the quiet regions and the spots assuming radiative

equilibrium. Then we followed up on the Witzke et al. (2018) approach and assumed

that a change of the metallicity value has the same effect on the temperature and

pressure structures of the quiet Sun and faculae. Using the quiet stellar atmosphere

models for different metallicities, we applied the solar ∆T and ∆P with column mass

to calculate the facular models. Using these atmospheric models for the quiet regions

and magnetic features, we generated the emergent intensities Iλ,µ for each metallicity

value using the MPS-ATLAS code (Witzke et al. in prep.).
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