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Abstract: Construction and demolition waste (CDW) together with the pollution caused by the
production of new concrete are increasingly becoming a burden on the environment. An appealing
strategy from both an ecological and a financial point of view is to use construction and demolition
waste in the production of recycled aggregate concrete (RAC). However, past studies have shown that
the currently available code provisions can be unconservative in their predictions of the shear strength
of RAC beams. The current study develops accurate predictive models for the shear strength of RAC
beams based on a dataset of experimental results collected from the literature. The experimental
database used in this study consists of full-scale four-point flexural tests. The recycled coarse
aggregate (RCA) percentage, compressive strength ( f ′c), effective depth (d), width of the cross-section
(b), ratio of shear span to effective depth (a/d), and ratio of longitudinal reinforcement (ρw) are the
input features used in the model training. It is demonstrated that the proposed machine learning
models outperform the existing code equations in the prediction of shear strength. State-of-the-art
metrics of accuracy, such as the coefficient of determination (R2), mean absolute error, and root mean
squared error, have been utilized to quantify the performances of the ensemble machine learning
models. The most accurate predictions could be obtained from the XGBoost model, with an R2 score
of 0.94 on the test set. Moreover, the impact of different input features on the machine learning model
predictions is explained using the SHAP algorithm. Using individual conditional expectation plots,
the variation of the model predictions with respect to different input features has been visualized.

Keywords: recycled aggregate concrete; shear strength; machine learning; XGBoost; SHAP

1. Introduction

The production of cement and natural coarse aggregate have been causing the large-
scale consumption of raw materials worldwide [1,2]. The increase in construction projects
aiming to overhaul buildings and infrastructure leads to a shortage of natural coarse aggre-
gate [3]. Furthermore, the renewal of infrastructure entails the generation of large amounts
of construction and demolition waste (CDW) [4]. The derivation of coarse aggregate by
processing CDW is proposed as a solution to reduce the environmental impact of CDW
and concrete production [5]. However, the usage of recycled coarse aggregate (RCA) can
change the mechanical and workability properties of concrete in an unfavorable way. The
attachment of mortar to RCA lowers the workability, density, and compressive strength
of concrete by increasing the amount of absorbed water [6,7]. It is reported that strength
reduction due to the usage of RCA depends on various factors such as the quality of the
concrete from which the RCA was derived, the replacement percentage of RCA, and the
water/cement ratio [8]. There have been numerous studies in the past few decades investi-
gating the impact of replacing natural coarse aggregate (NCA) in structural members with
RCA. In these studies, the RCA replacement is reported to affect the concrete strength to
varying degrees [9–16]. The lack of consensus in the literature about the effect of RCA on
the load-carrying capacity of structures makes it difficult to develop reliable models able to
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predict load-carrying capacity. Another factor that prevents the widespread usage of RCA
in construction is the heterogeneity and region-specific composition of this material [17].

Literature Review

In recent years, machine learning models have been increasingly applied to the prob-
lem of predicting the mechanical properties and load-carrying capacity of recycled aggre-
gate concrete (RAC). Momeni et al. [18] investigated the flexural strength of RAC beams.
An artificial neural network (ANN)-based predictive model was trained using particle
swarm optimization and an imperialist competitive algorithm on a dataset of experimental
results. Dantas et al. [19] developed ANN models for the prediction of the 3-, 7-, 28-, and
91-day compressive strength of concrete that was produced using CDW. Felix et al. [20]
developed ANN and nonlinear regression models to predict the elastic modulus of RAC.
The Levenberg–Marquardt back-propagation algorithm was used in the training of the
ANN model, which was able to predict the elasticity modulus with a coefficient of deter-
mination of 0.91. Gholampour et al. [21] utilized gene expression programming (GEP) to
develop empirical models capable of predicting the compressive strength, elastic modulus,
flexural strength, and splitting tensile strength of RAC. Hammoudi et al. [22] utilized ANN
and response surface methodology (RSM) models for the prediction of the compressive
strength of RAC. Cement content, RCA content, and slump were used as the input features,
and ANN was found to be the more accurate model compared with RSM. Moein et al. [23]
presented a comprehensive review of recent progress on the application of machine learn-
ing algorithms to the prediction of concrete’s mechanical properties. A list of studies where
support vector machines (SVMs), ANNs, decision trees, and evolutionary algorithms have
been employed for the prediction of concrete properties was given. Predictive models that
combine SVMs with ANNs were recommended for the prediction of concrete strength
due to their accuracy and ease of implementation. Mukhtar and Deifalla [24] investigated
FRP-reinforced concrete deep beams without stirrups. A database consisting of 120 experi-
mental results for the shear strength of FRP-reinforced deep beams was curated. A hybrid
model was developed based on mechanics and nonlinear regression.

The current study investigates the effect of using RAC on the shear strength of rein-
forced concrete beams without stirrups. The prevention of brittle shear failure of these
structures is of the utmost importance. However, the current predictive models and de-
sign guidelines in the literature are mainly developed toward beams made of natural
aggregate concrete (NAC). Numerous experimental studies have been carried out for the
shear strength assessment of RAC beams [15,25–31]. The results of these studies show
that the inclusion of recycled aggregates reduces the shear capacity of beams. Although
machine learning methodologies have been applied to the prediction of RAC properties
such as compressive strength, splitting tensile strength, and elasticity modulus, the ap-
plication of these techniques in shear strength prediction has been limited. Furthermore,
in most of these studies the usage of machine learning methodologies has been limited
to ANNs. To the best of the authors’ knowledge, the only studies that utilized machine
learning techniques for the prediction of the shear strength of RAC have been carried out by
Yu et al. [32] and Ababneh et al. [33]. Yu et al. [32] compared the shear strength predictions
of the available design equations to the experimental shear strength of RAC beams. It was
observed that the design equation predictions could be significantly inaccurate. The ANN
and Random Forest techniques were shown to deliver better results in terms of accuracy.
Ababneh et al. [33] investigated the shear strength of RAC beams using ANNs. The impacts
of different input variables such as the recycled aggregate content, beam width and effective
depth, reinforcement ratio, and shear span to effective depth ratio, on beam shear strength
were investigated with a parametric study.

The current study presents the application of six different ensemble learning algo-
rithms to the problem of shear strength prediction of RAC beams without stirrups. A
dataset comprising the results of 128 experiments has been used in the training of these
predictive models. The RCA percentage, concrete compressive strength, cross-section
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dimensions, span length to effective depth ratio, and longitudinal reinforcement ratio have
been used as the input features. Furthermore, using the SHAP algorithm, the impact of
different input features on the model output has been visualized. State-of-the-art accuracy
metrics such as mean absolute error, root mean square error, and the coefficient of determi-
nation have been utilized to quantify the accuracy of each model. In addition, the accuracies
of different predictive equations from the literature have been compared with the results of
the ensemble learning algorithms. Due to the lack of accurate prediction methodologies for
the shear strength of RAC beams in the literature, the proposed methodology in this study
has significance. The presented data-driven approach enables safer and more economic
design of reinforced concrete beams, while at the same time incorporating recycled CDW
in the construction process.

2. Design Equations and Machine Learning Methodologies

2.1. Concrete Shear Strength Prediction by Code Provisions and Equations from the Research Literature

This section gives a list of the equations found in the design codes and research
publications. In these equations, Vc, b, d, ρw, and f ′c stand for the beam shear strength,
width and effective depth of the beam cross-section, ratio of the longitudinal reinforcement,
and the 28-day compressive strength of the concrete, respectively. The units of these
variables in Equations (1)–(8) are millimeters for length, megapascal for stress, and Newton
for force. Geometry of a common test setup with a specimen in four-point bending is
displayed in Figure 1, where the specimen rests on pin and roller supports. One of the
earliest equations for the prediction of shear strength of reinforced concrete beams was
developed by Zsutty [34]. Zsutty [34] developed an equation for the prediction of the shear
strength for reinforced concrete beams without stirrups by applying dimensional analysis
and statistical regression to existing experimental results (Equation (1)) [26,34].

Vc = 2.21
(

f′cρw
d
a

)1/3
bd (1)

Figure 1. The schematic of the experimental test setup.

Equation (2) shows the simplified shear equation from ACI 318-14 which is still being
applied in practice [1,35]. In Equation (1), a stands for the shear span length, as shown in
Figure 1.

ACI 318-14:
Vc =

1
6

√
f′cbd (2)

An improved version of Equation (2) was introduced in the ACI318-19 code, which
considers the case when the shear reinforcement is less than the required minimum. The
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main difference in the ACI318-19 equation (Equation (3)) is the inclusion of the longitudinal
reinforcement effect. In Equation (3), the ratio of the longitudinal reinforcement is denoted
by ρw. It can be observed that neither of these two equations considers the effect of using
recycled aggregate.

ACI 318-19:
λ =

√
2

1+0.004d

Vc =


0.66(ρw)

1/3
√

f′cbdλ, if λ < 1

0.66(ρw)
1/3
√

f′cbd, otherwise

(3)

Rahal and Alrefaei [14] proposed a modified version of the ACI equations that consid-
ered the effect of using RAC (Equation (4)). The effect of using RCA was introduced into
the equations by the strength reduction factor λR = 0.8.

Vc = 0.17λR

√
f′cbd (4)

Setkit et al. [1] showed that Equations (2)–(4) could be unconservative for certain beam
geometries and RAC replacement levels. In order to have a safer prediction procedure, a
further reduction factor, βr, was introduced (Equation (5)) which takes different values
depending on the level of RAC replacement. In Equation (5), βr = 0.75 for RCA replacement
levels between 50 and 100%, and βr = 0.9 for RCA replacement levels less than 50%.

λ =
√

2
1+0.004d

Vc =


0.66βr(ρw)

1/3
√

f′cbdλ, if λ < 1

0.66βr(ρw)
1/3
√

f′cbd, otherwise

(5)

In addition to Equations (1)–(5), the predictions of the equations from the Eurocode
EC2 (Equation (6)), Canadian Standards Association code CSA A23.3-04 (Equation (7)), and
Brazilian concrete code (NBR6118/2007) have also been analyzed [36,37].

Eurocode EC2:
η = 1 +

√
200
d

Vc =

 0.18(100ρwf′c)
1
3 bdη, if η ≤ 2

0.36(100ρwf′c)
1
3 bd, otherwise

(6)

CSA A23.3-04:
Vc = 0.65

230
1000 + d

√
f′cbd (7)

NBR6118/2007:
Vc = 0.126

(
f′c
)2/3bd (8)

2.2. Comparison of the Equation Predictions with Experimental Data

In this section, the prediction accuracies of the equations in the literature have been
presented using state-of-the-art accuracy metrics such as mean absolute error, root mean
square error, and the coefficient of determination. Furthermore, the accuracies of each
equation have been visualized in a Taylor plot using the Pearson correlation coefficient.
Figure 2 shows on the left-hand side the variation of the predicted shear strength in
comparison to the actual shear strength values for each one of the Equations (1)–(8). For
each equation, the percentage error distributions are shown on the right-hand side with
swarm plots and violin plots, which display a smoothed kernel density estimation of
the error distribution [38]. Each dot in these swarm plots corresponds to one of the data
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samples. The Eurocode EC2 equation shows the best performance of the eight equations,
followed by ACI 318-14, ACI 318-19, and CSA A23.3-04. The least accurate models were
the NBR6118/2007 code equation, the equation developed by Zsutty [33], and the equation
developed by Setkit et al. [1]. The coefficient of determination, mean absolute error, and
root mean square error values associated with all the equations are listed in Table 1. Figure 2
shows that all the equations except Zsutty’s tend to underestimate shear strength. The
negative and positive error percentages on the right-hand side of Figure 2 correspond to
overestimated and underestimated shear strength values, respectively.

Table 1. Accuracy of the equations.

Equation R2 MAE RMSE

ACI 318-14 (2) 0.9153 8.309 11.05
ACI 318-19 (3) 0.8416 13.06 15.11

Rahal and Alrefaei, 2017 [14] (4) 0.7293 16.06 19.75
Setkit et al., 2021 [1] (5) 0.6034 19.63 23.91

Zsutty, 1968 [34] (1) 0.5764 21.10 24.71
NBR6118/2007 (8) 0.4431 22.82 28.33
CSA A23.3-04 (7) 0.7842 15.24 17.64

EC2 (6) 0.9842 4.028 4.766

Figure 2. Cont.
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Figure 2. Comparison of equation predictions and experimental measurements.

The radial axis in Figure 3 represents the Pearson correlation coefficient, which can take
values between−1 and 1. Positive Pearson correlation coefficient values indicate that as one
of the variables increases, the other variable increases as well. Pearson correlation values
close to ±1 indicate an almost perfectly linear relationship between the two variables. The
formula for calculating the Pearson correlation coefficient is given in Equation (9) where, xi
and yi are two sequences of data, n is the length of these sequences, and rxy is the Pearson
correlation coefficient between the two sequences [39].

rxy =
n ∑n

i=1 xiyi −∑n
i=1 xi ∑n

i=1 yi√
n ∑n

i=1 xi
2 − (∑n

i=1 xi)
2
√

n ∑n
i=1 yi

2 − (∑n
i=1 yi)

2
(9)

The Pearson correlation coefficient is the measure of a linear relationship between
two sequences of data. According to Figure 3, the ACI318-19 equation predictions have
the most perfectly linear relationship with the experimental results, followed by Zsutty’s
equation, the NBR6118/2007 equation, and the EC2 equation. It can be observed that all the
equations have Pearson correlation values greater than 0.95, which indicates highly linear
relationships. The standard deviation of the experimental results is shown with a blank
circle. To illustrate the relationship between the Pearson correlation coefficient and the
accuracy of a model, the shear strength predictions of the equations have been multiplied
by a factor of α. For the equations that underpredict shear strength, α values have been
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chosen greater than 1. Figure 4a shows the variation of the R2 score for a range of α values.
In case of EC2 and ACI 318-14, the R2 score drops rapidly after a small initial increase,
since these equations have R2 scores greater than 0.9 in the beginning. For ACI 318-19,
CSA A23.3-04, and the equation developed by Rahal and Alrefaei, the R2 score increases
for an α value up to 1.25, from which point the R2 score decreases. The equation of Setkit
et al. reaches its highest R2 score for an α value of 1.42, and the NBR6118/2007 equation
reaches its highest R2 score for an α value greater than 1.5. Figure 4b shows that Zsutty’s
equation reaches an R2 score close to 1 when multiplied by a reduction factor of 0.75. It
should be noted that in Figure 4, the curves that reach scores close to 1 belong to equations
with a higher Pearson correlation coefficient, such as the ACI318-19, NBR6118/2007, and
Zsutty’s equation. Figure 4 shows that, although some of the equations in the literature
have a low accuracy of prediction, this accuracy could be increased by multiplying the
predicted values by a constant factor for the particular dataset in this study. It should be
noted that the values of α shown in Figure 4 should not be generalized, since they are based
on a particular dataset.

Figure 3. Taylor diagram of the equations.

Figure 4. Variation of the R2 score for (a) equations that underpredict V; (b) equations that overpredict V.
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2.3. Machine Learning Procedures

This section presents the statistical distribution of the dataset used in the machine
learning model building process. The input and output features of the models are shown
with horizontal bars in Figure 5. In Figure 5, RCA, f′c, b, d, a/d, ρw, and Vtest denote
the recycled coarse aggregate percentage, 28-day compressive strength of the concrete,
width of the beam cross-section, effective depth of the beam cross-section, shear span to
effective depth ratio, percentage of the longitudinal reinforcement, and measured shear
strength of the specimen, respectively. Each one of these features has been split into four
segments, and the number of test samples falling into each one of these segments has been
written into the boxes corresponding to these segments. The dataset consists of a total of
128 samples. The topmost horizontal bar in Figure 5 shows that 59 of these samples, which
corresponds to 46% of the entire dataset, have an RCA percentage greater than 75%. It
can be observed that the RCA percentage was at least 5% in all the tested specimens. The
compressive strength of concrete ranges between 20 MPa and 46.8 MPa, with the largest
group of specimens (36.7% of the entire dataset) having a concrete compressive strength
between 33.4 MPa and 40.1 MPa. The beam width ranges between 150 mm and 400 mm,
whereas the effective depth ranges between 160 mm and 600 mm, and only 3% of the
specimens have an effective depth greater than 490 mm. The shear span to effective depth
ratio in the dataset ranges between 1 and 5.69, and 51.6% of the specimens have an a/d
ratio between 3 and 4. The longitudinal reinforcement percentage ranges between 0.53
and 4.09%, with 80% of the dataset having a ρw value between 0.53 and 2.31%. Finally, the
measured shear strength values range between 12.1 kN and 261.5 kN, with 49.2% of the
dataset having a shear strength less than 70 kN. The distribution of the input and output
features has been further elaborated using histograms together with kernel density estimate
curves in Figure 5, where µ and σ stand for the mean value and the standard deviation.

Figure 5. Feature ranges.

Figure 6 shows the Pearson correlation coefficients between all the input and output
features. In Figure 7, positive correlations between two features are shown in shades of
blue and negative correlations are shown in shades of red. The greatest positive correlation
can be observed between Vtest and b, with a correlation coefficient of 0.84. This is followed
by the correlation between Vtest and effective depth, with a coefficient of 0.67. On the
other hand, the a/d ratio and Vtest are inversely correlated, with a coefficient of −0.43. The
Pearson correlation coefficients in Figure 7 are calculated using the formula in Equation (9).
A positive correlation indicates that the variables increase or decrease together, while a
negative correlation coefficient indicates an opposite relationship between the variables.
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Figure 6. Distribution of the input features.

Six different machine learning algorithms were tested in this study in order to achieve
a more accurate prediction of the shear strength of recycled aggregate concrete beams.
These algorithms are Extreme Gradient Boosting (XGBoost), Light Gradient Boosting
Machine (LightGBM), Random Forest, Categorical Gradient Boosting (CatBoost), Adaptive
Boosting (AdaBoost), and Extra Trees Regressor. The performances of these equations were
investigated using the 10-fold cross-validation approach. The machine learning algorithms
as well as the 10-fold cross-validation were carried out using the Scikit-learn package of the
Python programming language. Before starting the 10-fold cross-validation process, the
dataset has been split into a training set and a test set in a 70 to 30% ratio. In the 10-fold
cross-validation approach, the training set is split into 10 disjoint groups, and the machine
learning algorithm is trained using 9 of these 10 groups. The performance of the trained
model is then measured based on its predictions for the group that was not included in
the training. This process is repeated 10 times, and after each training round a different
group is used for testing the model performance. Finally, the parameters that gave the best
predictions are used to measure the model performance on the test set. This procedure
is schematically described in Figure 8. A flow chart of the entire analysis is displayed in
Figure 9.
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Figure 7. Correlation of the input and output variables.

Figure 8. 10-fold cross-validation and predictive model performance evaluation.
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Figure 9. Flow chart of the analysis.

3. Results

This section presents the output of the machine learning algorithms compared with
the actual experimental measurements. In Figure 10, the predictions for the training and
test set are shown in different colors. The exact prediction of a sample and the ±10%
deviation from a perfect prediction are shown with a straight solid line and dotted lines,
respectively. Figure 11 shows the first tree of the XGBoost model, which is the model with
the best coefficient of determination in this study. The tree root splits at a beam width level
of 185 mm. After the root, the tree branches into three internal nodes and five leaf nodes.
The internal nodes that come after the root split at two different levels of effective depth. If
b ≥ 185 mm and d < 367.5 mm, the tree output is determined by the a/d ratio. The entire
XGBoost model consists of 100 trees and the final prediction of a model is calculated by
summing up all the tree outputs.

The accuracies of the machine learning models, as well as the duration of training and
testing each model, are listed in Table 2. According to Table 2, the XGBoost and Extra Trees
Regressor models were able to reach R2 scores above 0.94 on the test set. On the training
set, both of these models achieved R2 scores greater than 0.99. Overall, four out of the six
models in this study reached R2 scores greater than 0.9 on the test set, and all of the models
except for the LightGBM model reached an R2 score greater than 0.9 on the training set. It
should be noted that these model performances could be significantly improved by using
larger datasets for model training. Despite the relatively small number of samples used
in the training of the models, the average performance of the machine learning models
was better than the average performance of the predictive equations listed in the previous
sections. The average R2 score of all eight predictive equations presented in this study was
0.74 on the entire dataset, whereas the average R2 score of the machine learning models
was 0.89 on the test set, which is a 20% improvement.



Sustainability 2023, 15, 4957 12 of 21

Figure 10. Comparison of experimental and predicted shear strength values.
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Figure 11. First tree of the XGBoost model.

Table 2. Accuracy of the machine learning models.

Algorithm
R2 MAE RMSE

Duration [s]
Train Test Train Test Train Test

XGBoost 0.9988 0.9434 0.335 9.451 1.573 13.38 5.26
Random Forest 0.9748 0.9197 4.728 11.51 7.352 15.94 3.06

LightGBM 0.8184 0.7496 12.17 17.54 19.74 28.14 3.83
CatBoost 0.9973 0.9204 1.649 11.77 2.411 15.87 18.54

Extra Trees 0.9988 0.9413 0.317 9.038 1.573 13.63 2.99
AdaBoost 0.9348 0.8904 9.855 15.26 11.83 18.61 3.95

In Figure 12, for each machine learning model the predicted and target values of the
shear strength are plotted together in different colors for the training and test sets separately.
It can be observed that the predicted and target values have a better overlap on the training
set, which consists of the first 89 samples in Figure 12. On the left-hand side of Figure 12, the
variation of the error percentages has been visualized for the training and test sets separately.
Overall, smaller error percentages are observed for the training set. Particularly, the error
percentages of XGBoost, Extra Trees Booster, and CatBoost algorithms are significantly
smaller on the training set, since these models have a coefficient of determination greater
than 0.99 on the training set. The distributions of the error percentages are also visualized
using swarm plots and violin plots for the training set (left) and test set (right). The
mean value (µ), standard deviation (σ), and minimum and maximum values of the error
percentages are also shown on the violin plots for each model. The negative values among
these statistical quantities indicate a predicted value greater than a target value.

Interpretation of the Machine Learning Models Using SHAP Approach

The SHAP algorithm is widely used in order to explain the impact of different input
features on the predictions of the machine learning models [40–45]. The SHAP methodology
is based on an additive feature attribution procedure in which an explanation function g
is defined as a linear combination of simplified input values x′ ∈ {0, 1}M, where M is the
total number of simplified input features. The simplified input values x′ are related to the
original input values x through a mapping function h, such that x = h (x′). This additive
procedure is shown in Equation (10), where the simplified input features are multiplied
with the Shapley values φi. The φi values are calculated as in Equation (11), where F is
the set of all the input features and S is a subset of F where the feature with the index i is
withheld. The function f in Equation (11) stands for the predictive model. Further details of
the SHAP algorithm can be found in [46].
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g
(
x′
)
= φ0 +

M

∑
i=1

φix
′ (10)

φi = ∑
S⊆F{i}

|S|!(|F| − |S| − 1)!
|F|!

[
fS∪{i}

(
xS∪{i}

)
− fS(xS)

]
(11)
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The SHAP summary plot in Figure 13 displays the impact of each input feature on the
predicted shear strength. For each specimen from the dataset, there is a dot in Figure 13
whose horizontal distance from the zero SHAP value indicates the impact of a feature on
the model prediction. The SHAP values are separately calculated for each input feature
and the dots are placed in a horizontal distance from the zero point accordingly. Negative
SHAP values correspond to a decreasing effect on the model prediction, whereas a positive
SHAP value indicates an increasing effect of an input feature on the model output. The
values of the input features determine the colors of the dots in Figure 13. Feature values
close to the upper bound are shown in shades of red, while values close to the lower
bound are shown in shades of blue. According to Figure 13, which was generated based
on the XGBoost model, the beam cross-sectional width is the most impactful input feature,
since this variable is associated with the greatest magnitudes of the SHAP value. It can be
observed that in samples where the variable b is close to its upper bound, including this
variable in the model predictions increases the predicted shear strength. On the other hand,
in samples where b is close to its lower bound, the corresponding SHAP value is negative
and the inclusion of this input feature decreases the predicted shear strength. Figure 13
shows that the second and third most impactful input features are effective depth and
the shear span to effective depth ratio, whereas the RCA percentage has a relatively low
impact on the model predictions. It can be seen from Figure 13 that in samples where the
RCA percentage is low, adding this parameter to the models has an increasing effect on
the shear strength, whereas in samples where RCA percentage is high, this parameter has
a decreasing impact on the predictions. A similar relationship between the values of an
input feature and the model prediction can also be observed for the shear span to effective
depth ratio. Furthermore, increasing the values of the concrete compressive strength and
longitudinal reinforcement ratio also increases the shear strength, according to Figure 13.

Figure 13. SHAP summary plot for the XGBoost model.

The feature dependence plots in Figure 14 and the individual conditional expectation
plots in Figure 15 give more detailed information about the impact of each input feature on
the predictions of the machine learning models. For each input feature, Figure 14 shows
a dependence plot where the value of a feature is plotted against its SHAP value. Each
specimen from the dataset is represented by a dot in Figure 14. The colors of the dots in
Figure 14 are determined by the values of the most dependent input feature. Figure 14a
shows that effective depth is the most dependent input feature on the RCA percentage. In
samples where the RCA percentage is high, the SHAP value of RCA tends to be negative,
which indicates a decreasing effect on the mode prediction. It can be observed that in all
of the samples with a 100% RCA replacement ratio, with the exception of a single sample,
the SHAP value of this feature is negative. Figure 14d shows that beam width is the most
dependent feature on effective depth. For the same or close values of d, it can be observed
that in specimens with greater values of b (colored in red), d has greater SHAP values,
which indicates a greater and increasing impact on the model prediction. It can be observed
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that for d values less than 400 mm, effective depth tends to have a decreasing effect on
the shear strength predictions. Furthermore, Figure 14c shows that for the values of b
less than 200 mm, beam width has negative SHAP values and a decreasing effect on the
model predictions. Figure 14e shows that increasing the value of the shear span to effective
depth ratio decreases the SHAP value of this parameter on a nonlinear curve, whereas the
variations of the d and f′c SHAP values can be approximated with a linear curve.

Figure 14. Feature dependence plots (XGBoost) for (a) RCA (b) f′c (c) b (d) d (e) a/d (f) ρw.

Figure 15. Individual conditional expectation (ICE) plots (XGBoost) for (a) RCA; (b) f′c; (c) b; (d) d;
(e) a/d; and (f) ρw.

The ICE plots in Figure 15 represent the effect of changing one of the input features on
the model output while keeping every other input feature constant. Each sample in the
dataset is represented by one of the curves and the bold curve represents the average of all
curves. For each specimen in the dataset, each input feature is varied between its maximum
and minimum values while the other features remain unchanged and the model predictions
are calculated. These predictions constitute the thin blue curves in Figure 15. According to
Figure 15, the most significant change in the predicted shear strength values is caused by
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changing the value of the beam width, which confirms the result of the SHAP algorithm.
On the other hand, the flattest curves in Figure 15 are those that show the average variation
in shear strength with respect to the RCA ratio and ρw, which is in agreement with the
SHAP analysis. Figure 15 also contains information about the deviation of the model
predictions from the average. If most of the thin blue curves are clustered in a narrow band
around the average curve, then this deviation is small. It can be observed that the curves
showing the variation with respect to b have the narrowest deviation from the average.

4. Discussion and Conclusions

The inclusion of RAC in the construction industry can have significant benefits for
the sustainability of the construction industry by reducing and recycling construction and
demolition waste. Since the natural coarse aggregate used in conventional concrete is a
finite resource, incorporating recycled coarse aggregate into the construction process is
greatly beneficial for the sustainability of the industry. On the other hand, compared with
conventional concrete, RAC has greater variability in its quality and strength. Due to the
variations in the quality of recycled aggregate, it is a more challenging task to accurately
predict the strength of this type of material. Therefore, modern statistical techniques,
such as the machine learning models presented in this study, can play a significant role
in the accurate assessment of the quality of RAC. The current study aims at adding to the
knowledge about the impact of using different levels of RCA in concrete. Eight equations
from the literature that predict the shear strength of reinforced concrete beams have been
investigated using statistical measures of accuracy. A database consisting of the results of
128 different experiments was used in this study. The main findings of the study can be
summarized as follows:

• Most of the equations in the literature, except for Zsutty’s equation, are found to
underpredict shear strength by a large margin, and the equation predictions are found
to be linearly correlated with experimental results, which is characterized by a Pearson
correlation coefficient greater than 0.95;

• In terms of the coefficient of determination, the machine learning models were found
to be on average 20% more accurate than the equations in the literature;

• The most accurate equation was found to be the Eurocode EC2 equation, while the
most accurate machine learning model was the XGBoost model;

• Based on the SHAP algorithm and the individual conditional expectation (ICE) plots,
changing the beam width was found to have the greatest impact on the machine
learning model predictions; whereas changing the RCA percentage in the concrete
was found to have the least effect on the model output;

• Increasing the percentage of RCA decreases the shear strength.

It should be noted that the relatively small size of the dataset used in developing the
predictive models is a significant limitation of the current study. The models presented in
this study need to be further developed on bigger datasets, and are not recommended to be
used in practice in their current form. Nevertheless, the developed models were able to
deliver highly accurate predictions on the test sets. In addition, it should be considered
that, in practice, the output of any predictive model should be multiplied with appropriate
safety factors. Future research in this area can be carried out by using larger databases
that also incorporate the results of numerical analysis. Furthermore, using optimization
techniques on larger datasets, new equations considering the addition of different levels of
RCA to concrete could be developed.
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