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Abstract: Due to environmental impacts and the need for energy efficiency, the cement industry aims
to make more durable and sustainable materials with less energy requirements without compromising
mechanical properties based on UN Sustainable Development Goals 9 and 11. Carbon dioxide (CO2)
emission into the atmosphere is mostly the result of human-induced activities and causes dangerous
environmental impacts by increasing the average temperature of the earth. Since the production
of ordinary Portland cement (PC) is a major contributor to CO2 emissions, this study proposes
alkali-activated binders as an alternative to reduce the environmental impact of ordinary Portland
cement production. The dataset required for the training processes of these algorithms was created
using Mendeley as a data-gathering instrument. Some of the most efficient state-of-the-art meta-
heuristic optimization algorithms were applied to obtain the optimal neural network architecture
with the highest performance. These neural network models were applied in the prediction of carbon
emissions. The accuracy of these models was measured using statistical measures such as the mean
squared error (MSE) and coefficient of determination (R2). The results show that carbon emissions
associated with the production of alkali-activated concrete can be predicted with high accuracy using
state-of-the-art machine learning techniques. In this study, in which the binders produced by the
alkali activation method were evaluated for their usability as a binder material to replace Portland
cement, it is concluded that the most successful hyperparameter optimization algorithm for this
study is the genetic algorithm (GA) with accurate mean squared error (MSE = 161.17) and coefficient
of determination (R2 = 0.90) values in the datasets.

Keywords: alkali-activated concrete; machine learning; artificial neural networks; carbon
emission; optimization

1. Introduction

Climate change is one of the biggest problems faced on a global scale. Climate change
refers to the increase in the average surface temperatures of the earth and the resulting
effects as a result of the rapid increase in the amount of carbon dioxide (CO2) in the at-
mosphere which is caused by factors such as the rapid increase in the world population,
unplanned destruction of the natural structure due to human actions and increasing in-
dustry and fuel use, as well as the rapid increase in greenhouse gas accumulations such
as methane (CH4), nitrous oxide (N2O), etc., which strengthen the natural greenhouse
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effect [1]. Global warming, the impact of which is felt more and more day by day, brings
along many problems. If global warming, which has reached threatening dimensions all
over the world, cannot be prevented, future generations will face many global problems
that cannot be compensated [2].

In 2022, global carbon dioxide (CO2) emissions increased by 0.9% (321 Mt), reaching
36.8 Gt, the highest CO2 emission value of a certain time as seen in Figure 1 [3].
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Figure 1. Global CO2 emissions from energy combustion and industrial processes [3].

In Figure 1, the reason why emissions are lower in 2020 than in 2019 is that the
COVID-19 epidemic reduced energy demand [3].

Carbon dioxide emissions from cement production cause significant environmental
problems. Carbon dioxide (CO2) released into the atmosphere during the production
of Portland cement (PC) is one of the important factors causing global warming. The
production of Portland cement consumes large amounts of energy and raw materials and
emits large amounts of CO2, which contributes to global warming [4].

Environmental issues such as unlimited use of our natural resources, depletion of the
ozone layer, global warming, water pollution and melting glaciers in the polar regions are
getting closer to reaching an irreversible point day by day. As a result of this situation,
solutions that can solve human and environmental health problems are being sought. This
study, which offers an alternative (alkali-activated binders) by trying to minimize the
negative effects of ordinary Portland cement (OPC) on the environment, is based on an
environmentally friendly design according to UN Sustainable Development Goals 9 and
11 [5].

Portland cement, one of the most important components of concrete, is a type of binder
that is obtained as a result of grinding clinker, which is formed as a result of firing raw
materials consisting of a mixture of limestone and clay by rotating in high-grade furnaces,
with a small amount of gypsum, which gains binding properties when combined with
water and does not dissolve in water after hardening [6]. A significant amount of the
cement industry’s CO2 emissions is dependent on carbon-emitting by-products in clinker
production. There is also a significant amount of CO2 emission during the calcination
process [7]. As a result of the investigations, it has been determined that each tonne of
Portland cement produced releases almost one tonne of CO2 into the atmosphere [8]. Since
concrete is known to be the second most used substance in the world after water [9], this
means a very high carbon dioxide emission.

Cement production emits more carbon dioxide than aircraft fuels and ranks just behind
agriculture, which accounts for 12 percent of total global emissions on a sectoral basis [10].
For example, Figure 2 shows cement production in India by year. It is seen in Figure 2 that
there is a certain increase in cement production.
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Figure 2. Production of cement in India by year [11].

The acceleration of population growth necessitates the growth of the construction
sector in line with the increasing demand. This increases the consumption of energy
and natural resources. The objectives of limiting the consumption of energy and natural
resources are closely related to ordinary Portland cement (OPC) production in the construc-
tion sector. Since OPC causes the rapid progression of global warming with the amount of
CO2 it emits and its production consumes high energy, it has become necessary to replace
cement with alternative binding materials with similar functions.

The excessive production of cementitious materials brings social and economic prob-
lems together with environmental damage. In order to reduce CO2 emissions in cement
production and to use resources more efficiently, the use of alternative materials is increas-
ing. For the sustainability of cementitious materials, studies using construction waste
dust [12] or rock dust [13] as a cement substitute have been carried out, and successful
results have been obtained. In this study, instead of ordinary Portland cement (OPC),
which requires a high level of energy for its production that is highly damaging to the
environment, materials that can be activated with alkalis (alkali-activated binders) can be
activated by an activator and converted into a binder.

There are various studies to reduce the emissions of the cement industry [14–17]. The
high energy cost and high carbon dioxide (CO2) emission in the production of cement make
it attractive to investigate alternative binders instead of cement. In this study, alkaline-
activated binders are proposed as an alternative to OPC. In this way, CO2 emission can be
significantly reduced. This research is important as efforts to address climate change issues
can have a significant impact on the cement-producing industry.

Substances that gain plasticity when mixed with water and maintain their durability
for a long time by binding natural and/or artificial fillers such as sand, gravel, etc., are
called binders [18]. Alkali-activated material is the broadest classification that refers to the
binder system resulting from the reaction of solid silicate powder with a solid or dissolved
alkali metal source [19,20]. The first use of alkali-activated systems dates back to ancient
times, in particular, their use in the construction of pyramids in Egypt [21]. Alkali-activated
materials (AAM) are obtained by activating reactive silica, aluminum and calcium-rich
materials with activators such as hydroxides, silicates or carbonates, and CO2 emissions
caused by AAM are lower than Portland cement [22].

The production of ordinary Portland cement (OPC), which is the most widely used
concrete binder, causes large amounts of carbon emission. In order to reduce the envi-
ronmental impact of concrete production, alkali-activated binders are proposed as an
alternative to OPC. It is possible to predict the CO2 emission of the alkali-activated concrete
proposed as an alternative to Portland cement in a time-efficient and practical way by using
machine learning without the need for a mathematical relationship between the problem
and parameters.

Hamrani et al. [23] used three different ML regression models to estimate soil CO2 and
nitrous oxide (N2O) emissions from agricultural land. The classical regression models they
used in their study adequately simulated the cyclical and seasonal variations of CO2 fluxes
(R = 0.75, 0.71 and 0.68, respectively). Leerbeck et al. [24] developed a machine learning
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algorithm to predict CO2 emission intensities. For the analysis of the dataset collected from
the Danish tender region, three linear regression models and Softmax were combined into
a final model using weighted averaging, resulting in a small NRMSE (0.095 to 0.183). Li
and Sun [25] used machine learning methods to estimate city-level CO2 emissions in China.
Among the ML models, XGBoost reached the highest prediction accuracy (R2 > 0.98). Li
et al. [26] used three machine learning algorithms, namely ordinary least squares regression
(OLS), support vector machine (SVM) and gradient boosting regression (GBR), to estimate
CO2 emissions from transport. The GBR model achieved the best result with an R2 of 0.9943.
Wang et al. [27] used machine learning models to predict CO2 emissions in China. They
achieved the lowest prediction error with a two-stage support vector regression-artificial
neural network (SVR-ANN).

In recent years, several studies have also been carried out in the field of civil engineer-
ing for CO2 emission minimization. He et al. [28] addressed an effective way to reduce
carbon emissions by using steel slag for CO2 sequestration and generated a dataset on
the carbonation reactivity of steel slag through machine learning with SHapley Additive
Explanations (SHAP). They achieved successful results using multilayer perceptron (MLP),
random forest and support vector regression models to predict CO2 sequestration. Amin
et al. [29] aimed to reduce CO2 emissions by using waste eggshells in cement-based materi-
als and used learning (ML) to evaluate the flexural strength (FS) of cement-based materials
containing eggshell powder (ESP). The results showed that machine learning techniques
can be used to evaluate material properties in the construction industry. Wang et al. [30]
created a hybrid machine learning model with optimization for building design to reduce
CO2 emission. The results of the optimization show that the hybrid model used provides a
reduction in CO2 emission (11.06%). Yücel et al. [31] studied the minimum carbon dioxide
(CO2) emission of a simply supported reinforced concrete (RC) beam with a rectangular
cross-section using artificial neural networks (ANNs). The results showed that an environ-
mentally friendly design can be achieved. Bekdaş et al. [32] performed an optimization
process to create an environmentally friendly structural model for an axisymmetric rein-
forced concrete cylindrical wall with post-tensioning for CO2 minimization. As a result,
they found that increasing the number of post-tensioning loads in the optimum design
reduces CO2 emissions. Aydın et al. [33] used the harmony search (HS) algorithm and
different regression models as prediction models for an engineering design to reduce CO2
emissions. The results showed that the random forest algorithm has good performance.
Sun et al. [34] used a random forest machine learning algorithm for the optimization and
prediction of alkali-activated concrete to reduce CO2 emission. The machine learning model
used provides practical information on the state of the art in alkali-activated concrete mix
design. Cakiroglu and Bekdaş [35] aimed to minimize CO2 emissions associated with the
production of the plate beam. In their study, they used the meta-heuristic Jaya algorithm as
the optimization method.

In this study, the hyperparameter optimization algorithm was used for the prediction
of CO2 emission associated with the production of alkali-activated concrete. The study
aims to contribute to the production of environmentally friendly and sustainable binder
materials with very low CO2 emission and production energy, which can be used as
ordinary Portland cement substitutes.

2. Materials and Methods
2.1. The Dataset

A comprehensive database of 1630 alkali-activated concrete samples was collected
from the literature [36]. This database includes for each data sample the volumetric per-
centages of the main molecules in the concrete mix, the content and concentration of alkali
activators, the water and superplasticizer amounts and the corresponding compressive
strengths and carbon emissions. The statistical values of the predictors and target in the
dataset used in CO2 prediction are given in Table 1. The Pearson correlation coefficients
between different data features are shown in Figure 3 in a color-coded way. In Figure 3,
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a high linear correlation between the features is shown with the shades of blue, whereas
inverse correlations are shown with the shades of red.

Table 1. Predictors and target of the dataset and their statistical values.

Predictor Min–Max
Value Mean Standard

Deviation

SiO2 30.61–77.1 50.166 9.377
Al2O3 4.26–38.38 23.365 6.710
Fe2O3 0.3–17.86 4.465 2.888
CaO 0.05–43.34 12.993 11.802
MgO 0–9.57 3.028 2.629
Na2O 0–3.66 0.434 0.552
K2O 0–5.03 0.877 1.111
SO3 0–5.04 0.676 0.793
TiO2 0–2.19 0.560 0.723
P2O5 0–4.48 0.200 0.655
SrO 0–0.5 0.001 0.007

Mn2O3 0–0.29 0.010 0.039
MnO 0–0.37 0.012 0.050
LOI 0–13.97 1.254 1.474

kg of binder per m3 of mix 150–788.58 402.938 88.017
Coarse aggregate (kg/m3) 525.4–1591.34 1093.954 181.134

Fine aggregate (kg in 1 m3 mix) 318.27 669.847 122.338
Total aggregates (kg in 1 m3 mix) 1110 1763.798 150.755
Total Na2SiO3 (kg in 1 m3 of mix) 49.6–213 123.887 31.492

Na2O (L)% 0.08–0.23 0.139 0.027
SiO2 (L)% 0.21–0.35 0.303 0.031

H2O% 0.48–0.64 0.558 0.046
Na2O (Dry) 6.08–35.18 16.843 5.280
SiO2 (Dry) 11.23–66.84 37.162 10.947

Water 25.26–130.51 67.967 19.300
Total NaOH (kg in 1 m3 mix) 22.5–133.18 59.078 17.977

Concentration (M) NaOH 3–22 10.927 3.112
Water 8.51–79.91 33.217 12.243

NaOH (Dry) 2.98–85.24 25.861 11.628
Superplasticizer (kg in 1 m3 mix) 0–47 5.838 7.246

Total water (in solutions + additional)
(kg in 1 m3 mix) 41.38–303.54 124.053 49.615

Cube D (mm) 50–150 121.267 27.337
fccube (MPa) 3–91.94 45.554 15.256

Target

CO2 footprint
(kg emision per 1 m3 of samples) 38.23–895.07 154.473 86.962

2.2. Using HyperNetExplorer

In this research, HyperNetExplorer developed by the writers was used. HyperNet-
Explorer is a web-based tool that aims to find an ANN architecture (model) that can be
considered as the most accurate classification/regression (ML) model for a given dataset.
HyperNetExplorer is a tool that depends on ANNs and uses various optimization algo-
rithms from the MealPy [37] package for the hyperparameter optimization of the ANN.
In this study, in order to determine the most efficient variable value, hyperparameter
optimization was performed. Optimization algorithms such as “CMAES”, “GA” and “PSO”
were used to perform hyperparameter optimization. The following sections provide infor-
mation about ANN architectures, hyperparameter optimization algorithms, performance
evaluation strategies and finally the HyperNetExplorer.
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2.2.1. Artificial Neural Network (ANN)

The artificial neural network (ANN) can be defined as a computational method that
tries to superficially simulate the neuron networks of the biological central nervous sys-
tem [38]. ANN is superior to many traditional methods in that it is well adapted to all
kinds of data that are difficult to define and difficult to obtain information about that can
be inferred by experience or observation [39].

Here, each input is multiplied by its own weight, and all of these multiplications are
summed. This sum is used to determine the activation level of the neural cell [40]. Artificial
neural cells are also referred to as process elements in engineering science [41]. The coming
together of neurons through connections with each other forms the artificial neural network
given in Figure 4 [42].

In an artificial neural network, there are three layers. These layers are the input layer,
output layer and hidden layer. The first layer is the input layer and allows external data to
be received into the artificial neural network. The input layer consists of parameters that
affect the problem. The number of neurons in the input layer is shaped according to the
number of parameters. The hidden layer is between the input layer and the output layer.
The neurons of the hidden layer have no connection with the external environment and
only receive signals from the input layer and send signals to the output layer. The last layer,
which is another layer of the model, is the output layer and provides the transmission of
information to the outside [43].
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Summation function: The summation function calculates the net input to the cell.
Different functions are used for this function [44]. The weighted sum function is the most
commonly used function and is expressed in Equation (1). Where G is the inputs, A is the
weights, and N is the number of inputs.

NET = ∑N
i Gi Ai (1)

Activation function: The purpose of the activation function is to impart nonlinearity
to the output of a neuron. In the studies, generally sigmoid, tanh and ReLU activation
functions are used [45]. The activation functions in the hyperparameter optimization tool
used in the study are shown in Figure 5.
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The sigmoid activation function converts the input to a value between 0 and 1. Sigmoid
is generally used for binary classification problems [45].

The tanh activation function converts the input to a value in the range [−1, 1] [45].
The Mish activation function represents a novel and non-monotonic approach com-

pared to other functions. Experiments show that Mish tends to work better than ReLU in
combination with other standard activation functions in many deep networks on challeng-
ing datasets [47].



Sustainability 2024, 16, 142 8 of 19

The ReLU activation function brings nonlinearity to the network by equalizing nega-
tive values to zero and preserving positive values. In this way, it enables faster and more
effective training. It is more effective in terms of performance than tanh and sigmoid
functions that can be used instead of ReLU [45].

Leaky Relu leaking or leaking ReLU continues to minus infinity by definition. In other
words, it is used for learning negative values in ReLU [48].

ELU (exponential linear unit): The exponential linear unit is similar to ReLU except
for negative inputs. For negative inputs, parameter (a) is usually used [49].

2.2.2. Algorithms for Hyperparameter Optimization

Hyperparameters are parameters that differ according to the dataset and model used
to generate a solution to a problem. The aim of hyperparameter optimization is to optimize
the result obtained from the desired success criterion in any neural network model [50].
In this study, optimization algorithms such as “Covariance Matrix Adaptation Evolution
Strategy (CMAES)”, “Genetic Algorithm (GA)” and “Particle Swarm Optimization (PSO)”
were used to perform hyperparameter optimization.

CMAES (Covariance Matrix Adaptation Evolution Strategy)

The covariance matrix adaptation evolution strategy (CMAES) was introduced by
Hansen and Ostermeier [51]. Evolutionary strategies (ESs) are stochastic, derivative-
free methods for the numerical optimization of nonlinear optimization problems. The
covariance matrix adaptation evolution strategy (CMA-ES) is a special type of strategy for
numerical optimization [52].

The first step of the CMA-ES algorithm is parameter initialization. Population muta-
tion is controlled using the mean value (mg), step size (σg) and covariance matrix (Cg) in
Equation (2). In Equation (2), g is the population algebra.

xk
g+1 = mg + ϑgN(0, Cg), k = 1, ..., λ (2)

Offspring are selected according to the fitness function, and the first individuals with
the lowest fitness value become the new generation population. The result is achieved
when the set threshold condition is met [53].

Genetic Algorithm (GA)

The genetic algorithm (GA) was developed by John Holland [54] in the 1970s. The
genetic algorithm (GA) is an optimization algorithm, often categorized as a global search
heuristic technique. As a branch of evolutionary computation, it mimics the natural
selection of biological reproduction processes and produces “optimal” solutions [55]. The
algorithm consists of the stages of genetic coding for optimization applications, defining
the goal, creating the initial population, selection operator, crossover operator, mutation,
reaching the end criteria and showing the best result [56].

In genetic algorithms, the process begins with the random generation of the first
generation. Evolutionary optimization is simulated by using genetic operators in all
subsequent generations after the first randomly generated generation. Each individual
in the population is represented by a chromosome and is one of the possible solutions to
the problem. The objective function is used to calculate the solution quality (fitness) of
chromosomes. Those with high fitness values are quality individuals. These individuals
transmit the information in their genes to the next generation by breeding with individuals
with high fitness values like themselves with the help of the crossover operator. With
this method, genes from parents are transferred to children in different combinations, and
new solutions are obtained. In order to avoid local minimum and maximum values, a
certain amount of mutation operator (Equation (3)) is applied to change some of the genes
in the chromosome in all generations. Finally, one of the situations occurs in which the
new generation completely replaces the old, or the poor-quality individuals in the old
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generation are replaced by the quality individuals in the new generation. The iteration is
continued until a satisfactory result is found [57].

Xq,new = {mr > rand(), Xq,min + rand()
(
Xq,max − Xq,min

)
(3)

In Equation (3), mr is mutation rate, q is a gene randomly selected from total design
parameter, Xq,new is new values of qth parameter, Xq,min is lower limit value of qth parameter,
and Xq,max is upper limit value of qth parameter. rand() is random number between 0 and 1.

Original Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population-based heuristic optimization
method proposed by Kennedy and Eberhart [58] in 1995 to describe the social behav-
ior of birds and similar objects. PSO is based on the flock psychological behavior of flocks
of birds or fish in search of food or traveling to a particular location. PSO is essentially
based on bringing the position of the individuals in the herd closer to the individual with
the best position in the herd. This approach speed is a randomly developing situation, and
most of the time, individuals in the herd are in a better position than the previous position
in their new movements, and this process continues until they reach the target [59].

In the particle swarm optimization algorithm, the initial swarm is first created with
randomly generated initial positions and velocities. The fitness values of all particles in the
swarm are calculated. For each particle, the local best (ybest) from the current generation is
found. The number of the best in the herd is equal to the number of particles. The global
best (gbest) is selected from the local best in the current generation. Position and velocities
are restored using Equation (4) [59]. Equation (5) gives the new position value.

Vi,new = wVi,j + c1rand()
(

Xi,ybest − Xi,j

)
+ c2rand()

(
Xi,gbest − Xi,j

)
(4)

Xi,new = Xi,j + Vi,new (5)

In Equation (4), Xi,j gives position and Vi,j speed values, while rand() is a randomly
generated number between 0 and 1. The steps from step 2 onward are repeated until the
stopping criterion is met.

2.2.3. Performance Evaluation

Evaluating the success of models in machine learning is a very important stage.
After the model is established, it is essential to evaluate its performance in order to make
inferences about the model. In this study, the mean squared error (MSE) and R2 coefficient
were used to evaluate and compare the results.

The mean squared error (MSE) is calculated from Equation (6) and is the mean of the
squares of the errors. The error is the difference between the estimated value and the true
value. MSE is a risk function corresponding to the expected value of the squared error
loss [60]. The mean squared error is the average of the squares of the errors. Since the errors
are squared, both the mean and standard deviation values are higher.

MSE =
1
n∑n

t=1

(
et − e′t

)2 (6)

In regression, the curve is fitted, and the other data are predicted based on the current
numerical value. The coefficient of determination (R2) is a statistical measure of how close
the data are to the fitted regression line. It is also known as the coefficient of determination
or coefficient of multiple determination for multiple regression [61]. The formula of R2 is
given in Equation (7).

R2 = 1− Variance that can be explained by the model
Total variance

(7)
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2.2.4. HyperNetExplorer: Architecture and Operation

The HyperNetExplorer depends on ANNs and utilizes several optimization algorithms
from the MealPy [36] package for the hyperparameter optimization of the ANN. The tool is
developed with Python and Pytorch [62] (as the ANN framework) and utilizes Streamlit as
the GUI. The parameters to be optimized and their ranges are listed in Table 2.

Table 2. Parameters to be optimized.

Parameter Name Lower Bound Upper Bound Options

Number of Hidden Layers (HLs) 0 2 0: Single HL
1: Two HL
2: Three HL

Number of Neurons in HL = 1 0 6 0: 8
1: 16
2: 32
3: 64
4: 128
5: 256
6: 512

Number of Neurons in HL = 2 0 6 0: 8
1: 16
2: 32
3: 64
4: 128
5: 256
6: 512

Number of Neurons in HL = 3 0 6 0: 8
1: 16
2: 32
3: 64
4: 128
5: 256
6: 512

Activation Function of HL = 1 0 6 0: LeakyReLU
1: Sigmoid
2: Tanh
3: ReLU
4: LogSigmoid
5: ELU
6: Mish

Activation Function of HL = 2 0 6 0: LeakyReLU
1: Sigmoid
2: Tanh
3: ReLU
4: LogSigmoid
5: ELU
6: Mish

Activation Function of HL = 3 0 6 0: LeakyReLU
1: Sigmoid
2: Tanh
3: ReLU
4: LogSigmoid
5: ELU
6: Mish

In the default configuration of the tool, the learning rate is set to 0.001 and the number
of epochs to 200. CrossEntropyLoss is used as the loss function for classification and
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MSELoss for regression-type problems. The tool can use all the optimization algorithms
provided by the MealPy package. In the current configuration of the tool used for this
dataset, MealPy’s CMAES, GA and PSO algorithms were used to optimize the hyperparam-
eters. A graphical user interface (GUI) is used when loading the dataset into the system.
When the FindBestNet command is issued through the GUI after the dataset is loaded, the
objective function of the tool builds an ANN based on a set of hyperparameters provided by
the user at each iteration of the optimizer. Once an ANN is generated, the accuracy of this
ANN is calculated through 10-fold cross-validation. The output of the objective function is
the average of the measures of these 10 folds. This output is consumed/evaluated by the
optimizer, and based on this, the objective function is called again with a new set of hyper-
parameters. The default parameters for the optimizer are 20 epochs and a population size
of 50; this creates at least 20 × 50 = 1000 ANN architectures in each run. For each generated
network, parameter values, mean squared error (MSE) and coefficient of determination
(R2) are provided as a table in the Streamlit-based GUI. Once training is complete, all ANN
models are stored on the server and can be downloaded as (*.pt) files.

3. Results and Discussion

In this study, as mentioned before, three optimizers (CMAES, GA and PSO) for CO2
prediction from the MealPy [37] package were tested. HyperNetExplorer managed to
discover ANN architectures for the CO2 dataset. The general scheme of the study is shown
in Figure 6.
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Figure 6. Predictors and target of the hyperparameter optimization process.

Figure 7 shows HyperNetExplorer’s web-based user interface showing in descending
order the metadata of the 10 best-performing ANNs discovered with the covariance matrix
adaptation evolution strategy (CMAES). The MSE range of the 10 best-performing ANN
architectures is 187.07–231.68. The R2 range of the 10 best-performing ANN architectures is
0.85–0.88.
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The performance shown by CMAES and the metadata regarding the architecture of
the ANN are given in Table 3.

Table 3. CO2 dataset neural network structure and parameters (CMAES).

Neural Network Structure Parameters

Type of optimization method CMAES
Number of layers in the network 5

Number of neurons in the input layer 33
Number of hidden layers 3

Number of hidden layer neurons 512-256-128
Total number of iterations 1050
Number of best iteration 699

Mean squared error (MSE) 187.07
Coefficient of determination (R2) 0.88

Figure 8 shows HyperNetExplorer’s web-based user interface showing in descending
order the metadata of the 10 best-performing ANNs discovered with the genetic algorithm
(GA). The MSE range of the 10 best-performing ANN architectures is 161.17–182.07. The R2

range of the 10 best-performing ANN architectures is 0.89–0.9.
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Figure 8. Ten best-performing ANNs discovered by GA optimizer.

The performance shown by the GA and the metadata regarding the architecture of the
ANN are given in Table 4.

Table 4. CO2 dataset neural network structure and parameters (GA).

Neural Network Structure Parameters

Type of optimization method Genetic Algorithm
Number of layers in the network 5

Number of neurons in the input layer 33
Number of hidden layers 3

Number of hidden layer neurons 512-256-128
Total number of iterations 1050
Number of best iteration 1030

Mean squared error (MSE) 161.17
Coefficient of determination (R2) 0.9

Figure 9 shows HyperNetExplorer’s web-based user interface showing in descending
order the metadata of the 10 best-performing ANNs discovered with particle swarm
optimization (PSO). The MSE range of the 10 best-performing ANN architectures is
271.59–528.25. The R2 range of the 10 best-performing ANN architectures is 0.76–0.984.
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The performance shown by PSO and the metadata regarding the architecture of the
ANN are given in Table 5.

Table 5. CO2 dataset neural network structure and parameters (PSO).

Neural Network Structure Parameters

Type of optimization method Particle Swarm Optimization
Number of layers in the network 5

Number of neurons in the input layer 33
Number of hidden layers 3

Number of hidden layer neurons 512-512-256
Total number of iterations 1050
Number of best iteration 955

Mean squared error (MSE) 271.59
Coefficient of determination (R2) 0.84

Figure 10 shows the scatter plots of the relationship between two different variables
obtained with each optimization algorithm used. As can be seen from Figure 8, the genetic
algorithm (GA), which has the highest R2 value, has the lowest error rate. The highest
error rate is in particle swarm optimization (PSO). A low error rate means that the actual
value and predicted values are close to each other. This shows that the prediction model is
effective in terms of success and reliability. The higher the error rate, the further away it
is from the prediction that is considered correct. As can be seen in Figure 10, the smallest
difference between the actual and predicted value is in the GA while the biggest difference
is in PSO.
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Table 6 shows the best accuracy rates achieved by the explored ANN architectures for
the CO2 dataset using CMAES, GA and PSO optimizers. The best MSE and R2 achieved for
each optimizer is given in Table 6.

Table 6. Best success achieved for each optimizer.

Optimizer MSE R2 Number of Best Iteration

CMAES 187.07 0.88 699
GA 161.17 0.90 1030
PSO 271.59 0.84 955

When Table 6 is examined, it is seen that the algorithm with the lowest mean squared
error (MSE) and the highest coefficient of determination (R2) with hyperparameter opti-
mization is the genetic algorithm (GA). The result obtained with the GA is better than the
mean squared error and coefficient of determination obtained after regression analysis
with hyperparameter optimization with covariance matrix adaptation evolution strategy
(CMAES) and particle swarm optimization (PSO). After the GA, CMAES (MSE = 187.07
and R2 = 0.88) showed the best performance. PSO (MSE = 271.59 and R2 = 0.84) showed
the lowest performance.

When the number of iterations in which the algorithms find the best among them-
selves, i.e., their speed, is compared, it is seen that CMAES is the fastest algorithm with



Sustainability 2024, 16, 142 16 of 19

699 iterations. A radar chart of the prediction accuracies and speed of convergence is shown
in Figure 11.
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4. Conclusions

The amount of carbon dioxide emitted into the atmosphere is rapidly increasing. As
the increase in the amount of carbon dioxide continues, the global warming problem will
grow further. For this reason, researchers have begun to investigate methods to reduce
the amount of carbon dioxide. Thanks to correctly used data, resources can be controlled
efficiently. The use of alkali-activated binders instead of ordinary Portland cement (OPC)
will bring great advantages in both environmental and economic terms and will contribute
to the production of sustainable materials. However, the carbon emissions and mechanical
properties of alkali-activated concrete can widely fluctuate depending on the chemical
composition of the concrete mix. Therefore, machine learning that enables the accurate
prediction of these properties based on the chemical ingredients of alkali-activated concrete
is necessary for the widespread adoption of this construction material. Artificial neural
networks (ANNs) are one of the machine learning methods that use data and have been
widely used in data analysis in recent years. Artificial neural networks perform better
than other classical statistical methods and provide successful results. In this study, alkali-
activated binders were proposed as an alternative to reduce the environmental impact of
ordinary Portland cement production.

The results indicate that the carbon emission associated with alkali-activated concrete
production can be predicted with high accuracy using state-of-the-art machine learning
techniques. In this study, three different hyperparameter optimization algorithms (covari-
ance matrix adaptation evolution strategy (CMAES), genetic algorithm (GA) and particle
swarm optimization (PSO)) were compared and evaluated according to performance met-
rics (mean squared error (MSE) and coefficient of determination (R2)) for a CO2 prediction
dataset.

The results of the hyperparameter optimization can be summarized as follows:

(1) Hyperparameter optimization with the genetic algorithm showed successful regres-
sion performance with accurate mean squared error (MSE = 161.17) and coefficient of
determination (R2 = 0.90) values in the datasets.

(2) CMAES follows the GA with MSE = 187.07 and R2 = 0.88.
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(3) The algorithm with the lowest R2 (R2 = 0.84) value and the highest MSE (MSE = 271.59)
among them is PSO.

These results show that the hyperparameter optimization algorithm can achieve good
accuracy for the prediction of CO2 emission associated with alkali-activated concrete
production. This study contributes to the production of environmentally friendly and
sustainable binder materials with very low CO2 emissions and production energy that can
be used as ordinary Portland cement (OPC) substitutes.
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24. Leerbeck, K.; Bacher, P.; Junker, R.G.; Goranović, G.; Corradi, O.; Ebrahimy, R.; Tveit, A.; Madsen, H. Short-term forecasting of

CO2 emission intensity in power grids by machine learning. Appl. Energy 2020, 277, 115527. [CrossRef]
25. Li, Y.; Sun, Y. Modeling and predicting city-level CO2 emissions using open access data and machine learning. Environ. Sci. Pollut.

Res. 2021, 28, 19260–19271. [CrossRef] [PubMed]
26. Li, X.; Ren, A.; Li, Q. Exploring patterns of transportation-related CO2 emissions using machine learning methods. Sustainability

2022, 14, 4588. [CrossRef]
27. Wang, C.; Li, M.; Yan, J. Forecasting carbon dioxide emissions: Application of a novel two-stage procedure based on machine

learning models. J. Water Clim. Change 2023, 14, 477–493. [CrossRef]
28. He, B.; Zhu, X.; Cang, Z.; Liu, Y.; Lei, Y.; Chen, Z.; Wang, Y.; Zheng, Y.; Cang, D.; Zhang, L. Interpretation and Prediction of the

CO2 Sequestration of Steel Slag by Machine Learning. Environ. Sci. Technol. 2023, 57, 17940–17949. [CrossRef]
29. Amin, M.N.; Ahmad, W.; Khan, K.; Al-Hashem, M.N.; Deifalla, A.F.; Ahmad, A. Testing and modeling methods to experiment the

flexural performance of cement mortar modified with eggshell powder. Case Stud. Constr. Mater. 2023, 18, e01759. [CrossRef]
30. Wang, P.; Hu, J.; Chen, W. A hybrid machine learning model to optimize thermal comfort and carbon emissions of large-space

public buildings. J. Clean. Prod. 2023, 400, 136538. [CrossRef]
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