
RESEARCH ARTICLE

Matching algorithm for improving ride-

sharing by incorporating route splits and

social factors

Omer Faruk AydinID
1,2, Ilgin GokasarID

1*, Onur KalanID
3

1 Department of Civil Engineering, Bogazici University, Istanbul, Turkey, 2 Department of Civil Engineering,

Turkish-German University, Istanbul, Turkey, 3 Department of Civil and Urban Engineering, New York

University, New York, NY, United States of America

* ilgin.gokasar@boun.edu.tr

Abstract

Increasing traffic congestion and the advancements in technology have fostered the growth

of alternative transportation modes such as dynamic ride-sharing. Smartphone technologies

have enabled dynamic ride-sharing to thrive, as this type of transportation aims to establish

ride matches between people with similar routes and schedules on short notice. Many auto-

mated matching methods are designed to improve system performance; such methods

include minimizing process time, minimizing total system cost or maximizing total distance

savings. However, the results may not provide the maximum benefits for the participants.

This paper intends to develop an algorithm for optimizing matches when considering partici-

pants’ gender, age, employment status and social tendencies. The proposed matching algo-

rithm also splits unmatched parts of drivers’ routes and creates new travel requests to find

additional matches using these unmatched parts. Accordingly, this paper performs an

extensive simulation study to assess the performance of the proposed algorithm. The simu-

lation results indicate that route splits may increase the number of matches significantly

when there is a shortage of drivers. Furthermore, the paper demonstrates the effects and

potential benefits of utilizing a social compatibility score in the objective function.

1 Introduction and background

As traffic congestion worsens by the day, the rate of global warming accelerates as well accord-

ingly. This situation has led to an increase in studies that aim to develop methods for reducing

the use of private vehicles [1]. However, some studies have indicated a significant shift from

public transportation toward private vehicles despite rising fuel prices [2]. While most vehicles

can transport up to four passengers, the average passenger per vehicle ratio or private car occu-

pancy rate in Europe was approximately 1.45 in 2015, specifically 1.42 in Germany, 1.38 in the

Netherlands, and 1.58 in the UK [3]. Furthermore, traditional strategies in congestion man-

agement perspective, such as constructing new highways and maintaining current transporta-

tion infrastructure, requires expensive investment [4, 5]. Policy makers seeks alternative
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strategies (e.g. shared transportation) to reduce congestion. Consequently, ride-sharing may

have great potential to ease traffic congestion.

Ride-sharing aims to bring together travelers with similar routes and schedules, and the

idea is similar to the traditional dial-a-ride problem (DARP). The difference between ride-

sharing and DARP is the type of driver supply; in a DARP, drivers are provided by a company

within the DARP program, whereas drivers in a ride-sharing system are independent entities.

In ride-sharing, drivers may have individual preferences and unique routes, and these factor

can make the ride-sharing problem more complicated than a DARP. Rapid advances in tech-

nology in recent decades has promoted research into ride-sharing. The increasing use of

smartphone devices and mobile applications has made ride-sharing more appealing than

before [6–8]. The rise of ride-sharing can be traced back to the 1940s when it was done to con-

serve resources during World War II. At the time, the U.S. Office of Civilian Defense created a

program called the “Car Sharing Club Exchange and Self-Dispatching System” to match riders

and drivers via a bulletin board at their workplaces. The current era of ride-sharing includes

the use of software packages, real-time services, financial incentives, and social networking

platforms [9]. This has resulted in a dramatic increase in dynamic ride-sharing studies in

recent decades [1, 10]. Dynamic ride-sharing requires an automated matching system; such a

system can bring riders and drivers with similar travel patterns and schedules together on a

very short notice. Dynamic ride-sharing systems are very complicated and require a great deal

of attention from researchers, and therefore the success of a ride-sharing system depends on

the successful implementation of ride-matching [10].

The success of a ride-sharing system also depends on having a sufficient number of partici-

pants and the feasible matches that would be accepted by participants. When participants

repeatedly fail to find a match due to the lack of participants and trip announcements, they

lose interest in the ride-sharing system and are very likely to stop their participation. It is

shown that a constant rate of participation is required to achieve a sustainable ride-sharing sys-

tem [7]. Therefore, especially in the start-up phase, it is crucial in order to attract enough par-

ticipants to achieve a satisfactory matching rate. Some incentives can be suggested to attract

more participants in the start-up phase; exploiting the potential capacities of drivers can also

be considered.

There may be some other aspects that can help achieve success for a ride-sharing system.

Many approaches in the literature require drivers to change their routes in order to increase

system benefits, such as maximizing total distance savings or maximizing number of matched

pairs. However, many drivers are not willing to change their routes because doing so may lead

to a significant increase in their travel time. Likewise, long processing times cause long waiting

times for users. Additionally, the characteristics and choices of users should be considered

when attempting to implement a successful ride-sharing system in real-life. In the end, users

consider only their own benefits, not system benefits [11].

This paper proposes a new ride-matching algorithm that aims to overcome the aforemen-

tioned challenges. Specifically, the paper intends to develop an algorithm that finds matches

between riders and drivers on reasonably short notice by exploiting the capacities of drivers

and by considering the characteristics and choices of the participants. In this regard, there are

two main contributions of this paper to the literature. First, the paper discusses design and

implementation of a ride-matching algorithm that finds more feasible matches by splitting a

driver’s route. When a driver is matched with a rider for only part of the route, the unmatched

part of the route is split, and a new travel request is created using the unmatched part so that

the driver can be matched again with other riders. In this way, drivers can be matched more

than once even if they have only one empty seat. An extensive simulation study is performed

to assess the benefits of adding this feature to a ride-matching algorithm. The results suggest
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that this can increase the number of matches, especially when there is a small number of driv-

ers. Secondly, the proposed algorithm includes the characteristics and choices of users, such as

gender, age, employment, and their willingness to meet new people. Similar parameters have

been presented in the literature as binary variables [12]. The proposed algorithm utilizes these

parameters to find a common single parameter for scoring social compatibility between a rider

and a driver. Using this approach, a rider can be matched with a driver even if some of the pas-

sengers’ choices are not completely satisfied, as long as the match is still acceptable.

The rest of the paper is structured as follows. Section “Related Studies” presents an overview

of related studies, while Section 3 defines the problem and introduces the ride-sharing model.

In Section 4, the solution approach for this ride-sharing model is outlined, and the application

of the proposed algorithm is described. Section 5 discusses the details of the simulation study,

and the results of the study are analyzed. Finally, Section 6 concludes the paper by summariz-

ing the results of this study.

2 Related studies

In the recent decade, ride-sharing has receiving significant attention from both the transport

and operation research community. In the literature, a number of studies on ride-sharing sys-

tems have identified the characteristics of ride-matching problems, and some have proposed

solution methodologies [1, 13]. Traditional carpooling responds usually to recurring trips,

such as home-based work trips [14], whereas ride-sharing is suitable for responding to non-

recurring trips on a short notice, which is made possible due to the advance of communication

technologies [7]. The non-recurring and short notice time period make finding matches for

ride-sharing more difficult.

Dynamic ride-matching includes many parameters, and this renders the problem to be

non-deterministic polynomial-time hard (NP-hard) [15–17]. Therefore, many solutions to the

ride-matching problem that have been proposed in the literature use either heuristics or meta-

heuristics [6, 15–23]. Although heuristic and meta-heuristic methods offer feasible processing

times, they may not find the best possible matches.

To maximize system benefits, a previous study has proposed a novel approach to solve the

ride-matching problem by modeling it using a traditional maximum-weight bipartite match-

ing algorithm [7]. This algorithm is based on a single rider-single driver match. It is demon-

strated that the weighted bipartite matching algorithm can be used for ride-matching, but this

algorithm requires long processing times. The algorithm also omits matches of multiple riders

with a single driver, and it ignores individual preferences in order to simplify the problem.

Moreover, this algorithm assumes that a driver is willing to make a detour to pick up and drop

off a rider, as long as the total distance saving is positive. This point suggests that the driver is

willing to extend the trip time to increase system-wide benefits. It is clear that incentives such

as cost allocation between riders and drivers may be helpful for matches to be accepted but

results may not be satisfactory.

To increase the number of participants, one study introduced a rolling horizon approach in

order to force the matching algorithm to postpone the finalization of the previously found

matches until a deadline specified by the users [7]. This approach would not encourage people

to be included in ride-sharing systems; the reason is that even if users specify a deadline for

their travel request, they do not like to wait long [11]. Stiglic et al. [24] later extended the study

by Agatz et al. [7] by adding meeting points to increase the number of matches. The algorithm

here allows multiple riders-single driver matches if the riders are waiting at the same location.

Another attempt of allowing a multiple riders-single driver match can be using a form of ride-

sharing that is similar to carpooling, which considers sharing a ride from or to work [14]. One
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study proposed a non-exact evolutionary multi-objective ride-matching algorithm that allows

for a multiple riders-single driver matches [17]. There are also studies in the literature that

have modeled many-to-many ride matches. One study discussed allowing for transfers

between different modes but did not offer a solution methodology [25]. Another study formu-

lated a mixed integer problem to model many-to-many ride matches and offered heuristics to

solve it [26]. A multi-hop ride-sharing system was also modeled as a binary optimization prob-

lem and the researchers introduced an algorithm to solve this problem [6]. Another study even

considered employing dedicated drivers in order to achieve a satisfactory number of drivers in

the start-up phase [22].

Many studies in the literature have employed a number of objectives to solve ride-matching

problems. These include maximizing total distance savings [7, 27], minimizing travel distances

[28], maximizing fuel savings [29], maximizing number of matches [11, 24, 27], minimizing

total system travel costs [30, 31], and minimizing travel times [32]. These objectives are gener-

ally proportional to each other, and they mostly focus on system-wide benefits.

The characteristics and the choices of participants are very important for the participants as

they decide whether the match found by an algorithm is reasonable by means of social compat-

ibility. Thus, participants’ choices are incorporated into optimization algorithms. In previous

studies, the trip preferences of both drivers and riders were incorporated as constraints, and

such preferences include age, gender, smoking preference, and even pet restrictions; however,

these are not used in the objective functions [12, 18, 33]. In the algorithm created by Ghoseiri

et al. [12], each rider’s choices are compared to the characteristics of the potential driver and

the characteristics of other riders who travel with that driver. The algorithm uses binary deci-

sion variables to accept or reject a match. Thereafter, one study introduced the stable match

concept, and it examined the trade-off between matches that consider the individual benefits

of users and matches that consider the benefits of the system as a whole [34]. This study exam-

ined the trade-off between matches that consider the individual benefits of users and matches

that consider the benefits of the system as a whole.

In contrast with existing studies, this paper considers social characteristics and choices of

participants and utilizes them in the objective function; thus, more people may be willing to

participate in a ride-sharing system in real life. In the literature, there is one study that utilized

social parameters in their algorithm; however, they set these parameters as decision variables

that may cause a significant decrease in the number of matches. In this paper, a new parameter

for scoring social compatibility is introduced to address this challenge. Using a new parameter,

the social compatibility of participants are considered for the matching process, and conse-

quently there would be no loss of matches that may occur when social parameters are given as

constraints. To achieve critical mass in ride-sharing, various solution approaches, such as roll-

ing horizon, many-to-many matches, employing dedicated drivers, are proposed in the litera-

ture; however, this problem has not yet been fully resolved. To overcome this challenge, in this

paper, capacities of drivers are exploited by splitting their routes after they are matched with a

rider so that the unmatched part of the route can be utilized for other riders. Thus, the possibil-

ity of finding satisfactory number of drivers to maintain a sustainable ride-sharing system can

be increased.

3 Problem definition

The ride-sharing system contains a set of participants P. These participants are divided into

two groups: a set of drivers D and a set of riders R. Each rider and driver make a trip

announcement, which is defined as their travel requests. A set of trip announcements S is
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defined such that R� S and D� S. Each trip announcement s� S is associated with origin

and destination locations os and ds.

A set of meeting locations M is defined. The feasible routes Uij from location i to j are

known and constant, where i, j 2M. Travel distance dij, travel time tij, and meeting locations

on the route k1,2,. . .,n are defined for each route uij 2 Uij. A route can be chosen by a driver or

the shortest route can be calculated and assigned for the driver. Routes are determined when

drivers send a travel request, and it is assumed that drivers will not change the route.

For each driver, the system defines a travel announcement time TA, (i.e., the time a partici-

pant send a travel request to the system) and the arrival time Tk to a location k. The latest

departure time from origin TLD
o and the latest arrival time to destination location TLA

d are

defined for each rider.

In this algorithm, each rider r 2 R specifies the rider count cr, which refers to the number of

riders willing to travel together as a rider group. For example, a single rider’s rider count value

is 1, whereas two friends who are willing to travel together in the same vehicle have a rider

count value of 2. Each driver d 2 D specifies his or her capacity, as in the number of empty

seats cd. A novel aspect of this algorithm is the objective function, which maximizes the partici-

pants’ benefits by considering their characteristics and choices. Shaheen et al. [35] suggested

that gender, age, and employment status are key drivers of ride-sharing. With this in mind, the

proposed algorithm uses four parameters (gender gs; age as; employment status ws; socialness

or willingness to meet new people, δs) as well as their respective weights (gender weight γg; age

weight γa; employment status weight γw; and socialness weight γδ) to define the benefits of the

participants. Using these social parameters and their weights, a joint socialness score (JSS) is

defined to score the similarity between a driver d and a rider r as follows:

grd ¼ xrd
g g

r
gg

d
g þ xrd

a g
r
ag

d
a þ xrd

w g
r
wg

d
w þ xrd

d
gr
d
gd
d
: ð1Þ

In Eq 1, the weights of the social factors of the rider r and a driver d who is feasible for the

rider are multiplied to calculate the JSS γrd. The variable x is defined such that x 2 {−1, 1}. Its

value is +1 if the social characteristics are the same and −1 if they are different. A sample calcu-

lation of the JSS is presented in Table 1, which presents the characteristics of driver d1 and

rider r1. It is assumed that all the participants want to be matched with a participant with simi-

lar characteristics. The social factor weights are obtained from the participants, who are asked

to rate the weights of each social factor from 0 to 5. A rating of 0 indicates that it is not impor-

tant to be matched with a user with the same social characteristic, while a rating of 5 indicates

that being matched with a similar user is very important.

In the example given in Table 1, driver d1 is a male driver aged between 18 to 25 years who

works at the Turkish-German University (TAU). Driver d1 stated that the weights of a rider’s

gender, age range, and working place are scored 1, 3 and 4 out of 5, respectively. Driver d1 also

stated that he is willing to meet new people with a weight factor of 5. By contrast, rider r1 is a

Table 1. An illustrative example of the computation of the JSS.

Driver d1 Rider r1
Characteristics Factor Characteristics Factor xrd Scores

Gender male 1 female 5 -1 -5

Age 18-25 3 25-40 4 -1 -12

Employment TAU 4 TAU 4 1 16

Socialness Yes 5 Yes 3 1 15

Total score 14

https://doi.org/10.1371/journal.pone.0229674.t001
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female aged between 25 to 40 years who also works at TAU. The weight factor for her willing-

ness to meet new people is 3. As mentioned previously, the variable xrd is assigned a value of

+1 if characteristics are the same and −1 otherwise. In this situation, the value of xrd is −1 for

gender and age because the driver and the rider’s gender and age range are different. The value

of xrd is +1 for both employment and socialness because they are working at the same location

and are willing to meet with new people. The score for gender equals to 1x5x(−1) = (−5).

When the scores of the other social characteristics are calculated in this way, the JSS can be cal-

culated by simply adding all the scores.

The aggregation of social parameters into one parameter would imply some of the social

factors would be sacrificed for the benefit of others, but such concerns can be eliminated easily

by adding some constraints for each social characteristic. The reason of utilizing one parame-

ter, namely JSS, is to maintain the maximum number of participants in a ride-sharing system.

When constraints for each parameter are utilized, many matches would be eliminated. The

assumption is that if there is no better match, a participant would accept a match with another

participant even if some characteristics do not match. Nevertheless, participants would like to

be matched with their most compatible participants in the system.

3.1 Feasible match

A match between a rider and a driver can be considered feasible if their routes and schedules

are similar. These similarities are defined as spatial and temporal constraints. Since it is

assumed that a driver d will pick up a rider r on his or her route, the origin and destination

of rider r must be on the driver’s route, and they must travel in the same direction. Thus, a

match between driver d and rider r is spatially feasible if the following equations are satis-

fied:

or; dr � ud; ð2Þ

Tor
ðdÞ � Tod

ðdÞ: ð3Þ

Eq 2 ensures that the rider’s origin or and destination dr located on the driver’s route ud,

and Eq 3 states that the driver visits the rider’s origin before the rider’s destination; thus, it is

ensured that they are traveling in the same direction.

To check the time feasibility, it is assumed that riders will wait past their latest departure

time as long as they know a driver is coming for them. At the same time, a constraint for wait-

ing time w can be set as well. When driver d sends a travel request with a departure time and a

route, the time feasibility between driver d and rider r can be checked such that

TAðdÞ � TLD
o ðrÞ; ð4Þ

TkðdÞ � TLA
d ðrÞ � tordr ; ð5Þ

TkðdÞ � TAðrÞ þ w: ð6Þ

Eq 4 states that the travel announcement of driver d TA(d) is made before the latest depar-

ture time of rider r from the origin TLD
o ðrÞ. Eq 5 ensures that if driver d picks up rider r, they

will reach destination of the rider before the rider’s latest arrival time (i.e., travel time from rid-

er’s origin to destination tordr added to the time of the driver’s arrival to meeting point Tk(d)

should not exceed the rider’s latest arrival time TLA
d ðrÞ). Eq 6 states that rider r will wait for a

driver up to the maximum waiting period w after the travel announcement time TA(r).
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A feasible match must also satisfy the capacity constraint.

cd � cr: ð7Þ

Eq 7 implies that the number of empty seats available in a driver’s vehicle cd should be

greater than or equal to the rider count cr (i.e., number of riders willing to travel as a group by

sending a single travel request).

3.2 Matching problem

Ride-matching algorithms in the literature have utilized a variety of objective functions and

constraints. One of the most popular objective function is maximizing travel distance savings.

Travel distance saving is the difference between the distance traveled when participants share a

ride and when they travel by themselves. When a driver picks up a rider at the rider’s origin

and drops off the rider at the rider’s destination, the travel distance saving σdr is calculated

such that

sdr ¼ doddd
� ðdodor

þ dordr
þ ddrdd

Þ þ
X

r2R

ðdordr
Þ: ð8Þ

When drivers are not willing to change their routes (i.e., only accepts to be matched with

riders located on their routes), Eq 8 equals to the following:

sdr ¼
X

r2R

ðdordr
Þ: ð9Þ

Travel distance saving is directly proportional to many other objective functions, such as

travel time saving and fuel saving. In this paper, maximizing a new parameter, namely JSS in

Eq 1, is introduced as an objective function.

The example given in Fig 1 shows driver d1 and four riders, namely r1, r2, r3, and r4. The

letters A, B, C, and D represent locations. In this example, driver d1 has origin and destination

locations A and D, respectively. The travel requests from the riders are as follows: rider r1
from A to D, rider r2 from A to B, rider r3 from B to D, and rider r4 from C to D. The numbers

in the parentheses show the JSS between a rider and driver d1, and the numbers on the links

connecting locations represent travel distances. The ride-matching problem is to decide which

rider or riders should be matched with driver d1. The result can be affected by an objective

function and/or constraints. Furthermore, the solution approach may affect the results as well.

All four riders in this example can be matched with driver d1 separately. In addition, two sets

of riders, namely riders r2 with r3 and riders r2 with r4, can create feasible pairs with driver d1

if the driver d1 has a single available seat. The bipartite graph for this example is shown in

Fig 1. Ride-sharing schema for a driver and four riders.

https://doi.org/10.1371/journal.pone.0229674.g001
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Fig 2. In Fig 2, the nodes represent participants and links represent edges created for feasible

matches. The numbers in parentheses on the links show the JSSs of the matches represented

by the links. The outcomes of these possible matches are given in Table 2.

In the example, an optimization model with an objective function of maximizing JSS finds

Scenario 6 to be an optimal solution, while the objective function of maximizing distance sav-

ings seems to fit either Scenario 1 or 5. When a heuristic approach is proposed, Scenario 1

would be chosen for both the objective functions of maximizing JSS and distance savings.

Moreover, adding some constraints such as a lower bound for JSS or number of stops made by

drivers would change the optimal match.

A node for each driver d 2 D and each rider r 2 R is defined. For each feasible match, an

edge is created between the driver and the rider. The ride-sharing system presented in this

Fig 2. Bipartite graph for a driver and four riders.

https://doi.org/10.1371/journal.pone.0229674.g002
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paper offers the possibility that a driver can be matched with more than one rider even if only

single rider-single driver matches are allowed. This can be achieved by introducing extra

nodes that represent a set of riders J. To determine which riders can create a joint group to be

matched with the same driver, a subproblem can be created such that

tor1dr1 þ tdr1or2 þ tor2dr2 � tor1dr2 : ð10Þ

or1; dr1; or2; dr2 � ud: ð11Þ

Assuming constant travel times, Eq 10 ensures that the origin of rider r2 is visited by driver

d after the destination of rider r1 is visited so that they can be picked up by the same driver. Eq

11 ensures that the origins or1, or2 and destinations dr1, dr2 of both riders r1 and r2 are located

on driver’s route ud so that the match can be feasible. Both Eqs 10 and 11 hold for a set of two

riders, and the equations can be expanded for more than two riders if needed.

Each edge e is assigned with a JSS or distance saving depending on the objective function. E
represents a set of all edges, and ye is a binary decision variable for e 2 E; ye is assigned a value

of 1 if the edge is an optimal match and 0 otherwise. Ed and Er represent the set of edges associ-

ated with driver d and rider r respectively. In this way, the ride-match between a driver with

one empty seat and multiple riders with the objective of maximizing JSS can then be formu-

lated as the following integer program:

max z1 ¼
X

e2E

ðgrde þ 100Þye ð12Þ

subject to
X

e2Ed

ye � 1 8d 2 D; ð13Þ

X

e2Er

ye � 1 8r 2 R; ð14Þ

ye 2 f0; 1g 8e 2 E: ð15Þ

Eq 12 represents the objective of maximizing the sum of JSSs grde . A constant of 100 is added

to the JSS so that the matches with negative JSSs will not be eliminated in order to maximize

the objective function. Eqs 13 and 14 ensure that a driver and a rider or a rider set are included

in only one optimal solution. Eq 15 shows that ye is a binary variable that is assigned for each

Table 2. Outcomes of the possible matches in a ride-sharing schema.

Scenario

#

Match No. of

matches

No. of extra

stops

JSS Distance

savings

Optimal Solution Heuristic Solution

Obj.: Max

JSS

Obj.: Max distance

savings

Obj.: Max

JSS

Obj.: Max distance

savings

1 d1! r1 1 0 80 30 x x x

2 d1! r2 1 1 20 10

3 d1! r3 1 1 40 20

4 d1! r4 1 1 70 10

5 d1! r2,

r3

2 1 60 30 x

6 d1! r2,

r4

2 2 90 20 x

https://doi.org/10.1371/journal.pone.0229674.t002
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edge. The objective function can be easily changed to maximizing distance savings by replac-

ing Eq 12 with the following equation:

max z2 ¼
X

e2E

seye ð16Þ

The problem can be extended by adding more constraints, such as setting a lower bound

for JSS or limiting number of stops made by a driver to pick up or drop off a rider. Further-

more, constraints for each social parameter can be utilized at will in order to maintain a certain

level of quality for the matches.

4 Solution approach

One of the most significant barriers in ride-matching problems is dealing with a large number

of participants within a feasible time period [1]. The integer programming (IP) formulation

described in Section 3 is computationally prohibitive in solving for large-scale instances.

When multiple drivers and the presence of joint riders are considered, it is necessary to use a

heuristic that is capable of solving large-scale instances in feasible times. This section discusses

the approach that is adopted to solve the defined ride-matching problem.

4.1 Route feasibility

Most traditional weighted bipartite matching algorithms in the literature assumed that drivers

are willing to change their routes to pick up and drop off riders. Accordingly, the route feasi-

bility condition holds if the travel distance savings is positive. In the proposed algorithm, driv-

ers’ routes are assumed to be specified by drivers when they send ride-share requests.

Therefore, to satisfy the route feasibility constraint, a rider’s origin and destination locations

should be on the driver’s route. In addition, it must be ensured that the directions of the rider

and driver are the same, meaning that alignment of their routes must be checked.

To check the similarities between the routes of the drivers and riders, this paper uses the

Needleman-Wunsch algorithm, which is one of the first examples of dynamic programming.

The Needleman-Wunsch algorithm scores the alignment of two groups of letters [36]. This

means that the Needleman-Wunsch algorithm can be used not only to check the origin and

destination locations, but also the midpoints specified by participants. Furthermore, the algo-

rithm also checks the order of the letters. This algorithm results in a high quality alignment.

To date, it is widely used in the bioinformatics field to identify similarities between a sample

amino acid chain with amino acid chains recorded in a database [37].

Using the algorithm, a matrix (M) is created, and the scores of matching, mismatching, and

gap are specified at will. These scores are assigned to the cells such that (a) if the letters in the

corresponding column and row are the same, a matching score is assigned; (b) if they are dif-

ferent, a mismatching score is assigned; and (c) if one of the letters is missing, gap score is

assigned. The algorithm has various solving methods, but all of them give the same result. The

steps involved in solving the problem are as follows [38]:

1. A matrix S is defined, where i and j denote the row and column numbers. Let m and n
denote the lengths of the first and second letter arrays, then 0� i�m and 0� j� n.

2. The values of S are set to 1 if there is a match and to 0 if there is no match (assuming the

matching score is 1 and the mismatching score is 0). If there is a gap in the letter groups, a

gap score is assigned. When the gap score is 0, S[i, 0] = 0 for i = 0, 1, . . ., m and S[0, j] = 0

for j = 0, 1, . . ., n.
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3. Compute the scores starting from the top-left cell using following equation:

M½i; j� ¼ S½i; j� þmaxðM½i � 1 : x�;M½j � 1 : y�Þ: ð17Þ

4. Start the traceback process from the bottom-right cell and continue by selecting the cell

with the lowest value from the adjacent columns and rows.

As an example, let driver d defines a route “ABCDE” and rider r defines an origin C and

destination E. The sequence alignment for these letter arrays will result in a score of 2, and an

alignment is found such that

AB CD E

� � C� E:

The algorithm proposed in this paper, only needs the matching letters and their order,

not the gaps between the letters. Therefore, the Needleman-Wunsch algorithm is modified

by eliminating the traceback process. In this algorithm, the calculation of the matrix begins

at the top-left cell and finishes at the bottom-right cell. The S and M matrices are calculated

as depicted in Figs 3 and 4. In Fig 3, the S matrix is created as follows: If the letters are the

same, then a matching score of 1 is written; otherwise, a mismatching score of zero is

written. In Fig 4, the M matrix is created using Eq 17. Since S[1, 1] = 0, M[0, 1] = 0 and

M[1, 0] = 0, M[1, 1] is calculated as 0. The bottom-right cell M[2, 5] is calculated as 2

because S[1, 5] = 1, M[1, 5] = 1 and M[2, 4] = 1, thus max(M[1, 5], M[2, 4]) = 1 and M[2,

5] = S[2, 5] + 1 = 2.

When using the Needleman-Wunsch algorithm for route checking, if the letters represent-

ing the origin and the destination of the rider are present along the route of the driver in

order, the score (i.e., the value of the cell mxn) equals 2. It should be noted that when

“ABCDE” is compared with “EC,” which is in the opposite direction, the score equals to 1.

Thus, it is concluded that when the Needleman-Wunsch algorithm is used for comparing the

letter arrays that represent the route of driver d and the origin and destination of rider r and

when the matching score is 1, driver d and rider r are said to be spatially feasible, if the score is

2. The proposed algorithm for checking route feasibility is given in Algorithm 1.

Fig 3. Needleman-Wunsch algorithm after the generation of the S matrix.

https://doi.org/10.1371/journal.pone.0229674.g003
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Algorithm 1 The Needleman-Wunsch Algorithm to check route feasibility.
m = number of letters in rider’s route
n = number of letters in driver’s route
matchscore = 1
for i in range (0, m+1) do
score[i][0] = 0

end for
for j in range (0, n+1) do
score[0][j] = 0

end for
for i in range(1, m+1) do
for j in range(1, n+1) do
match = score[i − 1][j − 1] + matchscore(seq1[i − 1], seq2[j − 1])
score[i][j] = match

end for
end for
return score[m][n]

4.2 Splitting drivers’ routes and recording extra stops

When it is assumed that drivers will detour to pick up and drop off riders, a driver can be

matched with a single rider or with multiple riders who have the same origin and destination

because the route is determined according to riders’ routes. In the algorithm proposed in this

paper, a driver will only engage with riders located along the driver’s route. When the driver is

matched with a rider, his or her capacity is decreased for the whole route, even if the driver is

matched with a rider who is sharing only a small part of the route. To overcome this challenge,

when a driver is matched, a new travel request is created using an unmatched part of the route.

Accordingly, the driver needs to make extra stops to pick up and drop off riders, if they have

different origins or destinations. If drivers have larger vehicle capacities and longer routes,

they would need to make even more extra stops. To prevent this inconvenience for drivers,

extra stops should be recorded so that they can be limited. The proposed approach for splitting

drivers’ routes and recording extra stops is given in Algorithm 2.

Algorithm 2 Creating new request by splitting drivers’ routes and recording extra stops.
for each driver do

Fig 4. Needleman-Wunsch algorithm after the generation of the M matrix.

https://doi.org/10.1371/journal.pone.0229674.g004
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add ID, origin and destination of driver, i.e. (ID, [od, dd]) to the
stops list
end for
(r, d) = the current best match having route, time and capacity
feasibility
if or, dr not in stops and (number of stops visited by d) + 2 > limit-
forstops+2
then
select the next best match

else
if or not in stops and (number of stops visited by d) + 1 > limitfor-

stops+2
then
select the next best match

end if
if dr not in stops and (number of stops visited by d) + 1 > limitfor-

stops+2
then
select the next best match

end if
end if
if or! = od then
if or not in stops visited by d then
add or to the stops visited by d

end if
create a new request with driver d
update capacity of the new request with rider count of r, cr
update destination of the new request with or
send the new request to the database

end if
if dr! = dd then
if dr not in stops visited by d then
add dr to the stops visited by d

end if
create a new request with driver d
update capacity of the new request with rider count of r, cr
update origin of the new request with dr
send the new request to the database

end if
In the example depicted in Fig 1, when driver d1 is matched with rider r2, driver d1 picks

up rider r2 at point A, which is the origin of both driver d1 and rider r2; the driver then drops

off rider r2 at destination B, which is different from driver’s destination. A new travel request

from d1 can be created for the route from B to D. Algorithm 2 creates this new travel request

and records location B as an extra stop.

4.3 Matching process

In this section, the matching process is outlined. The matching process is carefully constructed

to ease the computational burden it imposes on the systems used. The first-come-first-serve

method is applied: when a rider enters the system, the feasibility of each available driver is first

checked. After this, the JSSs for all feasible drivers are calculated. The rider is matched with the

driver whose corresponding JSS is the highest. The steps of the proposed algorithm are illus-

trated as a flowchart in Fig 5; the matching algorithm is described in Algorithm 3. These steps

are as follows:
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1. If there is a new announcement, update the database.

2. Select the unmatched rider whose announcement time is the earliest.

3. Select the temporally feasible driver with the earliest announcement time.

4. Check the capacity, time and route feasibility of a match between the rider and driver.

5. If the driver is feasible for the rider, calculate the JSS between them and add this pair to the

feasible matches list.

6. If there is an unchecked driver, go to Step 3 and repeat the process.

7. Select the driver with the best JSS from the feasible matches list and match the driver with

the rider.

Fig 5. Flowchart of the matching process.

https://doi.org/10.1371/journal.pone.0229674.g005

PLOS ONE Matching algorithm for improving ride-sharing by incorporating route splits and social factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0229674 March 4, 2020 14 / 23

https://doi.org/10.1371/journal.pone.0229674.g005
https://doi.org/10.1371/journal.pone.0229674


8. Eliminate the rider from the system. Subtract the rider count from the capacity of the

matched driver and update the capacity of the driver.

9. If driver’s origin and/or destination are different from that of the rider’s, split the driver’s

route to create a new travel request for the unmatched parts of the route.

10. Update the database and repeat the process, starting from Step 1.

Algorithm 3 The matching process.
for each rider do
for each driver do
if time is feasible then
if capacity >= rider count then
if route is feasible then
calculate JSS
add match to the feasiblematches list

end if
end if

end if
end for
select the match with the highest JSS from feasiblematches list
match the rider and eliminate the rider from the system
update driver capacity
create new travel request with the driver and record the stops
update the database

end for
In Algorithm 3, a rider is selected and for this rider each driver is analyzed one-by-one.

Firstly, temporal compatibility of this couple is checked. If they are temporally compatible,

capacity constraints and route feasibility are checked using Eq 7 and Algorithm 1, respectively.

When these constraints are satisfied, the JSS of this match is calculated using Eq 1 and this

match is added to the list of feasible matches. When all drivers are examined for the first rider,

the rider is matched with the driver having maximum JSS. Later, the rider is eliminated from

the system and the route of the matched driver is split and capacity is updated using Algorithm

2. The next rider is selected and processes are repeated until all riders are checked.

5 Computational study

In this section, a comprehensive simulation study is conducted to assess the potential benefits

of creating additional travel requests by splitting drivers’ routes. The paper also examines the

effects of using JSS in the objective function.

5.1 Data generation and experiments

Istanbul is chosen to be the simulation environment for the ride-sharing system. The city has a

very wide public transportation web, yet it is one of the most crowded metropolitan cities in

the world. There is also traffic congestion that keeps growing every day [39]. Therefore, the

city may have a very large potential for ride-sharing. There are two main highways in Istanbul.

A total of 26 meeting points are selected on these highways; the origins and destinations of all

participants are assigned to these meeting points. In the simulation study, it is assumed that

drivers will choose the shortest route for their convenience. Therefore, the shortest route

between each meeting point is calculated using the real travel distances and Dijkstra’s Algo-

rithm [40]. Travel times are calculated assuming that all vehicles travel at a constant speed.

The schema and the defined meeting points are presented in Fig 6.

PLOS ONE Matching algorithm for improving ride-sharing by incorporating route splits and social factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0229674 March 4, 2020 15 / 23

https://doi.org/10.1371/journal.pone.0229674


As mentioned, this paper aims to assess the effects of splitting drivers’ routes and setting JSS

in the objective function. To do this, 4000 drivers and 4000 riders are randomly generated

with an origin, a destination, either a capacity or rider count, social characteristics, and their

weights. In the base case, 1000 riders with a rider count of 1 and 100 drivers with capacity of 3

are randomly selected from the generated data. The characteristics of the base case are summa-

rized in Table 3.

To assess the sensitivity of the results to the parameters, different settings were created. In

each setting, one of the parameters was changed. These parameters are the number of drivers,

the number of riders, the lower bound of the JSS and the number of allowed extra stops. The

results are evaluated using the following metrics: (a) the ratio of matched riders to all riders,

(b) the ratio of matched drivers to all drivers, (c) the number of riders matched because of a

route split, (d) average JSSs of the matched pairs, (e) the distance savings, as in system-wide

distance savings as a fraction of the system-wide distances traveled when all participants travel

alone.

5.2 Performance

Performance of an algorithm mostly depends on the sample size and the complexity of the

algorithm. Since setting the objective function as maximizing JSS does not affect the sample

Fig 6. The schema and meeting points for ride-sharing.

https://doi.org/10.1371/journal.pone.0229674.g006

Table 3. Characteristics of the base case.

Number of riders 1000

Number of drivers 100

Capacity of each driver 3 seats

Rider count of each rider 1 person

JSS Limit -100

Number of allowable extra stops 10

Average travel distance 23.1 km

Average number of meeting points visited by drivers 6

https://doi.org/10.1371/journal.pone.0229674.t003
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size and complexity of the algorithm, only the effects of splitting drivers’ routes are considered

for the computation time. The time complexity of the algorithm is given as O(mn), where m

and n are the number of drivers and riders respectively. Therefore, the study also tested mea-

suring the sensitivity of the computation time to different numbers of riders and drivers. The

average and standard deviations of computation times in different settings are given in

Table 4; each setting was tested 20 times. The matching algorithm was modeled in Python 2.7,

and its performance was measured on a computer with an i5 2.7 GHz processor and 8 GB of

RAM.

Table 4 shows that the matching algorithm is feasible for use in real-life instances. Even

with a large sample size (i.e., in Cases 3 and 4), the algorithm was solved in approximately 20

seconds. Splitting drivers’ routes brings computational burden to the algorithm; this burden

results in an increase in computation times as expected, but using this feature allows the algo-

rithm to be solvable in feasible times. The sample size selected for the simulation would be

accumulated over several hours in real-life. The database can be updated with each incoming

travel requests in practice. The computation time required for finding a successful match for a

new single request can be less than 1 second.

5.3 Validation of heuristic solution

In this paper, a heuristic solution approach is proposed for solving the problem of ride-match-

ing, because it is computationally prohibitive to solve the problem using IP. The proposed heu-

ristic finds matches on a reasonably short notice, but the quality of solutions should be

examined first before drawing any conclusions. To validate the proposed solution approach,

the quality of solutions found by the heuristic solution is compared with the quality of solu-

tions found by the IP that is presented in Section 3. Because it is unlikely for a large-scale prob-

lem to be solved using IP, the solution approaches are examined on small instances that

consist of 50 riders and 50 drivers. The capacities of drivers are set to 1 for these instances, but

multiple riders-single driver matches are possible because of the route split. The results are

summarized in Table 5.

Table 5 shows that the average difference between heuristic solutions and IP solutions is

less than 20%. The average difference in the number of matched riders is found to be 6.25%.

Considering that the proposed heuristic solution approach can be used to solve more compli-

cated and large-scale problems, the findings here suggest that this approach performs well for

solving ride-matching problems.

5.4 Benefits of route split

To exploit drivers’ capacities, their routes are split after they are matched with a rider so that

they can be matched again for the unmatched parts their routes. It is important to show how

many riders are matched with drivers, whose routes were split before. Furthermore, it should

Table 4. Sensitivity of computation time to the route split and sample size.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Splitting routes Yes No Yes No Yes No

Number of riders 1000 1000 1000 1000 100 100

Number of drivers 100 100 1000 1000 1000 1000

Average computation time (secs) 1.99 0.80 21.98 17.09 1.98 1.91

Standard deviation of computation time (secs) 0.10 0.04 0.31 0.18 0.02 0.03

https://doi.org/10.1371/journal.pone.0229674.t004
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be considered that these riders could be matched with other drivers if a route split was not

allowed. To measure the benefits of splitting routes, the study analyses the distance savings

and the total number of matched participants. A summary of the simulation results for differ-

ent numbers of allowable extra stops are presented in Table 6.

In Table 6, the column of zero allowable extra stops represents the algorithm without a

route split feature. Extra stops are not recorded and not limited for this case. The results indi-

cate that allowing route splitting causes a significant increase in the number of matched riders

for the base case setting, where the capacity of each driver is set to 3. When one extra stop is

allowed, the ratio of the matched riders to the matched drivers exceeds the capacities of the

drivers. This shows that splitting drivers’ routes can cause a significant increase in the number

of matches. Setting allowable extra stops greater than 3 does not significantly affect the number

of matches for the simulation environment, where the average number of visited locations is 6.

However, setting a higher number of allowable extra stops increases computational burden,

even if it causes no significant increase in the number of matches. Therefore, the number of

allowable stops should be selected carefully in order to maintain both a satisfactory number of

matches and feasible computation times.

It is suggested that route split would cause a significant increase in the number of matched

riders when there is a shortage of drivers. The algorithm was also tested with different numbers

of riders and drivers to measure the benefits of using a route split for various setups. The sensi-

tivity of some results for a different number of riders and drivers is summarized in Table 7 and

illustrated in Fig 7.

Table 7 shows that a route split makes a significant contribution to matching ratios, espe-

cially when the ratio of riders to drivers is relatively large. When the ratio of riders to drivers is

greater than 5, the ratio of matched riders to matched drivers exceeds the capacities of drivers,

which would not be possible without route splitting. Based on the simulation results shown in

Table 5. Comparison of heuristic solutions and optimal solutions.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Average

Heuristic Sum of JSSs 2150 2490 2058 1811 1698 2035 1467 2222 1913 1919 1976.30

Number of matched riders 21 24 22 20 20 22 19 23 19 23 21.30

Number of matched drivers 21 21 20 18 17 20 15 22 19 19 19.20

Optimal Sum of JSSs 2206 2962 2390 2251 2337 2696 2040 2565 2149 2661 2425.70

Number of matched riders 21 27 24 20 23 24 19 25 21 24 22.80

Number of matched drivers 21 27 23 20 20 24 19 23 21 23 22.10

Difference Sum of JSSs 2.54% 15.93% 13.89% 19.55% 27.34% 24.52% 28.09% 13.37% 10.98% 27.88% 18.41%

Number of matched riders 0.00% 11.11% 8.33% 0.00% 13.04% 8.33% 0.00% 8.00% 9.52% 4.17% 6.25%

Number of matched drivers 0.00% 22.22% 13.04% 10.00% 15.00% 16.67% 21.05% 4.35% 9.52% 17.39% 12.92%

https://doi.org/10.1371/journal.pone.0229674.t005

Table 6. Simulation results for base case with different number of allowable extra stops.

Number of allowable extra stops

0 1 2 3 4 5 6

Average number of riders matched before split of the route 258.75 247.2 244.3 245.2 237.3 241 235.2

Average number of riders matched after split of the route 0 39 74.7 94.9 102.7 104.9 110.1

Average number of all matched riders 258.75 286.2 319 340.1 340 345.9 345.3

Average number of all matched drivers 93.41 94.5 90.4 89.4 87.5 87.9 87.3

Ratio of matched riders to matched drivers 2.77 3.03 3.53 3.80 3.89 3.94 3.96

https://doi.org/10.1371/journal.pone.0229674.t006
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Fig 7, when the ratio of riders to drivers exceeds 3 for the base case setting, a route split causes

the ratio of matched riders to matched drivers to exceed the capacities of drivers. When the

ratio of riders to drivers is less than 1, splitting does not have a considerable contribution,

because there are plenty of drivers for existing riders.

5.5 Effects of the joint socialness score

To create a successful ride-sharing system, a matching algorithm should consider not only sys-

tem-wide benefits but also the concerns of potential participants who are social beings. As

mentioned earlier in this paper, social compatibility of participants is scored using the JSS, and

the objective function of the proposed matching algorithm is set to maximize the sum of JSSs.

To assess the effects of utilizing the JSS in the objective function, the algorithm was also tested

using a maximizing sum of distance savings as the objective function. To compare these two

objectives, the base case setting was used, but the number of drivers was increased to 1000 in

order to decrease the possible fluctuations due to heuristic behavior. The results are summa-

rized in Table 8.

Table 7. Simulation results for different riders to drivers ratio.

Ratio of number of riders to drivers

10:1 5:1 2:1 1:1 1:2 1:5 1:10

Number of riders 1000 1000 1000 1000 500 200 100

Number of drivers 100 200 500 1000 1000 1000 1000

Average number of riders matched before split of the route 238.48 410 709.5 871.85 468.4 193.4 96.6

Average number of riders matched after split of the route 110.6 105.4 78.8 56.35 12.3 1.2 0.1

Average number of all matched riders 349.08 515.4 788.3 928.2 480.7 194.6 96.7

Ratio of matched riders to all riders (%) 34.91 51.54 78.83 92.82 96.14 97.3 96.7

Average number of all matched drivers 88.02 160.1 309.2 437.7 282.9 150.1 81.3

Ratio of matched drivers to all drivers (%) 88.02 80.05 61.84 43.77 28.29 15.01 8.13

Ratio of matched riders to matched drivers 3.97 3.22 2.55 2.12 1.7 1.3 1.19

https://doi.org/10.1371/journal.pone.0229674.t007

Fig 7. Ratio of matched riders to matched drivers versus all riders to all drivers.

https://doi.org/10.1371/journal.pone.0229674.g007
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Table 8 shows that compared to maximizing distance savings, the objective of maximizing

the sum of JSSs results in a significantly larger average JSS value (i.e., 27.35 versus 1.08). Maxi-

mizing distance savings results in a slightly larger distance savings (i.e., 29.51% versus 33.48%).

The matching algorithm assumes that a participant accepts the match offer from a participant

with a low JSS if there is no better match offered to the participant. To maintain a certain level

of satisfaction, each social parameters and/or JSS can be limited. JSS can be seen as the likeli-

hood of a participant to accept the match found by a matching algorithm. Table 9 presents the

sensitivity of the results to a JSS limit.

Table 9 shows that increasing the JSS limit causes an increase in average JSS of matches.

The average JSS of all participants in the system is close to zero. Therefore, a dramatic increase

is observed when the JSS limit exceeds zero. On the other hand, it should be noted that an

increase in the JSS limit maintains a level of JSS by eliminating some matches, and thus an

increase in the JSS limit causes a decrease in the number of matches.

6 Conclusions

This paper proposed a ride-matching algorithm that splits drivers’ routes for drivers to be

matched again and includes social parameters of age, gender, employment and willingness to

meet new people. The two-fold aim of the proposed algorithm is to serve more riders, espe-

cially in the case of a shortage of drivers, and to maximize user benefits in ride-matching so

that more people would want to participate in a ride-sharing system. When a driver is matched

for only part of his or her route, the proposed matching algorithm creates new travel requests

using the unmatched part of the route. Thus, along the route, a driver can be matched with

more riders. Furthermore, to increase the likelihood of a participant accepting the offered

matches, a social compatibility score, JSS, is defined to measure the social compatibility of

Table 8. Comparison of different objectives.

Objective function

max JSS max distance savings

Number of riders 1000 1000

Number of drivers 1000 1000

Number of matched riders 929.55 942.8

Total number of matched drivers 443.45 372.35

Average JSS 27.35 1.08

Standard deviation of JSS 0.59 0.65

Distance savings (%) 29.51 33.48

Standard deviation of distance savings (%) 0.67 0.69

https://doi.org/10.1371/journal.pone.0229674.t008

Table 9. Effects of JSS limit on the results.

JSS Limit

-100 -20 0 20 40 60 80

Number of riders 1000 1000 1000 1000 1000 1000 1000

Number of drivers 100 100 100 100 100 100 100

Average number of matched riders 325.72 312.2 289.8 184.7 45.4 2.7 0.2

Average number of matched drivers 90.02 89.6 85.9 67.9 26.6 2.5 0.1

Average JSS 11.58 13.55 19.81 30.73 46.81 63.85 85

https://doi.org/10.1371/journal.pone.0229674.t009
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participants’ characteristics. In this way, a rider can be matched with the most compatible

driver in the system.

The results of the simulation study indicate that the route split feature can substantially

improve the performance metrics of a ride-matching algorithm (i.e., the number of matched

riders and the distance savings). This feature would be most beneficial for achieving critical

mass in ride-sharing when there are shortages of drivers. The results show that including route

split feature in the matching algorithm causes 33% increase in number of matched riders. It

should be mentioned that there is a trade-off between including this feature to the matching

algorithm and the computation time. To address this issue, a heuristic was used to improve

computation time performance. It was shown that the computation times are still feasible for

real-life instances when 10 extra stops are allowed.

This study showed the benefit and cost in using the objective function of maximizing the

sum of JSSs by comparing it with the objective of maximizing the sum of distance savings.

Using a JSS caused a significant increase in average JSS, while it caused a slight decrease in the

distance savings. The results suggest that with a small sacrifice from distance savings, the

objective of maximizing the JSS provides more qualitative matches for participants.

In the future, it would be intriguing to investigate the performance of the proposed algo-

rithm in different simulation environments. Improvements to the solution approach can also

be discussed in order to obtain more qualitative results that are close to the optimal solution.

In addition, this algorithm could be improved in various ways. For example, integrating public

transportation systems to the ride-sharing system can be discussed to ensure that the proposed

algorithm will be applicable in real-life instances.
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