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c Clinic for Orthopaedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany   

A R T I C L E  I N F O   

Keywords: 
Convolutional neural networks 
Joint moments 
Gait kinematics 
Computational gait analysis 
Cerebral palsy 
Machine Learning 

A B S T R A C T   

Joint moments during gait provide valuable information for clinical decision-making in patients with cerebral 
palsy (CP). Joint moments are calculated based on ground reaction forces (GRF) using inverse dynamics models. 
Obtaining GRF from patients with CP is challenging. Typically developed (TD) individuals’ joint moments were 
predicted from joint angles using machine learning, but no such study has been conducted on patients with CP. 
Accordingly, we aimed to predict the dorsi-plantar flexion, knee flexion–extension, hip flexion–extension, and 
hip adduction-abduction moments based on the trunk, pelvis, hip, knee, and ankle kinematics during gait in 
patients with CP and TD individuals using one-dimensional convolutional neural networks (CNN). The anony
mized retrospective gait data of 329 TD (26 years ± 14, mass: 70 kg ± 15, height: 167 cm ± 89) and 917 CP (17 
years ± 9, mass:47 kg ± 19, height:153 cm ± 36) individuals were evaluated and after applying inclu
sion–exclusion criteria, 132 TD and 622 CP patients with spastic diplegia were selected. We trained specific CNN 
models and evaluated their performance using isolated test subject groups based on normalized root mean square 
error (nRMSE) and Pearson correlation coefficient (PCC). Joint moments were predicted with nRMSE between 
18.02% and 13.58% for the CP and between 12.55% and 8.58% for the TD groups, whereas with PCC between 
0.85 and 0.93 for the CP and between 0.94 and 0.98 for the TD groups. Machine learning-based joint moment 
prediction from kinematics could replace conventional moment calculation in CP patients in the future, but the 
current level of prediction errors restricts its use for clinical decision-making today.   

1. Introduction 

Cerebral Palsy (CP) is a group of disorders that affects a person’s 
neuromotor functions. Lower limb joint moments are of great impor
tance in the assessment, monitoring, and treatment of CP (Lai et al., 
1988; Gage, 1994; Ounpuu et al., 1996; Lin et al., 2000; Novacheck and 
Gage, 2007). Joint moments have also great potential to provide insights 
about muscle behaviors during exerting joint motion. Research showed 
that pre- and postoperative analyses of joint moments, particularly those 
of the lower extremity in the sagittal plane and hip joint moment in the 
frontal plane, have an impact on the decision-making process of the 
treatment of CP (Ounpuu et al., 1996; DeLuca et al., 1997; Kay et al., 
2000, Rhodes et al., 2023). For example, the insufficiency of quadriceps 
strength is one of the primary factors that contribute to crouch gait in 

patients with CP (Lenhart et al., 2017). Therefore, the magnitude and 
pattern of the knee extension moment could reflect the impact of 
quadriceps weakness on crouch gait, making it crucial for surgical 
decision-making in such cases (Lenhart et al., 2017; Karabulut et al., 
2021). 

Obtaining joint moments in clinical gait analysis leads to challenges. 
It requires ground reaction force (GRF) measurements to be calculated 
using inverse dynamics models (Winter, 2009; Whittle, 2014). However, 
the measurement of the GRF can be hard to capture during natural 
walking (Caldas et al., 2020) and even more problematic for deviated 
gaits as in cases of CP (White et al., 1999). Therefore, some attempts on 
predicting joint moments have been made in recent years, which can 
eliminate clinical measurement challenges in patients with deviated gait 
by using either machine learning (ML) techniques (De Brabandere et al., 
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2020; Giarmatzis et al., 2020) or musculoskeletal based predictive 
models (Oh et al., 2020; Richards et al., 2018; Shao et al., 2009; 
Kloeckner et al., 2023). 

ML is a powerful tool for solving tasks with missing measurements or 
lacking physical models. ML algorithms have already been applied to 
patients with CP, which have non-uniform gait characteristics (Arslan 

and Karabulut, 2021), for different tasks such as the detection of CP 
disease using video recording (Ihlen et al., 2019) or gait kinematics 
(Zhang and Ye, 2019) and the classification of the gait phase of CP pa
tients using electromyography (EMG) (Morbidoni et al., 2021) or using 
marker data (Kim et al., 2022). Among the ML techniques, the one- 
dimensional (1D) convolutional neural network (CNN) is particularly 

Fig. 1. Inclusion-exclusion flow of the typically developed subjects. GRF: Ground reaction force.  

Fig. 2. Inclusion-exclusion flow of the subjects with cerebral palsy. GRF: Ground reaction force.  
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suitable for processing time series information. 
A few attempts were made to predict joint moments in typically 

developed (TD) subjects using ML during gait. For example, a feed- 
forward neural network and a long short-term memory neural 
network were able to predict joint moments of TD subjects using kine
matic data from three-dimensional motion capturing successfully 
(Mundt et al., 2020a). A wavelet neural network, taking frequency in
formation into account, was successful in predicting joint moments of 
TD subjects using both kinematic and EMG data (Ardestani et al., 2014). 
However, no study has yet been conducted on predicting joint moments 
in patients with CP. 

Accordingly, we aimed to predict the dorsi-plantar flexion, knee 
flexion–extension, hip flexion–extension, and hip adduction-abduction 
moments of patients with CP during gait from joint angles based on 
marker data in this study. To accomplish this, the 1D CNNs were trained 
using the kinematic data to predict joint kinetics. 

2. Methods 

2.1. Subjects 

The study was approved by the local ethical committee of the Uni
versity Hospital (S-227/2021). The anonymized retrospective gait data 
of 329 TD subjects (age: 26 years ± 14, mass: 70 kg ± 15, height: 167 cm 
± 89) with typical gait characteristics and 917 CP patients (age: 17 years 
± 9, mass: 47 kg ± 19, height: 153 cm ± 36), which had been collected 
in the course of patient care, were used. Kinematic data were gathered 
according to the Plugin Gait Model (Oxford Metrics, Oxford, UK) with 19 
markers, using a 12-camera motion capture system (Vicon Motion Sys
tems Ltd. Oxfordshire UK) while the subjects walked at a self-selected 
speed. GRF data were simultaneously collected using force plates 

(Kistler Instruments, Winterthur, Switzerland) and joint moments, 
normalized by the body mass, were calculated using an inverse kine
matics model (Harrison et al., 2012). 

No age or gender criteria were set for including TD and CP subjects. 
TD subjects who walked barefoot and without missing measurements 
were included in the study as shown in the flowchart (Fig. 1). 

The first visits of the spastic diplegia subjects who can walk without 
assistive devices and missing measurements were included as shown in 
the patient flowchart (Fig. 2). Gross Motor Function Classification Sys
tem (GMFCS) levels of the patients were I and II. 

2.2. Dataset 

Kinematic data from the trunk, pelvis, hip, knee, and ankle in 
sagittal, coronal, and transverse planes (15 angles in total) and kinetic 
data of the flexion–extension moments of the ankle, knee, hip, and 
adduction-abduction moment of the hip were taken into account. All 
data were averaged across 7–10 strides for each subject and normalized 
to a percentage gait cycle. In each time series, there are 101-time points 
representing the gait cycle from 0% to 100%. In addition to the averaged 
time series, standard deviations of the time series throughout the strides 
were contained in the dataset as well. 

The time series were segmented into stance and swing phases 
regarding their temporal foot-off values. Since GRF data were not 
available during the swing phase, only the stance phases of the time 
series were used to include only directly calculated moment data. Each 
subject has naturally a different duration of stance time, whereas the ML 
algorithms require the same size of data for being trained with subjects. 
To satisfy this, stance segments of the time series were interpolated to a 
standard length of 60-time points. All of the time series values were 
normalized in the range between 0 and 1, regardless of their unit to 

Fig. 3. Data processing and machine learning pipeline. JM: Joint moment, AF: ankle dorsi-plantar flexion, KF: knee flexion–extension, HF: hip flexion–extension, HA: 
hip adduction-abduction, CNN: convolutional neural network, SGD: stochastic gradient descent, nRMSE: normalized root mean square error, PCC: Pearson corre
lation coefficient. 
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avoid dominance of the time series with higher magnitudes in the 
learning process. 

After normalization, all of the aforementioned 15 kinematic time 
series were stacked in a matrix with a size of 30 rows (for 15-time series 
and their standard deviations) and 60 columns. In total, 132 (for TD) and 
622 (for patients with CP) matrices were created for training and testing 
in the ML process. 

2.3. Machine learning 

To process the time series rows and extract the features from them 
distinctly per time series, 1D convolution was applied in the CNN model. 
One-dimensional convolution layers extract features from the time se
ries’ data (in our case joint angles) separately with different temporal 
ranges, which sustain valuable information for predicting another time 
series’ data (in our case joint moments) (Hua et al., 2020; Malek et al., 
2018). The size of the 1D-CNN model was manually defined by 
increasing its complexity until no significant decrease in loss was 
observed on a separate development set consisting of 42 patients with 
CP. The designated 1D-CNN model consisted of five convolutional layers 
with the following number of filters [128, 128, 512, 1024, 2048] having 
the following 1D sizes of kernels respectively [30, 15, 10, 5, 3]. The 
ascending number of filters over layers with decreasing filter sizes works 
for extracting features increasingly for decreasing time intervals. After 
flattening the output of the convolutional layers, ten densely connected 
layers were used with the following number of neurons: [10000, 8000, 
6000, 4000, 3000, 2000, 1000, 500, 250, 100]. As a general approach 
for forward propagation in densely connected layers, the descending 
number of neurons works for transforming the information to the 
desired output size throughout the learning process. Based on the results 
of the preliminary trials on the development set, the number of filters 
selected for the convolutional layers was sufficient for feature extraction 
during the learning process, and the number of neurons selected for the 
densely connected layers was adequate for learning using the extracted 
features. All of the layers used a rectified linear unit activation function 
and had a dropout layer attached to their outputs with a 1% dropout 
fraction. Finally, a densely connected output layer with a linear acti
vation function was used, which has a neuron size of 60 equaling the 
number of time points in the stance phase of the interpolated joint 
moment time series. 

An optimization algorithm for the learning process, namely the sto
chastic gradient descent (SGD) algorithm, was used with a learning rate 
of 0.01. The loss criterion was set based on root mean squared error 
(RMSE) and Pearson correlation coefficient (PCC) between the experi
mental and predicted time series. The explained 1D-CNN algorithm was 
implemented with Keras on Tensorflow (Chollet et al., 2015). The data 
processing and ML pipelines are given in Fig. 3. 

As a common approach for testing, a 10-fold cross-validation algo
rithm was used (Refaeilzadeh et al., 2009). The dataset was divided into 
ten equal parts, with nine parts used for training and one part for testing. 
Range normalization was applied separately to both the training and 
testing sets to prevent information leakage between them (Fig. 3). Each 
subject was only included in one of these 10 subsets to avoid over-fitting 
the model to the subject-specific walking patterns. Learning curves were 
plotted during the training process to check whether the models were 
overfitting on the training data. The decrease of loss on the training set 
was compared to that of an isolated test set. The learning curves did 
show concurrent behaviour on the training and isolated test sets. The 
training was limited to 500 epochs for each split with batches of size 32. 

2.4. Evaluation metrics 

The predicted joint moment time series were evaluated regarding the 
normalized root mean square error (nRMSE (%)) and Pearson correla
tion coefficient (PCC) calculated between the experimental and pre
dicted joint moments. These metrics are well-accepted measures for the 

evaluation of joint moment predictions using ML algorithms (Ardestani 
et al., 2014; Mundt et al., 2020a; Mundt et al., 2020b; Ripic et al., 2022). 
The nRMSE metric gives the normalized and time point-wise magnitude 
difference of the predicted joint moment time series from the experi
mental joint moment time series. nRMSE was calculated by dividing the 
RMSE value by the mean range of the experimental joint moment 
(μRoM) across all subjects of the same group as stated in Eq. (1). In the 
equation, JMP and JME denote predicted and experimental joint mo
ments, respectively. Subindices P and E denote predicted and experi
mental quantity, respectively. 

nRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Σn(JMP − JME)2

n

√

/μRoM (1) 

The PCC metric calculates the pattern similarity between the 
experimental and predicted joint moments (Savelberg and Herzog, 
1997), in which cross-covariance (cov(E, P)) of them and variance of 
each of them (σE,σP) respectively were used (Eq. (2)). 

PCC =
cov(E,P)

σEσP
(2) 

In order to avoid strong skewness in the distribution of the PCC 
values, we applied Fisher’s Z transformation to the PCC values. The 
mean was computed using the resulting Z values and we then trans
formed the mean back to the PCC scale, following the approach 
described in Silver and Dunlap (1987). 

The statistical analysis was conducted using SPSS software (Version 
21.0; SPSS; Chicago, IL, USA). Both inter-group (between patients with 
CP and TD subjects) and intra-group (within each group of subjects) 
comparisons were performed. For the inter-group comparison, we hy
pothesized that the prediction results for the joint moments would differ 
significantly between the two groups. In the intra-group comparison, we 
hypothesized that the prediction results for the joint moments would 
differ significantly within each group of subjects. The level of signifi
cance was set at 0.05. The Kolmogorov-Smirnov test was used to test the 
normality of the data, which was found not to be normally distributed. 
The predicted joint moments of the TD subjects and patients with CP 
were statistically analyzed using the Mann–Whitney U test. For the intra- 
comparisons, Friedman’s ANOVA test was used. A Bonferroni correction 
was applied to adjust the p-value for multiple comparisons (p < 0.016). 
Please refer to Appendix A for details on the intra- and inter-comparison 
groups and the types of analysis. 

Fig. 4. Normalized root mean square error (nRMSE) scores for joint moment 
predictions of TD subjects (red) and patients with CP (blue). Hip abd/add: hip 
adduction-abduction, Hip flex/ext: hip flexion–extension, Knee flex/ext: knee 
flexion–extension, Dorsi/plant flex: dorsi-plantar flexion. 
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3. Results 

For TD subjects, all joint moments were predicted with mean nRMSE 
values less than 12.55%±5.08 (Fig. 4). The knee flexion–extension 
moment is the least successfully predicted joint moment in terms of 
nRMSE score (12.55%±5.08). The dorsi-plantar flexion is the most 
successfully predicted joint moment (8.58%±3.87). The hip adduction- 
abduction and hip flexion–extension moments were predicted with an 
nRMSE value of 11.89%±4.72 and 10%±3.66 for TD subjects, 
respectively. 

For patients with CP, all joint moments were predicted with mean 
nRMSE values less than 18.02%±9.14 (Fig. 4). The knee flex
ion–extension moment is the least successfully predicted joint moment 
in terms of nRMSE (18.02%±9.14), while the hip flexion–extension is 
the most successfully predicted joint moment (13.58%±5.36). The hip 
adduction-abduction and dorsi-plantar flexion moments were predicted 
with an nRMSE value of 17.2%±6.53 and 14.78%±7.17 for the CP 
group, respectively. 

For TD subjects, all joint moments were predicted with mean PCC 
scores higher than 0.96 (Fig. 5). The dorsi-plantar flexion is the most 
successfully predicted joint moment in terms of PCC score (0.99), while 
the others have the same PCC (0.96). 

For the patient group, all joint moments were predicted with mean 

PCC scores higher than 0.89 (Fig. 5). The hip adduction-abduction 
moment is the least successfully predicted moment in terms of PCC 
score (0.89), while the dorsi-plantar flexion is the most successfully 
predicted one (0.96). 

Tables 1 and 2 present the statistical significance of the nRMSE and 
PCC scores obtained for the joints of TD and patient groups, respectively. 
Within the TD group, the dorsi-plantar flexion and hip flexion–extension 
moments exhibited significantly better predictions than the hip abduc
tion–adduction and knee flexion–extension moments in terms of nRMSE 
(Table 1). When considering the PCC scores, the prediction results for 
the dorsi-plantar flexion moment was significantly higher than that for 
the knee flexion–extension joint moment (Table 1). 

Within the patient group, the dorsi-plantar flexion moment was 
significantly better predicted than the hip abduction–adduction and 
knee flexion–extension moments in terms of nRMSE (Table 2). 
Furthermore, when taking the PCC scores into account, the prediction 
results for the dorsi-plantar flexion and hip flexion–extension moments 
were significantly higher than those for the knee flexion–extension and 
hip abduction–adduction moments (Table 2). 

Table 3 demonstrates the statistical significance of the scores be
tween the TD individuals and patient groups. In terms of nRMSE, all four 
joint moments were predicted significantly higher in the TD group than 
in the CP group. 

Figs. 6 and 7 show some representative predicted and experimental 
joint moments of TD subjects and patients with CP, respectively. These 
figures are provided for a better understanding of the trained models’ 
capability of predicting joint moments with varying patterns. To ensure 
the representativeness of the models’ capability in predicting joint 
moments, the figures in the left column show relatively successful pre
dictions (with lower nRMSE and higher PCC values than the average), 
while the figures in the right column show relatively less successful 
predictions (with higher nRMSE and lower PCC values than the 
average). 

Fig. 5. Pearson correlation coefficient (PCC) scores for joint moment pre
dictions of TD subjects (red) and patients with CP (blue). Hip abd/add: hip 
adduction-abduction, Hip flex/ext: hip flexion–extension, Knee flex/ext: knee 
flexion–extension, Dorsi/plant flex: dorsi plantar-flexion. 

Table 1 
P-values obtained for the nRMSE and PCC values of joint moment predictions for 
healthy subjects. Significant differences were marked bold. Hip add/abd: hip 
adduction-abduction, hip flex/ext: hip flexion–extension, knee flex/ext: knee 
flexion–extension, dorsi/plan flex: dorsi-plantar flexion.    

nRMSE PCC 

Hip add/abd vs. Hip flex/ext  0.014  0.021 
Knee flex/ext  0.019  0.020 
Dorsi/planflex  0.015  0.018 

Hip flex/ext vs. Hip add/abd  0.014  0.021 
Knee flex/ext  0.012  0.019 
Dorsi/planflex  0.020  0.016 

Knee flex/ext vs. Hip add/abd  0.019  0.020 
Hip flex/ext  0.012  0.019 
Dorsi/planflex  0.014  0.014 

Dorsi/plan flex vs. Hip add/abd  0.015  0.018 
Hip flex/ext  0.020  0.016 
Knee flex/ext  0.014  0.014  

Table 2 
P-values obtained for the nRMSE and PCC values of joint moment predictions for 
the patients with CP. Significant differences were marked bold. Hip add/abd: hip 
adduction-abduction, hip flex/ext: hip flexion–extension, knee flex/ext: knee 
flexion–extension, dorsi/plan flex: dorsi-plantar flexion.    

nRMSE PCC 

Hip add/abd vs. Hip flex/ext  0.016  0.015 
Knee flex/ext  0.018  0.032 
Dorsi/planflex  0.014  0.011 

Hip flex/ext vs. Hip add/abd  0.016  0.015 
Knee flex/ext  0.014  0.013 
Dorsi/planflex  0.018  0.028 

Knee flex/ext vs. Hip add/abd  0.018  0.032 
Hip flex/ext  0.014  0.013 
Dorsi/planflex  0.012  0.011 

Dorsi/plan flex vs. Hip add/abd  0.014  0.011 
Hip flex/ext  0.018  0.028 
Knee flex/ext  0.012  0.011  

Table 3 
P-values obtained for the comparison of the nRMSE and PCC values of joint 
moment predictions for the healthy subjects and patients with CP. Significant 
differences were marked in bold. Hip add/abd: hip adduction-abduction, hip 
flex/ext: hip flexion–extension, knee flex/ext: knee flexion–extension, dorsi/ 
plan flex: dorsi-plantar flexion.    

nRMSE PCC 

Healthy vs. Patients with CP Hip add/abd  0.041  0.033 
Hip flex/ext  0.047  0.051 
Knee flex/ext  0.038  0.037 
Dorsi/plan flex  0.034  0.055  
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4. Discussion 

Since joint moments are valuable assessment parameters in the 
management of CP (Lai et al., 1988) and hard to capture experimentally, 
we predicted the dorsi-plantar flexion, knee flexion–extension, hip 
flexion–extension, and the hip adduction-abduction moments of patients 
with CP during gait from joint angles using 1D CNN in our study. We 
found that the joint moments of patients could be predicted with nRMSE 
values less than 18.02% and PCC scores higher than 0.85. In the TD 
group, all joint moments were predicted with nRMSE values less than 
12.55% and PCC scores higher than 0.94. The predictions mostly 
captured the patterns and magnitudes of the experimentally obtained 
joint moments. 

Mundt et al. predicted joint moments from joint angles of TD subjects 
using a densely connected feed-forward and an LSTM neural network 
achieved nRMSE scores between 12.14% and 15.00% and PCC scores 
between 0.92 and 0.97 on cross validation splits (Mundt et al., 2020a), 
whereas in our study the CNN model achieved nRMSE scores between 
8.58% and 12.55% and PCC scores between 0.94 and 0.98 for TD sub
jects (Figs. 4 and 5). There is another study predicting joint moments of 
TD subjects based on EMG and GRF components using wavelet neural 
networks, which achieved higher success in terms of nRMSE (lower than 

5.69%) and PCC (above 0.99) (Ardestani et al., 2014). Using GRF as 
input information would increase the prediction success since GRF and 
joint moments are biomechanically coupled. Thus, GRF that was leaked 
into the calculated joint moments was considered the golden standard in 
this study. However, in our research, only the joint angles were used as 
input which were separately measured and easily accessible information 
in routine gait analysis, hence there is no further need for costly 
equipment like force plates. 

The prediction of joint moments for TD subjects was achieved with a 
significantly higher success regarding nRMSE within all considered joint 
moments and with a significantly higher PCC within hip adduction- 
abduction and knee flexion–extension moments (Table 3) when 
compared to those for subjects with CP. The varying deviation of gait in 
CP cases makes the learning process of the CNN models harder, which 
caused less moment prediction performance in the patient group 
compared to TD subjects. This was expected due to the coupled relation 
between joint angles and joint moments becoming more complex in 
patients with CP. The models for TD subjects have achieved higher 
prediction results despite having a relatively smaller number of subjects 
than the CP group, which is a commonly recognized disadvantage when 
training ML models. The sub-classification of CP groups based on altered 
gait patterns, such as crouch gait and tip-toe, and training separate ML 

Fig. 6. Secondary, representative results for aiding in
terpretations of Fig. 4 and Fig. 5. Joint moments of a) dorsi- 
plantar flexion, b) knee flexion–extension, c) hip flex
ion–extension, d) hip adduction-abduction for representative 
typically developed subjects. The predictions in the left col
umn correspond to results indicating above-average success, 
while those in the right column correspond to below-average 
success. The blue line represents the experimental joint 
moment, while the red dashed line represents the predicted 
joint moment.   
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models for each subgroup could improve the prediction accuracy. We 
consider this attempt as the next step in joint moment prediction studies 
for CP patients. 

One could argue that the prediction of moments in the joints that are 
closer to the ground (distal joints) would be more successful than those 
that are further from the ground (proximal joints) because the calcula
tion of joint moments that is based on inverse dynamics is performed in a 
stepwise fashion from bottom to the top resulting in accumulating errors 
in calculations (Whittle, 2014). This was not totally observable in our 
results however, the joint moment with the highest prediction success 
for TD subjects was the ankle dorsi-plantar flexion, which fits that 
expectation. 

The representative joint moments presented in Fig. 6 and Fig. 7 
indicate that the models were able to predict joint moments with 
different profiles. The models were blindly tested with randomly 
selected test splits across all included subjects, hence the performance of 
the models is promising for predicting joint moments of varying gaits. 
Although the results are promising, the fact that the gait analysis is used 
for surgical decision-making in CP makes the use of ML-based joint 
moment predictions limited, since the obtained error values might still 

be critical for surgical decision-making. The accuracy of obtaining ki
nematics data from markers directly affects the correctness of joint 
moment prediction. Moreover, inaccurate recording of kinematics data, 
caused by marker misplacement or soft tissue artifacts, can result in 
biomechanically inaccurate joint moments (Fonseca et al, 2020). How
ever, the successful application of this workflow would facilitate the gait 
analysis of patients with CP by reducing laboratory effort and elimi
nating the need for complex musculoskeletal models for calculating joint 
moments. Furthermore, this workflow can help clinicians with the 
treatment protocol by providing joint moments of the patients with CP, 
whose GRFs could not be correctly measured at all due to using assistive 
devices or very short stride length. 

Limitations of this study should be considered. Firstly, the models 
were limited to the aforementioned four joint moments, which are major 
kinetic parameters for the management of CP, however additional joint 
moments like hip internal/external rotation and ankle inversion/ever
sion may also be taken into account in monitoring CP. Secondly, the 
kinematics data included only the trunk from the upper body, however 
further kinematics data from upper extremities like arms may provide 
valuable information, thereby improving the ML models’ prediction 

Fig. 7. Secondary, representative results for aiding in
terpretations of Fig. 4 and Fig. 5. Joint moment predictions of 
a) dorsi-plantar flexion, b) knee flexion–extension, c) hip 
flexion–extension, d) hip adduction-abduction for represen
tative patients with cerebral palsy. The predictions in the left 
column correspond to results indicating above-average suc
cess, while those in the right column correspond to below- 
average success. The blue line represents the experimental 
joint moment, while the red dashed line represents the pre
dicted joint moment.   
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performance. Thirdly, it is ambiguous if the model would be able to 
predict a marginal joint moment from a CP patient with a novel form of 
deviation, which did not show up in our subject dataset. Although the 
used dataset is large and has been collected over two decades, the ML 
algorithm should always be further developed with potential new cases’ 
data. For example, we did not include hemiplegic and tetraplegic sub
jects in the study. The implementation of ML algorithms on such patients 
would improve the applicability of the proposed joint kinetics prediction 
procedure. Lastly, the developed models are based on the CNN algo
rithms, however other ML algorithms like long-short term memory 
neural networks can also be used for the same task and compared in 
terms of their prediction performance. 

In conclusion, the results of the study showed that machine learning- 
based prediction of joint moments based on kinematics could be an 
alternative technique to conventional joint moment calculation in gait 
analysis of patients with CP in the near future, however, the level of 
prediction errors limits the use of machine learning-based technique for 
clinical decision making today. 
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