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Abstract
Purpose While gait analysis is essential for assessing neuromotor disorders like cerebral palsy (CP), capturing accurate 
ground reaction force (GRF) measurements during natural walking presents challenges, particularly due to variations in gait 
patterns. Previous studies have explored GRF prediction using machine learning, but specific focus on patients with CP is 
lacking. This research aims to address this gap by predicting GRF using joint angles derived from marker data during gait 
in patients with CP, thereby suggesting a protocol for gait analysis without the need for force plates.
Methods The study employed an extensive dataset comprising both typically developed (TD) subjects (n = 132) and patients 
with CP (n = 622), captured using motion capture systems and force plates. Kinematic data included lower limb angles in 
three planes of motion, while GRF data encompassed three axes. A one-dimensional convolutional neural network model was 
designed to extract features from kinematic time series, followed by densely connected layers for GRF prediction. Evaluation 
metrics included normalized root mean squared error (nRMSE) and Pearson correlation coefficient (PCC).
Results GRFs of patients with CP were predicted with nRMSE values consistently below 20.13% and PCC scores surpass-
ing 0.84. In the TD group, all GRFs were predicted with higher accuracy, showing nRMSE values lower than 12.65% and 
PCC scores exceeding 0.94.
Conclusion The predictions considerably captured the patterns observed in the experimentally obtained GRFs. Despite 
limitations, including the absence of upper extremity kinematics data and the need for continuous model evolution, the study 
demonstrates the potential of machine learning in predicting GRFs in patients with CP, albeit with current prediction errors 
constraining immediate clinical applicability.
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Introduction

Cerebral palsy (CP) is characterized by a range of neurologi-
cal and motor impairments, encompassing a diverse array of 
disorders that profoundly affect an individual's neuromotor 
functions. Among patients with CP, a notable impairment is 
evident in their natural walking pattern [1, 2].

Gait analysis, a recognized and valuable tool in clinical 
decision-making, plays a vital role in evaluating and man-
aging various neurological and musculoskeletal conditions, 
especially for patients with CP [3, 4]. In the clinical settings, 
the assessment of ground reaction force (GRF), which is a 
direct kinetic parameter measured using force plates that 
subjects step on during their natural walking, stands as a 
cornerstone of gait analysis.

The measurement of GRF encounters inherent chal-
lenges when capturing it during natural walking [5]. These 

BIOMEDICAL
ENGINEERING 
SOCIETY

Associate Editor Elisabetta Zanetti  oversaw the review of this 
article.

 * Yunus Ziya Arslan 
 yunus.arslan@tau.edu.tr

1 Department of Electrical Electronics Engineering, Faculty 
of Engineering, Turkish-German University, Istanbul, 
Turkey

2 Clinic for Orthopaedics and Trauma Surgery, Heidelberg 
University Hospital, Heidelberg, Germany

3 Department of Robotics and Intelligent Systems, 
Institute of Graduate Studies in Science and Engineering, 
Turkish-German University, Istanbul, Turkey

http://orcid.org/0000-0002-1861-9368
http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-024-03658-y&domain=pdf


 M. E. Ozates et al.

challenges are further compounded when dealing with 
abnormal gaits, especially within the context of CP [6]. The 
complexity lies in accurately quantifying GRF in real-time 
while individuals exhibit variations in their gait patterns, 
such as uneven foot placements and asymmetrical weight 
distribution. These deviations present significant hurdles to 
achieving precise and dependable GRF measurements. Pro-
viding GRF information that requires only kinematic data 
can aid in the clinical evaluation of patients with CP, particu-
larly for those whose natural gait patterns make it difficult 
to capture GRF data with force plates or for whom no force 
plate-equipped laboratory is available.

Machine learning (ML) emerges as a potent tool for 
addressing tasks with incomplete measurements or the 
absence of physical models. Exploring the prediction of 
GRF during gait using ML techniques has been a vibrant 
area of research [7]. A notable inception in this domain 
dates back to 2013, where conventional ML algorithms 
were employed to predict GRF based on kinematic data [8]. 
Subsequent studies have extended this work, delving into 
statistical methodologies [9], as well as deep learning algo-
rithms utilizing motion capture data [10] and incorporating 
spatio-temporal information [11].

ML algorithms have also found success in the realm of 
patients with CP [12], who exhibit non-uniform gait char-
acteristics. Researchers have harnessed ML techniques for 
various purposes, including CP disease detection using 
video recordings [13] or gait kinematics [14]. Additionally, 
ML has been employed for classifying gait phases in patients 
with CP using electromyography [15] or marker data [16]. 
These applications underscore the potential of ML in aiding 
the diagnosis, evaluation, and categorization of gait anoma-
lies in patients with CP, furnishing valuable insights for clin-
ical decision-making and personalized treatment strategies.

Predicting GRF would simplify the application of gait 
analysis, eliminating the need for force plates and standard 
stepping protocols for subjects. However, to the best of our 
knowledge, no study has specifically focused on predicting 
GRF in patients with CP using ML algorithms. Accordingly, 
we aimed to predict GRF using joint angles derived from 
marker data during gait in patients with CP.

Materials and Methods

Subjects

The studies conducted within this research were granted 
ethical approval by the Local Ethical Committee of the Uni-
versity Hospital of Heidelberg (S-227/2021), ensuring strict 
adherence to essential ethical guidelines and considerations. 
For the research, an extensive dataset of gait information 
was employed, comprising anonymized retrospective data 

(Fig. 1). This dataset encompassed 329 typically developed 
(TD) subjects, exhibiting characteristic gait patterns, as well 
as 917 patients diagnosed with CP. The TD group had an 
average age of 26 years (with a standard deviation of ± 14), 
a mass of 70 kg (±15), and a height of 162 cm (±21). The 
patients with CP had an average age of 17 years (±9), a mass 
of 47 kg (±19), and a height of 152 cm (±20). This dataset 
was sourced from routine patient care, ensuring a pragmatic 
and clinically relevant context.

To capture kinematic data, the Plug-in Gait Model 
(Oxford Metrics, Oxford, UK) was employed, involving 
the placement of 19 markers on the subjects. Data capture 
took place using a 12-camera motion capture system (Vicon 
Motion Systems Ltd., Oxfordshire, UK) while subjects 
walked at their self-selected speed. Simultaneously, GRF 
data was gathered using two force plates (Kistler Instru-
ments, Winterthur, Switzerland) and normalized by body 
mass.

The inclusion criteria for both TD and CP subjects did not 
impose specific age or gender constraints. In the case of TD 
subjects, those who walked barefoot and possessed complete 
measurements were incorporated into the study (Fig. 2).

Regarding the CP participants, their initial appointments 
at the clinic were taken into account, and only individuals 
walking barefoot, capable of walking unaided and possessing 
complete measurements were encompassed. This selection 
process is exemplified in Fig. 3 of the patient flowchart. The 
included patients with CP were confined to levels I and II of 
the Gross Motor Function Classification System (GMFCS).

Following the application of the inclusion and exclusion 
criteria, a total of 132 typically developing individuals and 
622 patients with CP with spastic diplegia were chosen for 
further analysis.

Dataset

The kinematic gait data comprised measurements taken from 
various body segments, encompassing the trunk, pelvis, hip, 
knee, and ankle, in three planes of motion—namely, sagittal, 
coronal, and transverse. This compilation resulted in a total 
of 15 angles under consideration. The kinetic data included 
GRF along three axes: vertical, mediolateral, and anteropos-
terior (gait direction) axes.

Temporal foot-off values guided the segmentation of the 
time series into stance and swing phases. As GRF data were 
only accessible during the stance phase, this phase was only 
utilized in the study. Given that the duration of the stance 
time varies across subjects, achieving a consistent dataset 
size for ML algorithms training necessitated interpolation of 
the stance segments of time series to a standardized length 
of 60 data points. All values within the time series were nor-
malized to a range of 0 to 1, regardless of their original units. 
This normalization ensured that time series with high or low 
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magnitudes were represented on a common scale, balancing 
their contribution to the model. Since input features with 
different scales can hinder model training by causing slower 

convergence or instability, rescaling the time series to the 
same range facilitated successful training without altering 
the underlying patterns in the data.

Fig. 1  A subject performing the walking test in the Heidelberg University Hospital, Gait Analysis Laboratory

Fig. 2  Inclusion/exclusion 
flow of the typically developed 
subjects. GRF ground reaction 
force



 M. E. Ozates et al.

Following normalization, the 15 kinematic time series, 
along with their standard deviations, were combined into 
a matrix measuring 30 rows and 60 columns. This matrix 
structure was repeated for each subject, leading to the crea-
tion of a total of 132 matrices for TD individuals and 622 
matrices for patients with CP, which formed the basis for 
ML training and testing phases.

Machine Learning

To process the rows of the time series and extract distinct 
features from each, a one-dimensional (1D) convolution 
was implemented within the convolutional neural network 
(CNN). One-dimensional convolution layers extracted signal 
features from the time series data (joint angles) individually, 
encompassing diverse temporal ranges, thereby preserving 
essential information crucial for predicting another time 
series data (GRF).

The designated 1D-CNN model comprised five convolu-
tional layers with filter quantities of [128, 128, 512, 1024, 
2048] and corresponding 1D kernel sizes of [30, 15, 10, 
5, 3]. Following the flattening of the convolutional layers' 
output, ten densely connected layers were employed, hous-
ing neuron quantities of [10000, 8000, 6000, 4000, 3000, 

2000, 1000, 500, 250, 100]. All layers utilized the rectified 
linear unit (ReLU) activation function and featured a dropout 
layer with a dropout fraction of 1% attached to their outputs. 
Lastly, a densely connected output layer with a linear activa-
tion function was utilized, equipped with a neuron count of 
60-matching the number of time points in the stance phase 
of the interpolated GRF time series.

The optimization algorithm employed for the learning 
process was the stochastic gradient descent algorithm, set 
with a learning rate of 0.01. The loss criterion was estab-
lished based on the error metrics used in our study, namely 
normalized root mean squared error (nRMSE) and Pear-
son correlation coefficient (PCC). The described 1D-CNN 
algorithm was implemented using Keras on the TensorFlow 
platform [17].

In line with a common testing approach, a 10-fold cross-
validation algorithm was adopted [18]. The dataset was 
divided into 10 equal segments, with 9 utilized for training 
and 1 for testing. Range normalization was independently 
applied to both training and testing sets to avert data leakage. 
Each subject was exclusively included in 1 of these 10 sub-
sets to prevent the model from overfitting to specific walking 
patterns of subjects. Learning curves were plotted during 
training to monitor potential overfitting on the training data, 

Fig. 3  Inclusion–exclusion flow 
of the subjects with cerebral 
palsy. GRF ground reaction 
force
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gauging the loss decrease on the training set in comparison 
to an isolated test set. These learning curves exhibited con-
sistent behavior on both the training and isolated test sets. 
The training process lasted for 500 epochs for each split, 
with batch sizes set at 32.

Evaluation Metrics

The assessment of the predicted GRF time series involved 
the examination of normalized root mean square error 
[nRMSE (%)] and Pearson correlation coefficient (PCC) 
between the experimental and predicted time series. These 
metrics are widely recognized as reliable measures for evalu-
ating GRF predictions utilizing ML algorithms [10, 19–21]. 
The nRMSE metric quantifies the normalized and point-to-
point magnitude difference between the experimental and 
predicted GRF time series. Its computation entails divid-
ing the RMSE value by the average peak to peak value of 
the experimental GRF (μPP) across all subjects within the 
same group, as described in Eq. (1). In the equation, GRFP 
and GRFE denote predicted and experimental GRFs, respec-
tively. Sub-indices P and E denote predicted and experimen-
tal quantity, respectively.

The PCC metric calculates the pattern similarity between 
the experimental and predicted GRFs [22], in which cross-
covariance ( cov(E, P) ) and variance ( �E,�P ) of each of them 
were used [Eq. (2)].

To mitigate the strong skewness in the PCC value dis-
tribution, we implemented Fisher's Z transformation on the 
PCC values. Subsequently, the mean was calculated using 
the transformed Z values, and we reverted this mean back to 
the original PCC scale. This procedure adhered to the meth-
odology outlined in the reference of Silver and Dunlap [23].

Statistical analysis was carried out using SPSS software 
(Version 21.0; SPSS; Chicago, IL, USA). We conducted 
both inter-group comparisons (between patients with CP and 
TD subjects) and intra-group comparisons (within each sub-
ject group). In the inter-group comparisons, our hypothesis 
was defined regarding the distinctiveness of prediction suc-
cess rates for GRF between the two groups—patients with 
CP and TD subjects. Within the intra-group comparisons, 
our hypothesis was defined regarding the differentiation of 
prediction success rates for GRF in all three dimensions 
within each subject group. A significance level of 0.05 was 
established.

(1)nRMSE =

√

Σ
n
(GRFP − GRFE)2

n

∕μPP.

(2)PCC =
cov(E, P)

�E�P

.

To assess data normality, the Kolmogorov–Smirnov 
test was applied, indicating non-normal distribution. The 
predicted GRF values of TD subjects and patients with CP 
underwent statistical analysis using the Mann–Whitney 
U-test. For intra-group comparisons, Friedman’s ANOVA 
test was employed. The Mann–Whitney U-test was utilized 
to identify noteworthy differences between the methods. To 
account for multiple comparisons, a Bonferroni correction 
was applied to adjust the p-value, setting the threshold at 
p < 0.016.

Results

For TD subjects, all GRFs were predicted with mean 
nRMSE values less than 12.65% ± 4.83 (Fig. 4). The medi-
olateral GRF is the least successfully predicted one in 
terms of nRMSE score (12.65% ± 4.83). The GRF along 
the anteroposterior axis is the most successfully predicted 
(5.70% ± 2.06). The vertical GRF is predicted with an 
nRMSE value of 7.47% ± 3.53 for TD subjects.

For patients with CP, all GRFs were predicted with 
mean nRMSE values less than 20.13% ± 9.63 (Fig. 4). The 
mediolateral GRF is the least successfully predicted one 
(20.13% ± 9.63). The GRF along the anteroposterior axis is 
the most successfully predicted (11.63% ± 5.14). The verti-
cal GRF is predicted with an nRMSE value of 11.75% ± 6.88 
for patients with CP.

For TD subjects, all GRFs were predicted with mean PCC 
scores higher than 0.94 (Fig. 5). The mediolateral, verti-
cal, and anteroposterior GRFs have the mean PCC scores of 
0.94, 0.98 and 0.99, respectively.

For the patient group, all GRFs were predicted with mean 
PCC scores higher than 0.84 (Fig. 5). The mediolateral, ver-
tical, and anteroposterior GRFs have the mean PCC scores 
of 0.84, 0.94 and 0.96, respectively.

Tables 1 and 2 present the statistical significance of the 
nRMSE and PCC scores obtained for the GRFs of TD and 
CP groups, respectively. Within the TD group, the anter-
oposterior GRF exhibited significantly better predictions 
than the mediolateral and vertical GRFs in terms of nRMSE 
(Table 1). When examining the PCC scores, the observed 
significant differences in prediction rates are consistent 
with those observed for nRMSE, except for the relationship 
between predictions of anteroposterior and vertical GRFs.

Within the patient group, the significance of the perfor-
mance differences between the GRFs in three dimensions 
were similar to those for the TD group, whereas for vertical 
vs. anteroposterior performance comparison, the signifi-
cance did not exist not only regarding PCC but also regard-
ing nRMSE (Table 2).

Table 3 demonstrates the statistical significance of the 
scores between the TD individuals and patient groups. In 
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terms of both nRMSE and PCC, all GRFs were predicted 
significantly higher in the TD group than in the patient 
group.

Figures 6 and 7 show some representative predicted 
and experimental GRFs of TD subjects and patients with 
CP, respectively. These figures are provided for a better 
understanding of the trained models’ capability of predict-
ing GRFs with varying patterns. To ensure the representa-
tiveness of the models' capability in predicting GRFs, the 
figures in the left column show relatively successful pre-
dictions (with lower nRMSE and higher PCC values than 
the average), while the figures in the right column show 
relatively less successful predictions (with higher nRMSE 
and lower PCC values than the average).

Fig. 4  Normalized root mean 
square error (nRMSE) scores 
for ground reaction force (GRF) 
predictions of typically devel-
oped subjects (red) and patients 
with CP (blue). ML mediolat-
eral, AP anteroposterior

Fig. 5  Pearson correlation coefficient (PCC) scores for ground reac-
tion force (GRF) predictions of typically developed subjects (red) and 
patients with CP (blue). GRF gait reaction force, ML mediolateral, 
AP anteroposterior

Table 1  p-Values obtained for the nRMSE and PCC values of ground 
reaction force predictions for typically developed subjects

Significant differences were marked bold

nRMSE PCC

Anteroposterior vs.
 Mediolateral 0.004 0.012
 Vertical 0.012 0.029

Mediolateral vs.
 Anteroposterior 0.004 0.012
 Vertical 0.009 0.012

Vertical vs.
 Anteroposterior 0.012 0.029
 Mediolateral 0.009 0.012
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Discussion

Given the significant role of GRF as a pivotal assessment 
parameter in the management of CP, and considering that 
it represents a kinetic parameter that is both directly meas-
urable however challenging to capture experimentally, our 
study focused on predicting the GRFs of patients with CP 
in vertical, mediolateral, and anteroposterior axes dur-
ing gait. This prediction was achieved using a 1D CNN 
model based on joint angles. To evaluate the models' per-
formance, blind testing was conducted using randomly 
selected test splits across all participants, demonstrating 
their potential for prediction of gait kinetics across a spec-
trum of gait patterns.

Our findings indicated that the GRFs of patients with 
CP were predicted with nRMSE values consistently below 
20.13% and PCC scores surpassing 0.84. In the TD group, 
all GRFs were predicted with higher accuracy, showing 
nRMSE values lower than 12.65% and PCC scores exceed-
ing 0.94. These predictions considerably captured the pat-
terns observed in the experimentally obtained GRFs.

In a study predicting the GRFs for TD, Mundt et al. pre-
dicted GRFs from joint angles using a densely connected 
feed-forward and an LSTM neural network achieved 

nRMSE scores between 12.14 and 15.00% and PCC scores 
between 0.93 and 0.97 on cross-validation splits, whereas 
in our study the 1D-CNN model achieved nRMSE scores 
between 5.7 and 12.65% and PCC scores between 0.94 and 
0.99 for TD subjects (Figs. 4, 5) [10].

When comparing the prediction of GRFs between TD and 
CP individuals, it became evident that TD subjects achieved 
significantly higher success in terms of both nRMSE and 
PCC (Table 3). The diverse gait abnormalities seen in CP 
cases present challenges for the learning process of CNN 
models, leading to inferior performance in predicting GRFs 
for patients with CP when compared to TD subjects. This 
outcome was to be expected due to the heightened complex-
ity of the interconnected relationship between joint angles 
and GRFs in patients with CP. Despite the TD group having 
a relatively smaller subject count in contrast to the CP group, 
the models designed for TD subjects showcased superior 
success rates in predicting GRFs. This observation is of sig-
nificance, particularly considering the recognized drawback 
of training machine learning models with a restricted sample 
size. It illustrates that the widely varying gait characteris-
tics observed in patients with CP hinder ML models from 
benefiting from a larger sample size, unlike the success seen 
in TD group predictions. The patterns provide compelling 
evidence of the models' efficacy in predicting GRFs with 
diverse characteristics (Figs. 6, 7).

One limitation of this study is the use of the Plug-in 
Gait model, which, while widely utilized in gait laborato-
ries, has certain limitations in marker placement and seg-
ment assumptions. This simplified model may restrict the 
detailed analysis of foot and ankle kinematics, particularly 
in populations where subtle joint mechanics are crucial 
for understanding movement, such as individuals with 
gait impairments. Utilizing a more detailed model could 
address these limitations by capturing additional joint seg-
ments and movements, allowing for a more comprehensive 
assessment of specific joint mechanics. Nonetheless, as the 
same gait model and associated limitations were consistently 
applied across all subjects, these model-specific limitations 
are unlikely to impact the accuracy of our machine learn-
ing model’s predictions. Moreover, the kinematics data in 
our study was limited to the trunk within the upper body. 
Nevertheless, integrating additional kinematics data from 
upper extremities, such as the arms, could furnish valuable 
insights, potentially enhancing the predictive prowess of the 
ML models. Another aspect to consider is the model's capa-
bility to predict GRF variations for patients with CP who 
demonstrate deviations that have never been observed in 
our existing subject dataset. While our dataset is substantial 

Table 2  p-Values obtained for the nRMSE and PCC values of ground 
reaction force predictions for the patients with CP

Significant differences were marked bold

nRMSE PCC

Anteroposterior vs.
 Mediolateral 0.003 0.006
 Vertical 0.018 0.032

Mediolateral vs.
 Anteroposterior 0.003 0.006
 Vertical 0.007 0.004

Vertical vs.
 Anteroposterior 0.018 0.032
 Mediolateral 0.007 0.004

Table 3  p-Values obtained for the comparison of the nRMSE and 
PCC values of ground reaction force predictions for the healthy sub-
jects and patients with CP

Significant differences were marked bold

nRMSE PCC

TD individuals vs. patients with 
CP

 Anteroposterior 0.002 0.011
 Mediolateral 0.011 0.013
 Vertical 0.008 0.014
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and spans a period of over two decades, the ML algorithm 
should continuously evolve by incorporating potential data 
from new cases. Another important point to note is that our 
study did not encompass subjects with hemiplegia. Intro-
ducing ML algorithms to such patients would undoubtedly 
enhance the practicality of the proposed approach for pre-
dicting joint kinetics.

In conclusion, utilizing machine learning for predict-
ing GRF from kinematic data holds promise as a potential 

alternative to traditional methods in gait analysis for patients 
with CP in the future. This approach has the potential to 
streamline the clinical evaluation of patients with CP by 
reducing the number of measurements and the equipment 
needed in gait laboratories. Nevertheless, the current pres-
ence of prediction errors constrains the immediate clinical 
applicability of this machine learning-based approach.

Fig. 6  Representative GRF 
prediction results of typically 
developed subjects. GRFs along 
A mediolateral (ML), B anter-
oposterior (AP), and C vertical 
directions. The predictions on 
the left column correspond to 
above-average success rates, 
while those on the right column 
correspond to below-average 
success rates. The blue line 
represents the experimental 
GRF, while the red points line 
represents the predicted GRF. 
nRMSE normalized root mean 
square error, PCC Pearson cor-
relation coefficient
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