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ABSTRACT 

REAL-TIME MACHINE LEARNING ANOMALY DETECTION IN 
COMPUTER NETWORKS 

 
  
In the rapidly evolving digital world, the need for advanced security measures to protect 
our data has steadily increased. The growing cyber threats have made it essential to 
develop sophisticated Intrusion Detection Systems (IDS) that can adapt to modern network 
environments. In this thesis, to address this need, a system that detects malicious traffic by 
analyzing network traffic flows using deep learning methods is proposed. Various datasets 
that could be used for system development were examined, and the CICIDS2017 dataset, 
which stands out in terms of relevance and scope, was chosen. The CICIDS2017 dataset 
contains a total of 15 classes, one representing normal network traffic and the others 
representing different types of attacks. Training the deep learning model with a consistent 
and balanced dataset directly impacts system performance. Therefore, pre-processing steps 
such as removing missing or redundant data, eliminating irrelevant features, and balancing 
the number of examples in different classes were performed. Dense Neural Networks 
(DNN) and Random Forest (RF), methods commonly used in similar studies, were selected 
for the proposed model. The models developed could detect network traffic involving 
different types of attacks with an average accuracy of 98.5%. The main goal of this study is 
to detect attacks on the network. Accordingly, a version of the dataset consisting of two 
classes—normal network traffic and attack traffic—was created. Using this dataset, 
another system was developed that could detect malicious traffic with 98.8% accuracy. The 
systems developed in this thesis aim to detect attacks in real-time within a network. 
Therefore, after optimizing performance through experiments with different parameters, 
the models were tested in a real network environment using the NVIDIA Jetson AGX Orin 
embedded system. For the sustainability of the developed system, training with current 
network traffic and attacks is also essential. In this regard, the training of the models on the 
embedded system was analyzed in terms of time and performance. 
 
Keywords: Intrusion Detection Systems (IDS), Real-time IDS, CICIDS2017 Dataset, 
Machine Learning Models, Deep Learning Models, Multiclass and Binary Classification, 
Dense Neural Networks (DNN), Random Forest Classifiers, NVIDIA Jetson AGX Orin   
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ÖZET 

BİLGİSAYAR AĞLARINDA GERÇEK ZAMANLI MAKİNE ÖĞRENİMİ ANOMALİ 
TESPİTİ 

 
Hızla gelişen dijital dünyada, verilerimizi korumak için gelişmiş güvenlik önlemlerine 
duyulan ihtiyacı giderek artırdı. Artan siber tehditler, modern ağ ortamlarına uyum 
sağlayabilen sofistike Saldırı Tespit Sistemlerinin (Intrusion Detection System, IDS) 
geliştirilmesini zorunlu hale getirmiştir. Tez kapsamında bu ihtiyacı karşılamak amacıyla ağ 
içerisindeki trafik akışlarının derin öğrenme yöntemleri ile incelenerek zararlı trafiğin tespit 
edildiği bir sistem önerilmiştir. Sistemin geliştirilmesi için kullanılabilecek çeşitli veri setleri 
incelenmiş ve güncellik ve kasam acısından öne çıkan CICIDS2017 veri setinin kullanılması 
tercih edilmiştir. CICIDS2017 veri seti içerisinde biri normal ağ trafiğine diğeri ise farklı 
tipteki saldırılara ait olmak üzere toplam 15 adet sınıf bulunmaktadır. Oluşturulacak derin 
öğrenme modelinin tutarlı ve dengeli bir veri seti ile eğitilmesi Sistem başarımı üzerinde 
doğrudan etkilidir. Bu nedenle veri seti üzerinde eksik veya tekrarlı verinin silinmesi, 
önemsiz özelliklerin çıkarılması, farklı sınıflardaki örnek sayısının dengelenmesi gibi ön 
işlemler gerçekleştirilmiştir. Oluşturulacak model için benzer çalışmalarda yaygın şekilde 
kullanılan Yoğun Sinir Ağları (Dense Neural Network, DNN) ve Rastgele Orman (Random 
Forest, RF) yöntemlerinin kullanılması tercih edilmiştir. Oluşturulan modeller ile farklı 
saldırı tiplerine ait ağ trafiği ortalama olarak %98.5 başarım ile tespit edilebilmektedir. 
Çalışma kapsamında temel hedef ağ üzerindeki saldırıların tespit edilmesidir. Buna bağlı 
olarak veri setinin normal ağ trafiği ve saldırı trafiği olmak üzere iki sınıftan oluşan bir 
versiyonu oluşturulmuştur. Bu veri seti üzerinde yapılan çalışmalar ile zararlı trafiğin %98.8 
ile tespit edilebildiği bir sistem daha ortaya konmuştur. Tez kapsamında geliştirilen 
sistemlerin bir ağ içerisindeki saldırıları gerçek zamanlı olarak tespit edilebilmesi 
hedeflenmektedir. Bu sebeple farklı parametreleri üzerinde yapılan denemeler sonrasında 
performansı optimize edilen modeller, NVIDIA Jetson AGX Orin gömülü sistemi üzerinde 
ve gerçek ağ ortamında test edilmiştir. Geliştirilen sistemin devamlılığı açısından güncel ağ 
trafiği ve saldırılar ile eğitilmesi de önemlidir. Bu kapsamda geliştirilen modellerin gömülü 
sistem üzerindeki eğitimleri de zaman ve performans açısından incelenmiştir. 
 
Anahtar Sözcükler: Saldırı Tespit Sistemleri (IDS), Gerçek zamanlı IDS, CICIDS2017 veri 
seti, Makine öğrenimi modelleri, Derin Öğrenme Modelleri,  Çok sınıflı ve ikili 
sınıflandırma, Yoğun Sinir Ağları (DNN), Rastgele Orman (Random Forest) 
sınıflandırıcıları, NVIDIA Jetson AGX Orin,  
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1. INTRODUCTION 

1.1. Background  

Advancement of technology has always affected the way humans interact with their 

environment. Different milestones within history contributed differently to these 

interactions. However, modern technology has completely transformed the practices in 

which we communicate, especially with the increase in internet access. The increase 

naturally added hundreds of millions annually into the numbers of internet users[1]. As a 

result, the Internet traffic volume increased 20.5% annually in the last 5 years[2].  Internet 

traffic is the flow of data across the entire Internet or specific network connections of its 

fundamental networks. A network is basically a web of interconnected servers or devices 

that communicate with each other to share resources. A known and widespread example of 

a network is the Internet we use. In this context, computer networks constitute the main 

element in transporting the internet traffic. This transportation creates network traffic and it 

can be described as the amount of data moving across a computer network at any given time. 

Given the nature of the network traffic, the data it carries can contain personal, financial 

and/or corporation information. The confidential information that is carried can be targeted 

for several reasons by several individuals and groups. This results in what is known as the 

computer network attacks. It is important to understand what constitutes the computer 

networks traffic in order to get a gist of how the attacks occur. The basic construction to 

create a traffic.  

The data, which constantly flows between various network nodes, is fragmented into smaller 

data bits known as network packets or data packets. This fragmentation is essential to allow 

effective usage of the network's interconnection medium by all computers within the 

network. Data in a network packet is divided into two components: the packet header and 

the payload, each with distinct purposes. The packet header is responsible for carrying 

essential information such as content, host address, and destination address. In contrast, the 

payload consists of the real data that is being transmitted. 
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Network packets are distributed across a network through communication protocols that 

enable the transmission and exchange of data within the extensive, interconnected network 

of nodes. The Internet Protocol (IP) is a communication protocol that governs the movement 

of data packets between different nodes in a network using a defined set of rules. TCP 

(Transmission Control Protocol) is a protocol that ensures reliable and orderly delivery of 

data over the internet. 

Organizations typically employ the Transmission Control Protocol (TCP) in conjunction 

with IP to guarantee the accurate transmission and receipt of data packets to their intended 

host destinations. Certain communication protocols may include packet footers alongside 

packet headers in data packets, serving to provide supplementary information regarding the 

packet.  

When data packets are grouped to create a single sequence as a data stream based on source 

and destination IP addresses, port numbers and protocol type, it forms the basis for network 

flow. The Flow is important because it helps identify unusual patterns or traffic volumes 

which can point out possible security threats or network problems.  

Any deviation from normal network behavior that may indicate security threats, faults, or 

performance issues is an anomaly in computer networks. Analyzing the flow of traffic is the 

key to detecting the anomalies within the computer networks. The flow-based anomaly 

detection can be achieved in different ways. We can divide it into three main categories as 

Rule-Based Detection, Signature-Based Detection and AI-Based Anomaly Detection. 

Rule-Based Anomaly Detection is a method that identifies abnormal network flow by using 

predefined rules and patterns. It compares the observed data with these rules and patterns to 

detect anomalies for potential threats and problems. The most typical example can be given 

as Firewalls. It decides whether traffic is allowed based on from which source to which 

destination with what port it is allowed to communicate. All the communication outside of 

the defined rules and patterns are blocked. The models that consist of this structure can be 

divided into two approaches. First one blocks everything and only allows the flow structures 

that we want. This approach is the most popular one as it is more secure. However the 

operational workload is higher for this approach because it requires updates for each new 

change. The second approach is allowing all the traffic and blocking the flows that we 
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allowed. This approach however results in the system being open to vulnerabilities all the 

time. Essentially, the primary advantage of rule-based anomaly detection is its precision in 

identifying specific, well-understood threats. However, rule-based anomaly detection also 

has limitations, particularly in its ability to identify new or evolving threats. This results in 

Rule-Based Detection to not be popular for dynamic environments.  

Signature-Based Anomaly Detection is an approach that uses identifying the threats by 

analyzing network traffic against a set of known threat signatures. Signature here means a 

predefined and known pattern that can help to identify threats based on their unique 

characteristics. System alerts or takes predefined actions to eliminate the threat when it 

detects an activity that matches with a threat signature. This is why Signature-Based systems 

are highly effective against known threat signatures. This aspect also points out the weakness 

of these systems as they are effective against known threats. They struggle when against 

new,unknown and evolving threats that do not have similar threat signatures within the 

system. Signature-Based systems should check and control all the protocols, services and 

practices in order to keep being up-to-date. Every change should be included into the set of 

signatures with every change in protocols and applications. This set also keeps maintaining 

old signatures as they can still be used. After some point this becomes inconvenient and 

unmanageable. To address shortcomings, these systems can be used with other detection 

techniques in order to work against unknown threats and zero-day exploits.  

At this point, AI-Based Anomaly Detection becomes a leading approach. AI-Based Anomaly 

Detection uses artificial intelligence techniques like machine learning and deep learning, to 

identify unusual patterns or behaviors in data that deviate from the normal, often detecting 

both known and unknown threats more effectively. Unlike traditional rule-based or 

signature-based methods, AI-based approaches can learn and adapt to the patterns in data. It 

allows them to detect anomalies that may not have been previously identified. This makes it 

especially effective against zero-day exploits and complex attacks. Utilizing AI for anomaly 

detection requires significant computational capabilities, a robust dataset for training, and 

ongoing maintenance to ensure its efficacy in light of evolving anomalies and threats.   

What is aimed to be achieved within the Thesis is to create and implement an anomaly 

detection system with usage of machine and deep learning. 
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Radford et al. proposed a unique model[3] in 2018. It analyzes the performance of five 

different sequence aggregation rules with the help of unsupervised anomaly detection 

techniques on the CICIDS2017 dataset[4]. Other studies based on signature-based detection 

usually use a frequency-based model. On the other hand, this model uses long short-term 

memory (LSTM) recurrent neural networks (RNNs) for modeling. Similarly, this research 

focuses on the identification of new or zero-day vulnerabilities in the context of unsupervised 

learning for identifying the unknown threats. It evaluates scores for each token in the 

sequence in view of the learned model and the subsequent tokens. Consequently, the study 

highlights the drawbacks of using the aggregated flow data to model the sequence and 

explains that the relative frequency may be more important than the sequence to detect 

attacks. It opens a new path for future research to apply deep learning directly on the packet 

level data.  

The model by S. Garg et al. stands out due to the proposed hybrid model of ImGWO and 

ImCNN[5]. It aims to detect anomalies in real-time cloud network big data for data stream 

management systems. The suggested hybrid model uses Grey Wolf Optimization (GWO) 

for the feature extraction and Convolutional Neural Network(CNN) for the anomaly 

classification. Model GWO is enhanced by the ImGWO and CNN is enhanced by the 

ImCNN. This dual approach is to improve the feature selection and classification 

performance. Different from the conventional methods, this model transforms the data into 

RGB format for the ImCNN to process and it can handle large amounts of data and extract 

high-level features from the tcpdump logs. The study presents a contribution to network 

anomaly detection in the cloud environment. 

The study of Siddiqui et al. (2019) is important through the application of unsupervised 

anomaly detection with explanations and expert feedback to improve the detection rate[6]. 

This approach focuses on the use of the Isolation Forest to identify anomalies in a data set 

that was gathered from over two million computers. It diverges compared to other methods 

as they produce good results only if there is a large set of labeled data. The novelty of this 

work comes from the application of Sequential Feature Explanation (SFE) to present 

explanations of the identified anomalies. It gives the security analysts an idea of which 

features are most impactful in the anomaly score. In addition, the work uses feedback from 

analysts who examine and categorize the anomalous cases. It helps to improve the model’s 
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performance with the experts’ assessment. Proposed method also offers an advantage of 

being able to learn by itself with little human intervention. This work differs from other 

studies because of the integration of anomaly detection, explanatory approaches, and the 

input from the subject-matter experts. 

Nawir et al. (2019) worked on building a supervised machine learning system for network 

anomaly detection that focuses on minimizing the communication costs and network 

bandwidth[7]. Analyzing the UNSW-NB15 dataset[8], the research aims at establishing the 

most efficient algorithm based on the accuracy and time consumption. The most important 

contribution of this research work is the determination of the Averaged One Dependence 

Estimator (AODE) as the best algorithm that produced an accuracy of 97. 26 % and a 

processing time of approximately seven seconds. Experiments, performed in the WEKA 

environment, compared a number of supervised algorithms: Naïve Bayes, Multi-Layer 

Perceptron, Radial Basis Function Network, J48 Trees, and selected AODE as the best one. 

The proposed work also includes an investigation of the distributed version of the AODE 

algorithm to tackle the centralization problem in anomaly detection systems. This distributed 

approach is somewhat less precise (95. 86% and 96. 59%), yet it is efficient. This paper also 

demonstrates the compromise between the approaches’ effectiveness. This work is 

distinctive in that it not only obtains good results on AODE but also introduces a distributed 

algorithm to overcome the problem of data centralization. This paper’s strength in achieving 

accuracy, processing time, and network performance makes it a substantial contribution to 

the network anomaly detection field. 

The study by Lin, Ye and Xu (2019) is a new approach to Network Security by using LSTM 

networks with an Attention Mechanism[9]. This system focuses on one of the most critical 

threats to computer networks namely the imbalances in the class distribution of the CSE-

CIC-IDS2018 dataset[10]. Thus, when applying the SMOTE algorithm and an improved loss 

function, the study gets a very high accuracy of 96. 2% classification accuracy. This model 

is also evaluated based on the accuracy, precision and recall to show the model’s efficiency 

as compared to other machine learning approaches. The deep learning model also uses 

TensorFlow and consists of two LSTM layers, three dense layers, and an attention 

mechanism to solve the problem of the time series of network traffic classification. This 

allows for the model to capture multivariate temporal dependencies of the data that is being 
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analyzed. The model applies these state-of-the-art methods effectively to overcome the 

problem of class imbalance and, thus, improve the identification of network anomalies. 

Paper states for future works, that it is possible to feed the neural networks with raw network 

traffic data to make the model learn the features on its own and enhance the model’s 

performance. 

Hwang et al. (2020) proposed the D-PACK[11], a system that is suitable for IoT 

environments and it incorporates CNN with an unsupervised deep learning model which is 

an Autoencoder. This model is especially effective for the early detection of anomalies since 

it only needs to inspect the first two packets of each flow; it offers almost perfect detection 

with a low false positive rate. This approach is useful especially due to the fact that IoT 

devices are among the most exposed to DDoS attacks, and the current protection 

mechanisms are insufficient. D-PACK is different by using auto-learning from raw data 

without the need to define the features beforehand. The system is proved to be efficient and 

scalable on datasets like USTC-TFC2016[12], Mirai-RGU[13], and Mirai-CCU. Mirai-CCU 

was built by the research team. The model can analyze large amounts of network traffic 

within a short time. This study becomes a new reference that can be used for early anomaly 

detection in IoT systems. 

Lindemann et al. (2021) gives a detailed description of the application of LSTM networks 

in the identification of anomalies by creating a survey[14]. The paper identifies various types 

of anomalies. It compares LSTM-based solutions across various domains. It focuses on the 

architectures’ capacity to identify perceptual anomalies because of their effectiveness in 

modeling temporal dependencies. It also discusses current developments such as graph-

based and the transfer learning to capture the dynamics of the processes and the complex 

and heterogeneous data. A large part of the survey is devoted to the identification of the 

advantages of LSTM networks in time-series modeling and their use in different fields. The 

survey’s findings suggest that future research should integrate LSTM networks with graph-

based methods and transfer learning to improve detection performance and overcome the 

data heterogeneity issue. This paper is useful to get the overall idea of the existing and 

potential development of the LSTM based anomaly detection methods. 

Ullah and Mahmoud (2021) addresses the problem of increasing the level of cybersecurity 

in the IoT systems[15] by their model. They glimpse into the utilization of CNNs to this end. 
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The model is tested on several datasets namely BoT-IoT[16][17] and IoT Network 

Intrusion[18] and proved to have high accuracy in detecting and differentiating different 

types of attacks. The model also adopts transfer learning for both the binary and multiclass 

classification, therefore demonstrating the model’s flexibility when dealing with various IoT 

network traffic. This research is unique due to the proposed approach for anomaly detection 

based on CNNs and focusing on transfer learning to improve the model’s performance. 

Despite impressive accuracy, precision, recall, and F1 scores, the paper also discusses 

possible issues in deploying the model in resource-limited IoT settings and the necessity to 

assess the model’s performance across a more extensive dataset to counter new threats. 

The study of Nassif et al. (2021) is a systematic review[19]. It makes the identification of 

multiple works related to anomaly detection based on machine learning. It divides the 

anomalies as point, contextual, and collective and also mentioned that the majority of the 

techniques belongs to unsupervised learning since they don't require labeled data. The review 

includes 43 types of applications, which proves the effectiveness of the use of machine 

learning in areas such as cyber security, industrial damage identification, and others. The 

review also stresses that the multi-dimensional performance metrics should be used for the 

evaluation of the models, and the phenomenon of the dominance of unsupervised anomaly 

detection is also discussed. Although the review is quite general and includes a vast number 

of studies, the author recommends performing new research using data sets from recent years 

and using various performance indicators to strengthen the conclusions towards the 

effectiveness and efficiency of machine learning models. 

The paper by Sayed et al. (2022) proposes the use of LSTM networks and Autoencoders in 

identifying DDoS attacks in Software Defined Network (SDN)[20]. Using the techniques of 

Information Gain and Random Forest, the research work intends to predict the improvement 

in the performance of anomaly detection systems with less frequency of generating alarms. 

The evaluation of the proposed approach is carried out using three datasets, namely InSDN, 

CICIDS2017, and CICIDS2018. This research is differentiated from other existing literature 

in that it focuses on feature selection which is an important aspect in developing efficient 

anomaly detection models. LSTM and Autoencoders make the detection of the complex 

attacks easier and the incorporation of the two makes the model even better. This study 

shows that deep learning is capable of enhancing the security of a network especially in the 
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SDN environment. 

The pair of Ullah and Mahmoud (2022) makes another contribution. The authors present a 

model that uses flow and control flag features in the identification of IoT network 

anomalies[21]. On datasets such as BoT-IoT and MQTT-IoT-IDS2020 it also delivers 

excellent results for binary and multiclass classification. The feed-forward neural network 

architecture is considered as efficient and accurate than the other models and hence it is best 

suited for the proposed model. This paper’s key contribution is its new feature extraction 

method and the proper utilization of feed-forward neural network for anomaly detection in 

IoT networks. The consideration of the particular characteristics of the network traffic and 

the utilization of different datasets help to increase the model’s reliability and its 

effectiveness in real-life conditions. 

Hephzipah et al. (2023) suggests the new system enhanced by MMGT-ANN[22]. The KDD 

crime dataset has been used in the experiment, and the paper reveals that the discussed 

system outperforms others in terms of accuracy and time of cyber-crimes detection. The 

usage of MMGT for the selection of features and the fine-tuning of an ANN for predicting 

crime rates is a major contribution of this work. The described MMGT-ANN model is 

characterized by high accuracy and low time complexity, which makes it stand out from 

other models of cyber security. This paper’s contribution in the feature selection and ANN 

optimization in enhancing the cyber security is therefore valuable for future work. 

The paper of Wang et al. (2023) presents a comparative analysis of the most popular deep 

learning architectures, namely, DNN, CNN, RNN, LSTM[23]. In this study, the CSE-CIC-

IDS2018 dataset is employed to stress on the significance of pre-processing and using 

several deep learning models for the enhancement of network intrusion detection. The 

specificity of this work is that a wide range of models was applied and special attention was 

paid to data preprocessing. Thus, the study presents the results of the comparison of several 

deep learning architectures and the impact of their usage on network security. The extensive 

effort invested in data preprocessing of a large dataset and the thorough comparison of 

various models are the major contributions of the research to the area of network anomaly 

detection. 
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1.2. Problem and importance of the problem   

Detecting anomalies in computer networks is extremely important but also very difficult 

because of the large amount of complex network traffic. Networks produce huge quantities 

of data, which makes it hard to manually spot any unusual patterns or behaviors that could 

signal security risks, performance problems, or operational malfunctions.   Conventional 

techniques like signature-based or rule-based detection have a tough time staying updated 

with the changing landscape of cyber threats, such as zero-day exploits and advanced 

persistent threats (APTs). These methods often lead to a lot of false alarms, which can 

overwhelm network administrators and potentially let actual threats slip through undetected. 

AI based approach improves in this aspect. However, detecting anomalies using artificial 

intelligence can be difficult. There is a need for a sufficient amount of accurate data that is 

correctly labeled for training the models. Getting these datasets can be challenging because 

network traffic data is usually extensive, varied, and may include confidential information. 

Also, machine learning models can be demanding computationally. They need significant 

resources for both training and ongoing analysis. Another challenge is the ever-changing 

nature of network environments and the evolving cyber threats. It means that constant 

updates and adjustments to the models are important for them to remain effective. 

Essentially, Computer Networks are important for modern digital society. They support 

different operations from personal communication to national security systems. Failing to 

detect and pointing out anomalies quickly can result in data breaches, financial losses and 

leaked sensitive information. It is important to improve anomaly detection capabilities to 

guard against cyberattacks and maintain network integrity. Implementing advanced methods 

like AI-based techniques is necessary to adapt to evolving threats and reduce the risk of 

unknown anomalies. They can enhance detection by identifying complex patterns and 

unknown threats that traditional methods may miss. Improving machine learning-based 

anomaly detection can lead to more accurate and efficient solutions. It can help reduce the 

risk of cyber-attacks and false alarms. This is essential for maintaining trust, security, and 

resilience in today's interconnected digital world. 

1.3. Aim and importance of the study  

In this thesis, a machine learning based system will be developed to detect anomalies in a 

computer network. There are many studies that use AI with flow-based anomaly detection. 
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However, trained models should be trained, tested and implemented to real world in order 

to keep trained models useful. Most of the offered systems within the literature works offline. 

They use pre-made datasets to train and test the models that are trained. They present results 

according to these datasets. Yet, there are very few works that try to implement trained 

models into live structure. In order for the studies to reach an impactful result, they should 

be implemented to the backbone of a corporation network or to an ISP structure. This 

implementation would result in thousands, even millions of flows to form. Waiting for this 

much flow from beginning to end and then evaluating it is not possible with the resources of 

these structures. Even when resources are increased, an increase will happen to traffic 

volume simultaneously, they will be overwhelmed within time. This situation requires a 

model to respond to a certain part of the flow immediately. What we aim for is being able to 

respond within this part of the structure.  

Another aim of ours is for the model to make successful classifications by using the flowing 

traffic within the system. Thus, we are aiming to use NVIDIA Jetson AGX Orin and Nvidia 

Jetson developer kits which are kits that are specifically developed for deep learning 

implementation purposes.     

1.4.Original contributions  

In the literature review, two shortcomings were identified in the field of anomaly detection 

in computer networks. The first of these points is that the data sets used in the studies are 

outdated because they are not suitable for the changing network traffic structure and do not 

include new cyber threats and attacks. In Aldweesh et al. (2020), the authors state that only 

5% of the data used in the studies consist of real-life or simulated data based on it. Roshan 

and Zafar (2021) make similar findings on the subject. 

The second main deficiency in existing studies is that these studies are developed to work 

offline and are not directly applicable to real life. The reasons for not being suitable for real 

life are that the features used in traffic flows can usually be extracted after the entire flow is 

finalized, so the studies are carried out offline and the difficulties of implementing machine 

learning models in the embedded system. 

This research intends to get results from the flow within a manageable time scale. In order 

for the system to be developed to be applicable to real life, different criteria will be used in 
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the selection and creation of flow characteristics. Finally, an embedded system will be used 

to support the machine learning model at the hardware level such as the backbone of the 

system. 

1.5. Organization of the Thesis    

The organization of the Thesis is as follows:  

1.5.1. Chapter 1: Introduction and Background 

This chapter contains introduction and related works dedicated to the IDS development. This 

chapter explains the problem, aim of the study and why is the intended contribution of the 

study. 

1.5.2. Chapter 2: Materials and Methods 

This chapter explains available materials for the development of the machine learning model 

and IDS system detection. It provides a detailed research methodology, Then, it provides 

how selected models were developed depending on available methods and materials. 

General structure of the selected methods was provided in here.   

1.5.3. Chapter 3: Results 

The results that are obtained by trained models and system are explained here. Results focus 

on distinction on selected models and datasets.   

1.5.4. Chapter 4: Discussion 

This chapter reveals an analysis of the results and their impact on IDS field. The potential of 

the provided system, its advantages over other systems and limitations of the study are 

discussed here.  

1.5.5. Chapter 5: Conclusion and Future Work 

The study is summarized here. The findings and contributions of the thesis to the IDS are 

wrapped up here. The impact of the study and its potential is outlined. This chapter ends 

with future recommendations to improve the system better with putting forward needing 

further validations of similar systems.     
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2. MATERIALS AND METHODS  

This chapter outlines the materials used for developing the machine learning model and the 

intrusion detection system (IDS). It explains the research methodology in detail, and then 

describes how the selected models were built based on the available methods and resources. 

Additionally, the general structure of the chosen methods is explained here.  

2.1. DATASETS 

The datasets are an important element in making Intrusion Detection Systems (IDS) using 

Machine Learning better in network security development. These datasets help us train and 

test our ML models to detect and respond to cyber threats.  This part discusses the important 

datasets used in IDS research, their evolution as well as their contributions and limitations. 

The DARPA98 and DARPA99 datasets are among the first in IDS research. The DARPA 

and MIT Lincoln Lab collaboration created these datasets to simulate intrusions into military 

networks. DARPA99 built upon DARPA98 and added more types of attack. Although these 

datasets were foundational in their time, their realism was hindered by the fact that the traffic 

was synthetic. With this background as a basis, the KDD Cup 1999 (KDD99) [24][25] 

dataset came into existence and is widely used in the IDS field. KDD99, however, was not 

without shortcomings, such as redundant records and obsolete attacks. 

To counter problems in KDD99 that were resulting in biased model validation, the NSL-

KDD [26] was introduced in 2009. It solves the main problem of having redundant entries. 

NSL-KDD was better balanced and thus provided a fairer basis for evaluating IDS solutions 

that used ML. 

The Kyoto 2006+ [27][28] dataset introduced the concept of using real network traffic 

captured over three years. The dataset classified the activity as normal, known attacks, and 

unknown attacks. It provided a long-term view of the network behaviour that shows what 

normal user behaviour would look like and what malicious user behaviour would look like. 

It used real traffic so it was much more realistic. 
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The MAWI Working Group Traffic Archive [29][30] also started capturing real traffic from 

the network. Instead of simulated attacks, the focus of this dataset was ordinary behavior.  

Nevertheless, it lacked attack labels, thus making it not quite useful for supervised learning, 

but actually useful to understand the normal behaviour of a network and anomaly detection. 

Recently, the datasets from CAIDA [31] and DEFCON [32] gave samples of real network 

traffic that had both normal and malice activity. Though NSL-KDD and KDD99 had few 

modern attacks, newer datasets like UNSW-NB15[33] [34] [35] [36] [37] and 

CICIDS2017[4] improved on that with better attack features. The CSE-CIC-IDS2018[10] 

development further broadened the scope of attacks to include a more comprehensive and 

current range for IDS research. 

2.1.1. DARPA98 and DARPA99 Datasets 

The datasets of DARPA 1998 and 1999 Intrusion Detection Evaluation datasets were made 

available by DARPA to test on IDS performance. The Defense Advance Research Project 

Agency (DARPA) sponsored the datasets created in cooperation with MIT Lincoln 

Laboratories. Ultimately the created datasets aimed to provide benchmarks for IDS 

capabilities for detecting a long range of cyber-attack. Both the datasets seem to share some 

commonalities. However, they are quite different in nature. They also differ in terms of 

delayed scope. Moreover, the complexity and types of attacks simulated are also different. 

DARPA99 builds on the DARPA98 framework. 

2.1.1.1.Content and Data Collection 

The DARPA98 dataset has 7 weeks of traffic and audit logs. It was mostly UNIX-based, but 

also outsider attacks. The dataset was created to check the capabilities of the IDS through 

controlled normal and malicious traffic. The collected dataset contains a mix of benign and 

malicious network activities. It has numerous attack types which include Denial of Service 

(DoS), Remote to Local (R2L), User to Root (U2R), and Probing.  

The DARPA99 data set is a follow-up to the DARPA98 data set and it increased the scope 

of the previous dataset by including Windows NT system in addition to UNIX systems. This 

version added an offline and real-time evaluation with the simulation of a network to capture 

real network activities. The environmental conditions concerning data collected were more 
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varied, including UNIX and Windows systems, meaning that we had a fairer assessment of 

the IDS. 

2.1.1.2.Network Traffic Types 

The DARPA98 dataset contained 38 individual attacks, both old and new. It helps test an 

IDS’s ability to detect known and unknown intrusions.  (22 words) There are four types of 

attacks in total: 

• Denial of Service (DoS): Disrupts legitimate users' access to network resources, 

thereby rendering services unavailable. 

• Remote to Local (R2L): Involves attempts to gain unauthorized access to a machine 

from a remote location. 

• User to Root (U2R): A local, non-privileged user attempts to escalate privileges to 

gain superuser (root) access. 

• Probing: Techniques used to gather information about the network, such as scanning 

ports or identifying vulnerabilities within the network infrastructure. 

DARPA99 increased the attack capacity with 201 attack instances of around 56 attack types. 

Thus, it is more rigorous and less easily spoofed.  This upgrade made sure that the IDS 

models can be tested in a setting offering a wider range of threats, such as newly introduced 

attacks and the modification of other. 

2.1.1.3.Use in Research and Development 

The DARPA98 dataset was a first in IDS research. It created the first comprehensive 

benchmark for intrusion detection methods. Scientists carried out research many times using 

DARPA98’s datasets to develop IDS models that could detect attacks on UNIX based 

systems. They tested their approaches on a varied mix of network traffic. 

DARPA99 helped IDS researchers with a more realistic environment for their evaluation, 

allowing them to test their systems effectively. This data led to the development of the KDD 

Cup 1999 (KDD99) which is heavily used in the IDS community. After KDD, the 

importance of the DARAP series in IDS technology development and evolution became 

insignificant. 
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2.1.1.4.Criticism and Limitations 

Despite their foundational role, both DARPA98 and DARPA99 have been criticized for a 

number of limitations despite their foundational role. The datasets were based on synthetic 

network traffic generated in controlled environments. Synthetic datasets are generally 

artificial datasets where network traffic is built in controlled environments. Real-world 

network environments are not synthetic and involve more diverse and unpredictably 

complex traffic. The nature was fake and it leads to some kind of biases which may harm 

the performance of machine learning models. 

In addition, DARPA98 and DARPA99 do not have any modern network protocols or current 

types of cyber threats. Which lowers the relevance of their evaluation. According to the 

DARPA99 report, the domain is more diverse than DARPA98. However, being a simulation, 

it has inherent limitations. These shortcomings made researchers look out of the box for 

newer datasets that are able to represent today’s networks threats accurately. 

2.1.1.5.Data Structure of the DARPA98 and DARPA99 Datasets 

The DARPA98 and DARPA99 datasets have several common features, although DARPA99 

expanded upon these: 

• TCP/IP Packet Data: Both datasets contain packet-level data that is captured using 

TCP/IP protocol which includes packet headers and packet content in some cases. 

The information here tells like where is the source and destinations address, size of 

packets and kind of protocol used. This data gives important information used to 

evaluate networking events i.e. any interaction or communication between the 

devices. This can be data transfers, attempts to connect, disconnection of sessions or 

anything of like. 

• Time Stamps: Each network event in the datasets is associated with a timestamp, 

which is crucial for temporal analysis of network behavior. This allows researchers 

to track changes in activity over time and identify potential attack patterns. 

• Labels: The labels are assigned to each network event signifying whether it is normal 

or an attack of specific type. These labels form the basis of supervised learning which 

helps train machine learning models to detect various intrusion types. 
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• Additional Features: The DARPA99 dataset includes additional features that provide 

insights into network flows, session statistics, and other network-level behaviors. 

This provides insights into network flows, session statistics, and other network-level 

behaviors. Hence, it is better than DARPA98. 

• Data Format: Both dataset's data is formatted in tcpdump-compatible formats so 

network analysis tool data. This way they can be used by researchers for various 

types of IDS testing and evaluation. 

2.1.1.6.Simulation Environment 

The DARPA98 dataset was generated in a simulated environment that closely resembled 

real conditions, albeit simplified. The network contained several UNIX machines that 

mimicked a U.S. An Air Force local-area network which provides a suitable testbed for 

evaluation of IDS capabilities. Yet, because the dataset was synthetic, it limited the 

randomness and variability present in real networks.  

The original simulation environment was modified to include the Windows NT system, in 

addition to UNIX, to form a more realistic mixed-OS environment by various research 

groups. Even with these advancements, the setting remained artificial, meaning the dataset 

was not real. 

The datasets of DARPA98 and DARPA99 are important to help in the production of IDS 

systems. The researchers tested their models on the dataset and then worked on improving 

them, and their impact played a direct role in the KDDCup99 dataset as cyber threats and 

network environments evolve, it is important to have modern, realistic datasets that can 

depict a network security scenario more faithfully. 

2.1.2. KDDCup99 Dataset 

The KDDCup99 dataset is a very popular dataset that has been used as an evaluation of any 

Intrusion Detection System. The dataset presented in this paper was created for The Third 

International Knowledge Discovery and Data Mining Tools Competition (KDD-99) which 

was held in conjunction with the Fifth ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining. It is a benchmark dataset for IDS research. 

KDDCup99 is used for IDS model development and benchmarking, it is derived from 
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DARPA98, it is a dataset of normal traffic and malicious traffic. KDDCup99 aimed to 

provide a collection of network traffic data, including both normal and malicious activities, 

to support the development and evaluation of IDS models. 

2.1.2.1.Content and Data Collection 

The MIT Lincoln Laboratory did a special program called the DARPA98 IDS in 1998. From 

this program, the KDDCup99 dataset was created.  It was developed to provide researchers 

working on IDS with a general-purpose database. The dataset contains normal network 

activities and numerous attacks. Therefore, it provides a bedrock for future researchers to 

compare various IDS models.  To create the dataset, a wide variety of attack types were used 

in order to capture the intrusion behaviour of various attacks. 

It is a much simpler and preprocessed version of DARPA 1998 dataset. The dataset is 

presented as a set of connection records. Each instance is described by 41 features (e.g. 

duration, protocol type, service, number of bytes transferred, etc…). Each connection being 

labelled as either normal or an attack which is one of 39 types. User friendly for machine 

learning to train and test easily. 

The dataset led to the creation of other better datasets, like the NSL-KDD, which fixed some 

flaws of the KDDCup99. KDDCup99 has inspired a large volume of research work on 

intrusion detection systems, although still exhibiting some flaws after over 20 years. 

2.1.2.2.Criticism and Limitations 

Although widely employed, the KDDCup99 dataset has many limitations that previous 

researchers have pointed out: 

• Redundancy: The dataset includes several duplicate entries that can cause bias and 

affect the performance of machine learning models. When data records are repetitive, 

the models get influenced easily. As a result, they become unable to differentiate 

between attacks which haven’t been seen before. 

• Lack of Temporal Information: KDDCup99 lacks temporal and sequential data, 

which are crucial for understanding the behavior of attacks over time. This absence 

limits its applicability for evaluating IDSs that rely on sequential or time-series 

analysis. 
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• Unrealistic Data Distribution: The distribution of normal and attack instances in the 

dataset does not reflect real-world network environments. The dataset has an 

overrepresentation of some types of attacks, which may not be typical of actual 

network traffic patterns. 

• Outdated: The dataset is derived from DARPA98The dataset of Darpa98 is over 

twenty years old. Thus, it does not take into account attacks that occurred after this 

date, nor does it take into account the network protocols that exist today. 

Because of these issues, newer datasets have come up, like the NSL-KDD dataset, which 

tries to solve this issue by removing redundant records and providing a better balanced 

dataset. 

2.1.2.3.Simulation Environment 

The KDDCup99 dataset was generated based on the DARPA98 evaluation, which means 

that it was collected in a simulated network environment. The simulation took place with 

a controlled network activity and attack situation with the evaluation of the IDS to check its 

capabilities to detect the previously known attack. Though a wide range of attacks are 

simulated, it does not encompass the high variability and unpredictability of the real-world 

network environment. 

2.1.3. NSL-KDD Dataset 

The NSL-KDD dataset is an upgraded version of the KDDCup99 dataset. This fix was made 

to produce the limitations of KDDCup99. Created by the Canadian Institute for 

Cybersecurity at the University of New Brunswick, NSL-KDD has become an important 

benchmark for Intrusion Detection System (IDS) research, especially in the field of machine 

learning. NSL-KDD aimed to provide a better dataset for intrusion detection systems by 

fixing the weaknesses of the KDDCup99 dataset. 
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2.1.3.1.Improvements Over KDDCup99 

The NSL-KDD data set was generated to tackle some of the most important issues of 

KDDCup99. Below are the notable improvements that distinguish NSL-KDD: 

 

• Removal of Redundant Records: The NSL-KDD dataset does not have duplicate 

records and irrelevant records which were in abundance in KDDCup99. The KDD 

Cup 99 dataset has a lot of duplicates. As a result, our model biases. Thus, it has 

become overly tuned to frequent records. Therefore, it is less generalizable. NSL-

KDD was used to tackle this problem by ensuring that this dataset has lesser 

redundant records thus, leveling the dataset. 

• Balanced Dataset: The training and testing sets of NSL-KDD were adjusted to ensure 

similar record sizes, which helped prevent overfitting. By maintaining a more 

balanced representation between normal and attack records, NSL-KDD ensured that 

machine learning models trained on this dataset were not disproportionately 

influenced by particular types of attacks. 

• No Need for Random Subsampling: The KDDCup99 dataset is very large. 

Researchers have to perform random subsampling because it is too large for 

experimentation.  The approach led to a missing partial or biased representation of 

network activities. NSL-KDD tackled this problem by offering a more realistic 

quantity of data, which can be utilized directly in the training and testing of IDS 

models without arbitrary reduction. 

2.1.3.2.Content and Data Collection 

Much like KDDCup99, the NSL-KDD dataset represents network connections as a vector 

of features. The dataset retains the structure of KDDCup99 by providing 41 features for each 

connection, which include basic attributes of TCP connections, content-based features, and 

traffic characteristics derived from a window of network connections. Each connection is 

labeled. These labels provide a strong foundation for supervised learning approaches in IDS 

research. NSL-KDD essentially captures a range of attack scenarios similar to KDDCup99, 

but with the enhanced balance and reduced redundancy discussed above. 
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2.1.3.3.Limitations 

Despite the improvements introduced with NSL-KDD, it still has limitations that prevent it 

from being fully representative of modern network environments: 

• Outdated Data: NSL-KDD is derived from KDDCup99, which, in turn, is based on 

the DARPA98 data collected more than two decades ago. As such, it lacks coverage 

of more recent types of attacks, as well as current network technologies and 

protocols. The outdated nature of the data reduces its applicability in testing IDS 

models meant for today’s rapidly evolving cyber threat landscape. 

• Retains Basic Features and Format of KDDCup99: Although NSL-KDD addressed 

some KDDCup99 problems, such as balancing and redundancy removal, it is still 

based on KDDCup99's feature set and basic connection format. Modern network 

traffic and attack patterns cannot be completely captured with these characteristics. 

2.1.3.4.Use in Research and Development 

Widely considered an important new step in the development of IDS datasets, NSL-KDD 

set.  It has kept a range of KDDCup99 strengths at the same time it has eliminated any major 

faults. Consequently, the NSL-KDD dataset has been extensively used to benchmark the 

performance of IDS models based on machine learning. The more balanced and manageable 

dataset have enabled researchers to train and evaluate an IDS model with less bias and better 

generalization than KDDCup99. 

NSL-KDD is more refined version of KDD dataset which might not suit the researchers 

however still has value. However, owing to the sophistication of cyber threats and the 

evolution of network technology, researchers have been increasingly looking for newer 

datasets. 

2.1.3.5.Summary and Evolution of Datasets 

The progression from DARPA98 to KDDCup99, and subsequently to NSL-KDD, illustrates 

a continuous effort to address the limitations of earlier datasets and to improve the quality 

of IDS training data: 
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• DARPA98 and DARPA99: Foundational but lacked the realism of real-world 

network conditions. 

• KDDCup99: Expanded the accessibility and usability for machine learning but 

introduced biases and redundancy. 

• NSL-KDD: Removed redundant records, provided a more balanced dataset, and 

minimized the need for random subsampling, thus improving the dataset’s 

practicality for IDS research. 

However, given that the data for NSL-KDD still originated from a period when network 

technologies and threats were vastly different from today, its usability is limited. The need 

for more recent and representative datasets has spurred the creation of newer benchmarks 

like UNSW-NB15 and CICIDS2017, which attempt to better capture the complexities of 

network environments and the evolving landscape of cybersecurity threats. 

Following Table 2.1 given below describes the four datasets on network security and how 

they evolved over a period of time. It also shows advancements made in each of them. 
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Table 2-1 Summary of the differences between the DARPA98, DARPA99, KDDCup99, and NSL-

KDD datasets 

Feature/Aspect DARPA98 DARPA99 KDDCup99 NSL-KDD 
Year of 

Creation 1998 1999 1999 2009 

Content 

Simulated 
network 
traffic, 

including 
various types 

of cyber 
attacks and 

normal 
activities. 

Simulated network 
traffic with more 

diverse attack 
scenarios and data 

collection. 

Processed set 
of attacks and 
normal traffic 
with labeled 

features. 

Processed set with 
redundant and 

duplicate records 
removed, and a 
balanced dataset 

with refined 
training and 
testing splits. 

Types of 
Attacks 

DoS, R2L, 
U2R, and 
Probing. 

DoS, R2L, U2R, and 
Probing with more 

diverse instances and 
multi-stage scenarios. 

DoS, R2L, 
U2R, and 
Probing. 

DoS, R2L, U2R, 
and Probing with 

improved 
representation and 

balance. 

Number of 
Attacks 

32 unique 
attack types. 

58 unique attack 
types. 

39 attack types 
derived from 
DARPA99. 

37 attack types 
with improved 
distribution and 

reduced 
redundancy. 

Data Format 

Raw network 
traffic data in 

tcpdump 
format, 

requiring pre-
processing. 

Raw network traffic 
data in tcpdump 

format with 
additional traffic 

diversity. 

Processed 
features (41 
features per 
connection, 
labeled) in 

CSV format. 

Processed features 
in CSV format, 
with improved 
data formatting 

and reduced 
redundancy. 

Labeling 

Not labeled; 
required 

processing 
and manual 
annotation. 

Not labeled; required 
manual processing 

for analysis. 

Labeled as 
normal or 
attack with 

specific attack 
types. 

Labeled with 
reduced 

redundancy and 
balanced 

distribution. 

Limitations 

Lack of 
realism, 

limited attack 
types, and 
artificial 
traffic 

patterns. 

Limited realism and 
representativeness, 
scalability issues. 

Redundant 
records, 

duplicate data, 
lack of 

temporal 
context, biases. 

Based on outdated 
traffic, may not 

represent current 
network scenarios 
and attack vectors. 
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2.1.4. UNSW-NB15 Dataset 

The UNSW-NB15 dataset is a comprehensive modern dataset developed for the evaluation 

of Network Intrusion Detection Systems (NIDS). It aims at overcoming the shortcomings of 

previous datasets, like KDDCup99 and NSL-KDD. In 2015 was developed by the Australian 

Centre for Cyber Security (ACCS) at the University of New South Wales, it offers a realistic 

testing ground for IDS research in the context of the latest cyber threats. By capturing normal 

and malicious activities that reflect the real world, UNSW-NB15 uniform dataset offers great 

potential value to improve the performance of IDS technologies. 

2.1.4.1.Content and Features 

The UNSW-NB15 dataset consists of a large amount of network traffic data representing 

benign and attack behavior. It has 49 features relevant to the network communications. 

These features include: 

• General Network Flow Features: This can include the source and destination IP 

addresses, port numbers, and protocol types, which give basic information about 

individual network connections. 

• Content-Based Features: It includes the details of the data transferred in a connection. 

Useful for identifying payload-based attacks. 

• Calculated Traffic Features: Traffic features based on differential monitoring over a 

window of connections. this feature would lend insights into traffic patterns of the 

network. this feature would be useful in indicating some kind of anomaly. 

This mix of features makes UNSW-NB15 suitable for comprehensive intrusion analysis, 

allowing the detection of complex patterns and behaviors that may indicate an intrusion. 

2.1.4.2.Types of Attacks 

UNSW-NB15 stands out from previous benchmarks through its coverage of a broad 

spectrum of contemporary cyber threats and thus, it provides a more comprehensive view of 

modern attack scenarios. There are nine types of attacks in the dataset: 

• Shellcode: It refers to malicious in nature, with the aim to compromise a system and 
acquire control over it.  
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• Fuzzers: Attacks that send unexpected or random input to systems to discover 
vulnerabilities. 

• Analysis: Analysis is the malicious activity aimed at gathering information or 
analyzing vulnerabilities, often part of a reconnaissance campaign. 

• Backdoors: Backdoors are a way of covertly getting remote access. It is usually 
installed by the Hacker after an intrusion. 

• Denial of Service (DoS): They aim to make a network service unavailable to users. 
This is done by flooding the service with requests so that it can’t handle it and will 
either crash or become unusable. 

• Exploits: Exploits are attacks that make use of specific code vulnerabilities in 
software or systems via unauthorized actions. 

• Generic: Attacks that are not tied to a specific platform or software but exploit 
common network or protocol vulnerabilities. 

• Reconnaissance: Methods like scanning to gather information about the network and 
identify weaknesses. 

• Worms: Worms are self-replicating malware that spread in a network. They are 
primarily used to create botnets or compromise a large number of hosts. 

The assorted and numerous types of attacks contained in UNSW-NB15 are comparable to 

the current threats out there, making it a useful benchmark for evaluating IDS model 

simulation. 

2.1.4.3.Data Collection 

The IXIA PerfectStorm tool was used to generate the UNSW-NB15 dataset that simulates 

real attack behaviour as well as normal network traffic.  The process of data collection 

included capturing: 

• Real Normal Behaviors: Traffic generated to mimic legitimate user activities, 

ensuring that the dataset reflects typical network operations. 

• Synthetic Attack Traffic: Created to represent contemporary attack techniques, 

providing a realistic context in which to evaluate IDS performance. 
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UNSW-NB15’s realistic dataset and unsophisticated simulated attacks provide a high degree 

of accuracy for more modern IDS technologies. Thus, we can conclude that these activities 

can be used as a reliable and relevant dataset. 

2.1.4.4.Use in Research and Development 

UNSW-NB15 data is widely accepted and used in both academic and industrial research for 

assessing IDS models, especially ones based on machine learning and data mining 

techniques. The dataset is realistic of the currently occurring traffic and incorporates newer 

attacks. Therefore, it is suitable for the evaluation of the intrusion detection model compared 

to the older datasets like KDDCup99 and NSLKDD. 

The dataset has many features, so researchers can try different approaches which range from 

simple rule-based systems to complex deep learning systems.  The balanced normal and 

attack data included allows assessment of model performance in identifying an intrusions 

with negligible false positive rates amidst modern cyber threats. 

2.1.4.5.Criticism and Limitations 

UNSW-NB15 does have its limitations despite being an improvement over the previous 

datasets. Some of these limitations are: 

• Modeling Real-World Environments: While UNSW-NB15 captures a wide range of 

attack types and mimics real traffic patterns, it is still collected in a controlled, 

synthetic environment. As a result, it may not fully replicate the chaotic and 

unpredictable nature of actual production network environments. Researchers using 

this dataset need to be mindful that real-world networks are often messier and contain 

traffic types that are not covered in the dataset. 

• Dependence on Simulation Tools: The reliance on tools like IXIA PerfectStorm 

means that attack scenarios, while realistic, are limited by the capabilities of the tool. 

The dataset may not include all possible forms of network intrusions, especially 

highly sophisticated attacks that leverage advanced obfuscation techniques or rapidly 

evolving attack vectors. 
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2.1.5. MAWI Working Group Traffic Archive 

The MAWI Working Group Traffic Archive is a key data set for network research. The 

Japanese academic backbone network Widely Integrated Distributed Environment was 

created and runs the MAWI Working Group; measurement and analysis on the WIDE 

Internet (MAWI), MAWI data set.  This dataset has been around since 1999 and has given 

researchers actual Internet Traffic Data that greatly improved the understanding of the 

network behaviour, performance and security. 

2.1.5.1.Content and Data Collection 

The goal of the MAWI Traffic Archive is to provide researchers with a source of real data 

on the behavior of network traffic. Various points at the backbone of WIDE Project which 

connects different research and educational institutions in Japan collects Data. This data 

cover a vast geography and give wide perspective on the network activity. 

The way that data is collected is using methods like a packet sniffer and other monitoring 

tools to capture IP packets and, in some cases, application-level data.  To maintain privacy, 

we anonymize the data we collect by masking IP addresses and other identifying 

information.  The MAWI archive is specifically designed to ensure that the data being used 

is useful to researchers and protects the privacy of the participants involved. 

The dataset provides us with two types of information: 

• Packet Traces: These are raw captures of network traffic, like IP headers, and 

sometimes payload information. This information shows us how specific things 

connect. 

• Flow Data: The summary of packets consists of flows that embody common features, 

for instance, source address and destination address or source port and destination 

port and so on. This kind of data helps in spotting high-level traffic patterns and 

behaviors. 
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2.1.5.2.Network Traffic Types 

The MAWI Working Group Traffic Archive has a date of benign and malicious data.  The 

dataset has events and activities that happen every day as well as strange or suspicious 

activities.  This dataset is very useful for researchers as they can use it for doing anything 

with the network. For instance, it can help researchers find out about normal network usage 

or malicious usage. 

2.1.5.3.Applications in Research and Development 

The MAWI Traffic Archive has numerous applications within network research and 

education: 

• Traffic Flow Analysis: When researchers look at network flow patterns, they can tell 

what things are common and what’s uncommon. This may help them better 

understand how resilient common protocols and architectures are. 

• Network Security Assessment: The archive assists identifies normal and abnormal 

events to study attack detection, intrusion prevention, and related cybersecurity 

domains. 

• Performance Evaluation: It ensures a proper setting of the network under different 

traffic conditions and protocols. 

• Educational Use: The archive also supports educational use by providing students 

with access to realistic network traffic for analysis.  By working with live network 

data, students will get the opportunity to bridge the gap between theory and practice. 

2.1.5.4.Accessibility and Data Format 

A key feature of the MAWI Traffic Archive is that it is publicly available. The MAWI 

Working Group offers the dataset in common formats (pcap) compatible with popular 

network analysis tools (e.g., Wireshark, Tcpdump). Researchers, educators, and students can 

easily access the MAWI archive. Nonetheless, it should be noted that most of the archived 

files are unlabeled which may require heavy pre-processing for some applications like 

training up a supervised learning model for intrusion detection. 
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2.1.5.5.Limitations and Privacy Considerations 

Despite its value, the MAWI Traffic Archive has some limitations. The data is unlabeled, 

making it challenging to use directly for supervised machine learning applications without 

extensive preprocessing. Furthermore, while the data provides real-world traffic, privacy 

concerns require that sensitive data be anonymized, which may result in a loss of some useful 

network-level details. Nevertheless, the MAWI archive maintains a strong balance between 

data usability and participant privacy, making it an invaluable resource in the study of real 

network environments. It has played an irreplaceable role in the development of network 

research by providing real, high-quality network traffic data for analysis. This data 

complements theoretical work and simulations, ultimately leading to more realistic and 

effective solutions in network security and technology. 

2.1.6. CICIDS2017 Dataset 

The CICIDS2017 data set made by Canadian Institute for Cybersecurity for the evaluation 

of network Intrusion Detection Systems (IDS). This dataset was created in order to overcome 

the shortcomings of older datasets like KDDCup99 and NSL-KDD by giving IDS 

researchers a more complete, realistic and recent dataset. Since it was developed, the 

CICIDS2017 dataset has established itself as a benchmark of comparison for network IDS 

models. 

2.1.6.1.Content and Data Collection 

The goal of the CICIDS2017 dataset was to mimic legitimate network traffic including the 

benign ones and the different kinds of attacks.  The data was collected over multiple days 

and represented in multiple CSV files. Each file represents a different day of capture or type 

of network usage.  

The dataset emulates real-world network environments, comprising normal traffic along 

with a variety of attacks like DDoS, Heartbleed, Botnet, Infiltration and different types of 

web attacks.  The dataset is diverse enough to help in training models for different types of 

network anomalies and malicious behaviours. 
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2.1.6.2.Network Traffic Types 

The CICIDS2017 dataset has a variety of normal and malicious network traffic activities.  

The dataset contains 15 labels that consist of the attacks and normal traffic. These labels are: 

1. BENIGN: Normal network activity without any malicious behavior. 

2. DoS Hulk: A Denial of Service (DoS) attack that floods the target with large amounts 

of data to disrupt normal services. 

3. PortScan: A reconnaissance attack where the attacker scans various ports to identify 

vulnerable services running on the target machine. 

4. DDoS: A Distributed Denial of Service attack, which involves multiple systems 

flooding a target to render it unusable. 

5. DoS GoldenEye: A specific DoS attack designed to overload a web server by sending 

a large number of HTTP requests. 

6. FTP-Patator: A brute force attack aimed at the FTP service to gain unauthorized 

access by attempting numerous login credentials. 

7. SSH-Patator: Similar to FTP-Patator, this attack attempts to brute force access to the 

SSH service. 

8. DoS Slowloris: A type of DoS attack that tries to keep connections open with the 

target web server as long as possible, thus preventing legitimate requests from being 

fulfilled. 

9. DoS Slowhttptest: Another DoS attack that sends HTTP traffic at a very slow rate, 

attempting to exhaust server resources. 

10. Bot: This attack involves the use of malware to infect and take control of devices, 

allowing attackers to conduct further attacks. 
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11. Web Attack - Brute Force: A web attack that uses brute force techniques to try 

different combinations of login credentials to gain unauthorized access. 

12. Web Attack - XSS (Cross-Site Scripting): An attack targeting web applications to 

execute malicious scripts in the user's browser by exploiting vulnerabilities in web 

pages. 

13. Infiltration: This attack involves unauthorized access to internal networks, often by 

exploiting vulnerabilities in network defenses. 

14. Web Attack - SQL Injection: A web attack that involves inserting malicious SQL 

queries into input fields to manipulate the backend database. 

15. Heartbleed: A vulnerability in the OpenSSL library that allows attackers to read 

sensitive data from the memory of web servers, including encryption keys and 

passwords. 

This broad coverage of attack vectors allows for thorough evaluation of IDS models, testing 

their ability to distinguish benign traffic from a diverse array of malicious behaviors. It 

also enables detailed multiclass classification tasks, as models can be trained to identify each 

specific type of attack. 

2.1.6.3.Features and Data Format 

Each network flow was described by extracting 84 flow-level features from the 
CICFlowMeter tool that depicts the traffic. The features describing each flow were 
designed for training of the machine learning model. Several types can be seen in features. 
The features can be categorized as follows: 

• Basic Flow Features: Essential information like source and destination IP addresses, 
port numbers, protocol type as well as a timestamp. 

• Packet-Level Features: This type includes information on the length of each packet, 
the number of packets, the flags, etc. Noise and other related features help in 
understanding the makeup of data transmitted over the network.. 

• Flow Statistics: Statistical features like flow duration, number of packets per second 
and bytes per second describes the behaviour of a whole network flow. 
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• Forward (Fwd) and Backward (Bwd) Inter-Arrival Times: These features use timing 
packets in forward and backward directions, for example total inter-arrival time and 
total average inter-arrival time. 

• Flow Active and Idle Times: The details include information about the times the 
stream was active or idle.  They aid in discovering the spikes in your network activity, 
and idle times. 

• Flow-based Timing Features: This category gives information about flow times, their 
mean, maximum, minimum and standard deviation, so that time-based properties of 
network activity can be analyzed. 

• TCP Flag Features: The packet captures show TCP metrics like SYN, ACK, FIN, 
other TCP flags, etc., to understand what is being established. 

• Additional Packet Count Features: The features of this category are recorded at a 
packet level. For example, the number of packets sent in the forward or backward 
direction per second. 

• Subflow Features: Subflow features can break network flows into smaller pieces that 
add more information about packets and bytes in subflows in the forward and 
backward directions. 

• Window and Segment Features: The initial window sizes and minimum segments 
sizes seen in the forward and backwards directions are features to put some light on 
congestion control issues. 

• Label: Each network flow is labeled as either benign or malicious, so it is a great 
dataset for supervised learning. 

Packet, flow and network level insights are available in CSV format. The format is easy to 

process and can be directly used in machine learning. 

2.1.6.4.Labeling and Classification 

Each instance of a network flow in the dataset is labeled; either benign, or one of the attack 

classes. Due to the classification of the input data, it is suitable for supervised learning. In 

other words, the model should learn to detect whether the network event is normal or 

malicious. 
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The labels in the dataset also identify the various attacks that enable the models for multiclass 

classification that help distinguish between the DoS, DDoS, Infiltration and Web Attacks. 

The extensive labeling allows for a detailed ground truth on which the researcher can test 

and validate the effectiveness of IDSs in identifying wide and subtle attack behaviors. 

2.1.6.5.Use in Research and Development 

The CICIDS2017 dataset has been widely used by researchers to develop and evaluate IDS 

models. Its realistic portrayal of both normal and abnormal network behavior provides a 

solid foundation for: 

• Supervised Learning: The dataset is useful for training machine learning models that 

aim to distinguish between normal traffic and malicious behaviors. 

• Anomaly Detection: The rich feature set enables models to learn to detect anomalous 

patterns that could indicate emerging threats or zero-day attacks. 

• Attack Pattern Analysis: The diversity of attacks provides a basis for evaluating how 

effectively different IDS models can identify specific attack types. 

2.1.6.6.Limitations 

Although this set is helpful, CICIDS2017 dataset has some drawbacks: 

• Imbalanced Data: Models that are used for attack detection sometimes do not have 

enough data on a certain attack type as compared to other attack types. 

• Lack of Novel Attacks: Although there is a variety of sample data, it still does not 

contain every emerging attack type. Therefore, this can limit its suitability for the 

evaluation of IDSs. In addition, it can be against the most recent types of attacks. 

• Preprocessing Requirement: Processing the specification might take long for 

systems with high number of complex features.  Techniques performed to a dataset 

before feeding it into the model is called Preprocessing. It entails redundancy, 

handling missing value and normalizing features. 
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2.1.6.7.Conclusion 

The CICIDS2017 dataset is a significant contribution to IDS research. It is helpful because 

it provides realistic network traffic and multiple attack scenarios, and serves to fill in many 

of the gaps in datasets like KDDCup99 and NSL-KDD. The data set has many features which 

are highly suited for the classification as well as the anomaly detection task. 

Yet, as cyber threats and networking technologies are evolving through time, there is a 

requirement for more up-to-date datasets to keep repeat up to date data. Nevertheless, 

CICIDS2017 still ranks amongst one of the most recent ones that help train and benchmark 

IDSs.  This is particularly the case for those working on enhancing the detection and 

counteraction of modern attacks that happen over computer networks. 

2.1.6.8.CICIDS2018 Dataset 

The CICIDS2018 dataset is an extension of the CICIDS2017 dataset, both of which were 

developed by the Canadian Institute for Cybersecurity (CIC). The main differences between 

the two datasets are: 

1. Data Collection Duration: 

o CICIDS2018 was collected over ten days (February 14th to March 2nd, 

2018), whereas CICIDS2017 was collected over five days (from July 3rd to 

July 7th, 2017). The longer collection period of CICIDS2018 aims to capture 

more data but doesn’t necessarily translate into greater coverage or 

representativeness. 

2. Attack Scenarios: 

o CICIDS2018 contains additional attack types such as insider threats and data 

exfiltration, alongside common attacks like DDoS and brute force. 

CICIDS2017 also features diverse attack scenarios, including Web Attacks, 

Heartbleed, Infiltration, and DDoS, which effectively represent a wide range 

of network threats. The differences in attack types do not necessarily indicate 

superiority but rather reflect variations in threat modeling approaches 

between the datasets. 
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3. Feature Extraction: 

o Both datasets contain 84 features from CICFlowMeter. While CICIDS2017 

uses older version, CICIDS2018 uses CICFlowMeter-V3. The features that 

were taken out are more or less the same, no new type or usefulness of 

features. 

4. Purpose and Applicability: 

o Both datasets contain 84 features from CICFlowMeter. While CICIDS2017 

uses older version, CICIDS2018 uses CICFlowMeter-V3. The features that 

were taken out are more or less the same, no new type or usefulness of 

features. 

Both CICIDS2017 and CICIDS2018 datasets are useful to evaluate intrusion detection 

systems.  Although the time span, attack scenarios, and data collection methods differ the 

two datasets can’t be said to be better than the other. It depends on your intrusion detection 

research but each of them can suit your needs.  Response It is a benchmark data collection 

for anomaly detection and other studies.  

 

2.1.7. Comparison of the Datasets 

It is important to have a comparison of the available datasets to have a better understanding. 

Following Table 2.2 shows a comparative overview of the discussed datasets so far.  
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Table 2-2 Overview of Datasets for Intrusion Detection Systems 

This table shows a comparison between datasets used in IDS training systems. 

Dataset 

Year 
of 

Creati
on 

Data 
Collection 

Type 

Number 
of 

Attack 
Groups 

Features Duration of 
Collection Labeling Key 

Improvements Limitations 

DARPA98 1998 
Simulated 
Network 
Traffic 

4 
Raw 

Packet 
Data 

7 weeks Normal/At
tack Label 

Foundational 
dataset for 

IDS 

Synthetic 
traffic, 

outdated 
attacks 

DARPA99 1999 
Simulated 
Network 
Traffic 

4  
Raw 

Packet 
Data 

5 weeks 
(expanded to 

real-time 
evaluation) 

Normal/At
tack Label 

Expanded 
attack types, 

included 
Windows NT 

systems 

Synthetic 
traffic, 

outdated 
attacks 

KDDCup99 1999 
Derived 

from 
DARPA98 

4 41 
Features 

Derived from 
DARPA98 

Normal/At
tack Label 

Simplified 
data for ML, 
large-scale 

Redundant 
entries, 

unrealistic 
distribution, 

outdated 

NSL-KDD 2009 
Improved 

from 
KDDCup99 

4 41 
Features 

Derived from 
KDDCup99 

Normal/At
tack Label 

Removed 
redundancy, 

balanced 
dataset 

Still based on 
outdated data, 

lacks 
temporal 

information 

UNSW-NB15 2015 
Real & 

Synthetic 
Traffic 

9 49 
Features 

IXIA 
PerfectStorm 

Tool 

Normal/At
tack Label 

Realistic 
traffic, nine 

modern attack 
types 

Limited 
ability to 

fully model 
real-world 

environments 

MAWI 
Archive 

Since 
1999 

Real 
Network 
Traffic 

- 
Packet 

and Flow 
Data 

Ongoing No labels 
Real-world, 
large-scale 

traffic 

No specific 
labels, lacks 
systematic 

attack 
modeling 

CICIDS2017 2017 
Simulated 
Realistic 
Traffic 

15 84 
Features 5 days 

Normal/Sp
ecific 
Attack 
Label 

Diverse attack 
scenarios, 
supervised 

learning 

Imbalance 
between 
attack 

classes, 
limited 

timeframe 

CICIDS2018 2018 
Simulated 
Realistic 
Traffic 

20 84 
Features 10 days 

Normal/Sp
ecific 
Attack 
Label 

Longer data 
collection, 
additional 

attacks 

Imbalance 
between 
attack 

classes, 
similar 

limitations as 
CICIDS2017 
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2.2.METHODOLOGY 

Methodology used for model training and system is explained in this section of the thesis. 

2.2.1. Dataset Acquisition 

This research employs the CICIDS2017 dataset, a common benchmark for network intrusion 

detection system (IDS) research. (21 words) The CICIDS2017 dataset created by the 

Canadian Institute for Cybersecurity simulates real-life threats with different activities that 

include normal traffic as well as different attacks. this diversity makes it well appropriate for 

IDS evaluation. You can have labeled flow data, raw network captures (PCAPs), and pre-

processed CSV files for research usage. For this research, the MachineLearningCSV version 

was chosen, as it can be directly used for machine learning and required lesser preprocessing. 

We downloaded the data using google colab because it has enough power and it easily 

integrates with the google drive. 

2.2.1.1.Data Cleaning and Label Normalization 

After unzipping the dataset, all the csv files were checked for issues like wrong labels and 

corrupt data. It was noticed that in one of the files, Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv, there are some characters that were not recognized in the 

attack labels with which the web attacks are named.  Hence there was a lack of understanding 

of what type of attack was represented in (For instance Web Attack � Brute Force). These 

symbols which were previously not identified were modified so that all of the characters in 

this data are made uniform to aid machine learning algorithms. The unknown characters 

were replaced with standard characters to maintain consistency in naming. For example: 

• "Web Attack �Brute Force" was renamed to "Web Attack-Brute Force" 

• "Web Attack �XSS" was renamed to "Web Attack-XSS" 

• "Web Attack �Sql Injection" was renamed to "Web Attack-Sql Injection" 

Cleaning the Data was important so that there are no issues while training the models due to 

the different labels assigned to different datasets. 
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Table 2.3 provides an overview of the extracted files: 
Table 2-3 Overview of Extracted Files from the Dataset 

File Name Description 

Monday-WorkingHours.pcap_ISCX.csv Network traffic from Monday, 
including benign data 

Tuesday-WorkingHours.pcap_ISCX.csv Network traffic from Tuesday, 
including benign data 

Wednesday-workingHours.pcap_ISCX.csv Network traffic from Wednesday, 
including benign data 

Thursday-WorkingHours-Morning-
WebAttacks.pcap_ISCX.csv 

Traffic from Thursday morning, 
including web attacks 

Thursday-WorkingHours-Afternoon-
Infilteration.pcap_ISCX.csv 

Traffic from Thursday afternoon, 
including infiltration attempts 

Friday-WorkingHours-Morning.pcap_ISCX.csv 
Traffic from Friday morning, including 

benign data 

Friday-WorkingHours-Afternoon-
PortScan.pcap_ISCX.csv 

Traffic from Friday afternoon, 
including port scanning attacks 

Friday-WorkingHours-Afternoon-
DDos.pcap_ISCX.csv 

Traffic from Friday afternoon, 
including DDoS attacks 

2.2.1.2.Combining the Dataset Files 

All the CSV files were cleaned and labels normalized after which all of them were made into 

one CSV file that would be used to train the model. This compilation made it possible to 

analyze the whole network activity including the normal (benign) behavior as well as the 

attacks. Merging the files enabled shuffling and splitting of the dataset during the model 

training and evaluation phases, effectively. 
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The combined process involved reading each of the csv files and merging them in one 

DataFrame. This gave us a very rich dataset which includes many aspects of network 

activity: benign traffic and attack. The purpose was to provide the machine learning model 

with a varied training dataset that closely represented actual network conditions. 

2.2.2. Data Integrity and Feature Check 

Once the CSV files were merged, a count of the various class labels was carried out to check 

the data integrity and estimate the distribution of different labels of dataset. The dataset 

consisting of Normal and Attack records can be seen in Table 2.4: 

Table 2-4 Distribution of Traffic Types in the CICIDS2017 Dataset 

Traffic Type Record 
Count 

BENIGN 2,273,097 
DoS Hulk 231,073 
PortScan 158,930 
DDoS 128,027 
DoS GoldenEye 10,293 
FTP-Patator 7,938 
SSH-Patator 5,897 
DoS slowloris 5,796 
DoS Slowhttptest 5,499 
Bot 1,966 
Web Attack - Brute Force 1,507 
Web Attack - XSS 652 
Infiltration 36 
Web Attack - SQL Injection 21 
Heartbleed 11 

This thorough assessment of the distribution of labels showed that the data will provide a 

wide variety of traffic scenario, which is crucial for training the IDS to detect the frequent 

as well as the rare types of attacks. It was remarked that certain types of attacks like 

Heartbleed and SQL Injection didn’t happen as often as others.  We must consider this 

skewness at the time of model training to avoid bias. 
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The dataset was cleaned and merged before saving to Google Drive for the next stage model 

training.  This tactic allows them to save the data in a clean and formatted way, along with 

a checkpoint for running the same experiments again or making changes without repeating 

data preparation. The dataset was then saved as MLCVE.csv and also backed up at  Google 

Drive folder. 

2.2.3. Dataset Preprocessing Variants 

After getting the original MachineLearning version of the CICIDS2017, we had to perform 

many preprocessing to get a more balanced dataset for model training. This section focuses 

on done preprocessing on original dataset and subsequent variants formed of these changes. 

2.2.3.1.Overview of Preprocessing Techniques 

To prepare the CICIDS2017 dataset for model training, this research employed multiple 

preprocessing techniques. Different variations of preprocessing were used to show how data, 

if transformed, affects accuracy, generalizability and performance. In this section, we will 

focus on the first dataset called MLCVE dataset which had almost no pre-processing as most 

of the features from MachineLearningcvs version of CICIDS2017 dataset were retained. 

2.2.3.2.Dataset 1: The CICIDS2017 Machine Learning Dataset (Original Dataset) 

The MLCVE Dataset used in this research is not a variant created for this study but is instead 

the MachineLearningCVS.zip file from the CICIDS2017 dataset. We used this dataset as 

a baseline in its original form to check for further preprocessing before moving on to training 

machine learning models. We use it as a guide for our enhancements. It also helps us utilize 

diverse preprocessing methods in texts that we enhanced. 

2.2.3.3. CICIDS2017 Dataset Description 

The CICIDS2017 dataset is a good dataset developed by the Canadian Institute for 

Cybersecurity. It represents real-world network traffic. This file was created using 

CICFlowMeter, which uses PCAP files to extract flow-based features. CICFlowMeter is a 

tool used for generating the traffic flows which are developed for the CIC. It is used for 

developing 84 types of traffic features. It creates a graphical report after analysing pcap file. 

The data set consists of labeled network flows representing both benign and malicious 

activity. Researchers have developed and validated network intrusion detection systems 
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(IDS) using this data set. 

The dataset has been taken from MachineLearningCVS (MLCVS) version as it contains 

CSV files that are labeled for use directly on the MachineLearning Models. It has provided 

details at flow level.  This dataset version has 79 features that deal with many pieces of 

information about that packet length various statistics, protocol, and other flags relevant to 

the flow on the network. 

2.2.3.3.1. Features and Label Information 

The MLCVE Dataset consists of 84 features which are a mixture of basic flow parameters 

and statistics along with network parameters. Such features can help classify normal versus 

malicious behaviors on the network. Table 2.5 and Table 2.6 below provides an overview 

of the features included in the dataset, along with their corresponding names in 

CICFlowMeter and a brief explanation. Feature Category is based on CICFlowMeter. 
Table 2-5 Explanation of Features in the CICIDS2017 Dataset (Original Dataset) 

Feature 
Category 

Feature Name 
(CICIDS2017) 

Feature Name 
(CICFlowMeter) Description 

Basic Flow 
Features Flow ID Flow ID Unique identifier for a flow. 

Basic Flow 
Features Source IP Source IP IP address of the source. 

Basic Flow 
Features Source Port Source Port Port number used by the source. 

Basic Flow 
Features Destination IP Dst IP IP address of the destination. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
Flow-based 

Timing 
Features 

Idle Min Idle Min Minimum time a flow was idle. 

Label Label Label 
The class label indicating whether 
the flow is benign or belongs to a 

particular attack category 

Detailed Table of Table 2.5 is at Appendix. 
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Table 2-6 Overview of Features in the CICIDS2017 Dataset (Original Dataset) 

SNo Feature Name 
(CICIDS2017) SNo Feature Name 

(CICIDS2017) SNo Feature Name 
(CICIDS2017) SNo Feature Name 

(CICIDS2017) 
1 Flow ID 22 Flow Packets/s 43 Fwd PSH Flags 64 Down/Up Ratio 

2 Source IP 23 Flow IAT 
Mean 44 Bwd PSH Flags 65 Average Packet Size 

3 Source Port 24 Flow IAT Std 45 Fwd URG Flags 66 Avg Fwd Segment Size 
4 Destination IP 25 Flow IAT Max 46 Bwd URG Flags 67 Avg Bwd Segment Size 

5 Destination 
Port 26 Flow IAT Min 47 Fwd Header 

Length 68 Fwd Avg Bytes/Bulk 

6 Protocol 27 Fwd IAT Total 48 Bwd Header 
Length 69 Fwd Avg Packets/Bulk 

7 Timestamp 28 Fwd IAT Mean 49 Fwd Packets/s 70 Fwd Avg Bulk Rate 
8 Flow Duration 29 Fwd IAT Std 50 Bwd Packets/s 71 Bwd Avg Bytes/Bulk 

9 Total Fwd 
Packets 30 Fwd IAT Max 51 Min Packet 

Length 72 Bwd Avg Packets/Bulk 

10 
Total 

Backward 
Packets 

31 Fwd IAT Min 52 Max Packet 
Length 73 Bwd Avg Bulk Rate 

11 Total Length 
of Fwd Packets 32 Bwd IAT Total 53 Packet Length 

Mean 74 Subflow Fwd Packets 

12 
Total Length 

of Bwd 
Packets 

33 Bwd IAT 
Mean 54 Packet Length Std 75 Subflow Fwd Bytes 

13 Fwd Packet 
Length Max 34 Bwd IAT Std 55 Packet Length 

Variance 76 Subflow Bwd Packets 

14 Fwd Packet 
Length Min 35 Bwd IAT Max 56 FIN Flag Count 77 Subflow Bwd Bytes 

15 Fwd Packet 
Length Mean 36 Bwd IAT Min 57 SYN Flag Count 78 Init_Win_bytes_forward 

16 Fwd Packet 
Length Std 37 Fwd PSH 

Flags 58 RST Flag Count 79 Init_Win_bytes_backward 

17 Bwd Packet 
Length Max 38 Bwd PSH 

Flags 59 PSH Flag Count 80 Fwd Act Data Pkts 

18 Bwd Packet 
Length Min 39 Fwd URG 

Flags 60 ACK Flag Count 81 Min Segment Size 
Forward 

19 Bwd Packet 
Length Mean 40 Bwd URG 

Flags 61 URG Flag Count 82 Active Mean 

20 Bwd Packet 
Length Std 41 Fwd Header 

Length 62 CWR Flag Count 83 Active Std 

21 Flow Bytes/s 42 Bwd Header 
Length 63 ECE Flag Count 84 Active Max 
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2.2.3.3.2. Label Count Distribution 

A count of various class labels was involved in the CICIDS2017 Dataset to get a further 

insight into their distribution. The count of this label indicates the imbalance between normal 

and malicious activities, which is vital while training ML models. Table 2.7 provides a 

summary of both normal and attack records present in the dataset: 
Table 2-7 Distribution of Labels in the CICIDS2017 Dataset 

Traffic Type Record Count 

BENIGN 2,273,097 

DoS Hulk 231,073 

PortScan 158,930 

DDoS 128,027 

DoS GoldenEye 10,293 

FTP-Patator 7,938 

SSH-Patator 5,897 

DoS Slowloris 5,796 

DoS Slowhttptest 5,499 

Bot 1,966 

Web Attack - Brute Force 1,507 

Web Attack - XSS 652 

Infiltration 36 

Web Attack - SQL Injection 21 

Heartbleed 11 

 

This distribution at Table 2.7 reveals that the dataset is highly imbalanced, with certain 

attack types having significantly fewer samples compared to the benign traffic. Such 

imbalance could bias the model towards the majority class, making it less effective at 

detecting the other attack types. Specific preprocessing techniques, such as removing lesser 

data or resampling them, may be considered to handle this issue in subsequent steps. Still, 

resampling labels with the very low data such as Heartbleed would result on producing 
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synthetic data. It would also have a high probability of overfitting because of lack of the data 

to resample. 

2.2.3.3.3.  Feature Dropping 

We drop features of the original data for training to make the model more efficient and 

generalizable. We decided to take off some features because they don’t help predict 

anything, they make the model feel too similar to the example we train, or they just bias the 

model to memorize and not generalize. 

To start off, features that had constant values throughout the dataset were dropped. These 

constant features are Fwd URG Flags, Bwd URG Flags, and URG Flag Count. Since these 

features did not vary across different network flows, they offered no useful information for 

distinguishing between benign and malicious traffic. Including such redundant information 

could potentially increase computational overhead without providing any added value in 

terms of model accuracy. By removing these features, we aimed to reduce unnecessary 

complexity and ensure that the machine learning algorithms focused only on features with 

meaningful variability. 

Next, certain unique identifiers were also dropped, such as Flow ID. The Flow ID uniquely 

identifies each flow but has no underlying pattern that could generalize across different 

flows. Since the goal of machine learning is to identify patterns applicable to unseen data, 

retaining features like Flow ID would likely cause the model to overfit. The model would 

end up "memorizing" specific flow identifiers rather than learning generalizable features that 

distinguish between benign and malicious activity. 

Also, the features that might have worked as shortcuts for the model was removed. The 

Source IP (Src IP), Destination IP (Dst IP), timestamp, etc. were also part of it. These 

attributes may allow the model to pick up on unintended shortcuts that do not relate to flow 

behavior, but have to do with malicious activities' addresses or dates. For example, this 

model could learn to associate IP addresses with attacks, reducing its effectiveness if IPs 

seen in the real world are new. In the same way, Timestamp might make the model link the 

timing of attacks and could help in the identification of attacks any only at the time of a 

certain campaign. Such behavior may limit the model's detection of unfamiliar attacks and 

impact generalizability. By taking away these attributes, the model would learn better based 
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on malicious activity patterns rather than meta-data specifics which made it robust. 

Lastly, the Source Port (Src Port) feature was removed due to its randomness. Ports are 

assigned dynamically, so using Source Port to train the model could lead to overfitting. That 

is, specific numbers will be associated with attack and benign flows, and that is without any 

valid behavioral reason. When met with different port numbers, they will falsely detect such 

packets as attacks. This risk was mitigated by dropping the Source Port, to prevent the model 

from making false correlations. 

During the feature dropping, we also check the shape of the dataset. At first, if from 84 

features 6 features are removed, then 78 features will be in the final dataset. When I checked 

the shape of the data frame my dataset had more rows/columns. I expected to have 78 

features, but I ended up having 79 instead. So, I checked the features list of the original 

dataset. I found a column called Fwd Header Length.1 This column was the same as 'Fwd 

Header Length'. Hence, 'Fwd Header Length.1' was deleted eliminating the mismatch. The 

dataset was finalized and made ready for preprocessing after this minor correction. 

Omitting these features was a must to ensure that the models trained on the data have the 

best chance of generalising well beyond the training data. This ensures that they detect novel 

attacks rather than just overfitting to values, metadata, or situations. To summarize, this 

preprocessing was needed to move forward with the model development to achieve a 

complexity/accuracy/robustness balance and for improving its reliability. 

The CICIDS2017 Dataset developed in this research will be the baseline dataset for 

proposing and evaluating the intrusion detection models. This system excluded features 

which could introduce redundancy or overfitting or present obstacles to generalization, while 

retaining key flow-level features extracted from CICFlowMeter. This version of the dataset 

was a baseline, being the closest to the original in data but with certain omissions to improve 

model quality. One by one, preprocessing techniques were applied to the dataset. 
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2.2.4. Dataset Preprocessing for Clean Dataset Creation 

This part focuses on creating a clean dataset for model training purposes. 

2.2.4.1.Overview of Preprocessing Goals 

The goal of this cleaning process was to create a clean and balanced dataset for training the 

model effectively. Though the CICIDS2017 dataset was integrated and prepared, we still 

had issues like imbalanced labels, underrepresented classes and data inconsistency. This prep 

process is designed to cut down on these problems through label cutback, removal of 

repeated or erroneous data, and similar fixes on the missing or invalid data so that the final 

dataset produced a reliable one. 

2.2.4.2.Label Reduction and Data Imbalance Mitigation 

Major problem with the CICIDS2017 dataset was the extreme imbalance in the distribution 

of labels. According to the earlier Label Count Distribution (Table 2.7), some attacks had 

far lesser samples than other attacks and would have rendered a very imbalanced dataset if 

employed as is for model training. In particular, the attack types Bot, Web Attack – Brute 

Force, Web Attack – XSS, Infiltration, Web Attack – SQL Injection, and Heartbleed 

accounted for only 4,193 records. The underrepresented classes formed minor proportions 

of the entire dataset relative to well-represented classes like BENIGN or DoS Hulk. 

Having so few records for these labels may have caused a lot of bias in the model. If a model 

is trained with labels that are infrequently seen, it will miss out on or incorrectly label these 

types of attacks, making it unable to detect actual network attacks. Therefore, it was decided 

to eliminate these branches from the dataset and use only those branches which were 

adequately represented. By using this label reduction process, they were able to remove data 

sparsity, simplify training and improve generalizability. 
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2.2.4.3.Data Redundancy Check and Reduction of BENIGN Records 

This part focuses on data redundancy and reduction of BENIGN records for a more balanced 

dataset. 

2.2.4.3.1. Data Redundancy Check 

First thing I did after minimizing the under-represented labels was to check for redundant or 

duplicate instances in the dataset. In case they are present in the dataset, they will unwantedly 

bias the model by reinforcing certain representations. Comprehensive data redundancy check 

with duplicate rows will be performed for this purpose. Table 2.8 records the label count of 

duplicate rows found in the original dataset. 
Table 2-8 Label Count for Duplicate Rows in the Original Dataset 

Traffic Type Duplicate Count 
BENIGN 236,257 
PortScan 101,501 
DoS Hulk 59,564 
SSH-Patator 2,826 
FTP-Patator 2,457 
DoS Slowloris 507 
DoS Slowhttptest 323 
Web Attack - Brute Force 62 
DDoS 20 
Bot 19 
DoS GoldenEye 14 

 

The data redundancy check found many duplicates in the data set for several labels. The 

label BENIGN had 236,257 duplicate records alone in the dataset. This is a huge part of the 

dataset and would have caused biased learning. PortScan and DoS Hulk showed high 

redundancy with 101,501 and 59,564 repeated records respectively. These duplicates were 

removed so the dataset would represent true, diverse network traffic. The model worked 

better on new data because it was trained with data of better quality, as redundant entries 

have been removed. 
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2.2.4.3.2. Reduction of BENIGN Records 

After balancing the data, the next process targeted the huge presence of BENIGN records in 

the data. Over 2.2 million records were provided in the BENIGN label which comprised of 

an extremely large number of records. This imbalance could cause the m i t rs to learn too 

much towards BENIGN classification making it difficult to learn about malicious activities. 

To deal with this, BENIGN records were reduced randomly such that they can be balanced 

across different classes and not biased. By utilizing this technique, a great deal of BENIGN 

instances were retained so that the model is able to learn about its behaviour while also 

preventing this label from dominating the learning. The overall model accuracy for all traffic 

types (benign and malicious) was enhanced by decreasing the number of BENIGN samples.  

In addition, with proper class balance, the model would be able to learn better and identify 

more patterns of attacks without being biased towards the majority class. 

2.2.4.4.Handling Missing and Invalid Data 

Once the labels got reduced and ensure lesser data redundancy, the next step was to take care 

of inconsistency and invalid values that can degrade model training. We cleaned the data 

during this step to remove any entries that may compromise the robustness of the data set. 

Rows with NaN values were deleted.  NaN denotes missing or undefined information. Thus, 

NaNs in a dataset would yield incomplete or inaccurate training information and thus 

prediction. Dealing with NaN values was crucial for having a complete sample for training 

purposes. 

Rows with Infinity (Inf) values were also discovered and deleted in addition to NaN values. 

The value is often due to numerical operations, like a zero divided by zero or overflow errors. 

Keeping Inf numbers will make the model unstable, as ML algorithms do not understand the 

Inf value. It was important to eliminate them which ensured numerical stability during 

training.  

They also removed negative values from the data. Negative values are logically impossible 

in many of the features represented in the CICIDS2017 dataset like packet sizes or flow 

durations. The negative sign indicates some mistake either in data collection or data 
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corruption and cannot train the model as it is not the logical or accurate answer. Therefore, 

these were removed for the integrity of data. 

Finally, any empty row in a dataset has also deleted. These rows give no useful information 

and will only provide noise, adding unnecessary computation during training. 

Based on the steps of data cleaning together the final set of data was valid and consistent. 

The cleaned dataset was used for building a machine learning model that can detect all types 

of intrusions in the network. 

2.2.4.5.Splitting the Cleaned Dataset 

After the dataset has been cleaned and processed thoroughly, the last step was to the train-

test split of the dataset. The motive behind the split was to have the ability to create and 

evaluate machine learning models in an unbiased way. The model was able to work well on 

new data that it wasn't taught on, meaning it could do its job in a real-world application. 

Training Dataset which was utilized to train the ML models and it helped the model learn 

the patterns which are present in the network traffic or classifying the traffic as BENIGN or 

malicious. In addition, a different Test Dataset was kept to examine model efficiency which 

estimates how well the model would generalize to data it had never seen before.  

The cleaned dataset was split in such a way that the classes were balanced across the training 

and test datasets so that both subsets trained on all labels fairly. Table 2.9 shows the label 

distribution among the training and test datasets: 

 
Table 2-9 Label Count in the Training and Test Dataset After Cleaning and Splitting 

Label Name 
Train Dataset 

Record Count 

 Test Dataset 

Record Count 

BENIGN 120,362  30,174 

DDoS 65,180  16,296 

DoS GoldenEye 6,167  1,542 

DoS Hulk 130,810  32,771 
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Label Name 
Train Dataset 

Record Count 

 Test Dataset 

Record Count 

DoS Slowhttptest 1,677  465 

DoS Slowloris 3,056  831 

FTP-Patator 4,930  1,288 

PortScan 92,109  31,748 

SSH-Patator 2,576  1,176 

 

These tables describe the balance obtained among various classes in training and test 

datasets. The BENIGN label still had enough records, but it was reduced to a significant 

amount compared to other labels so that it doesn’t dominate the learning. This balance in the 

representation means that the model has sufficient samples from both these classes so that it 

may learn to distinguish between not just the benign traffic but also the many types of 

attacks. The data pre-processing steps explained in this section were a key factor for 

converting the raw CICIDS2017 dataset into a reliable representative dataset that could be 

used to train an ML model.  

As a result of these endeavours, the final dataset was created to be clean, consistent and 

adequately balanced so as to be a good base for building a strong model of intrusion 

detection. The machine learning model was expected to have enhanced accuracy, 

generalizability, and reliability for the detection of common and rare network intrusions by 

solving data quality issues in totality. 

 

2.2.5. Preprocessing Dataset with Destination Port Feature Removal 

This part focuses on preprocessing dataset towards Destination Port feature removal. 

2.2.5.1.Rationale for Further Preprocessing 

The next phase of data preparation focused on intricate data operations where cleaning and 

splitting already executed in Section 4 were executed with only one modification. The 

Destination Port feature was removed from the dataset. They took this decision to avoid 
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manipulation in the Destination Port as it was found easy to manipulate this port making a 

no good feature to distinguish benign and mediocre traffic in ML. 

Attackers can easily manipulate both Source Port and Destination Port. Before Source Port 

got removed for the same reason. Then, the model may become overfit. These are 

correlations valid under one configuration of the network but not under all configurations 

over the environment. By taking away the Source Port and Destination Port, it forced the 

model to learn the invariant and meaningful behavior of the network traffic instead of relying 

on association based on port information that may be misleading. 

2.2.5.2.Increased Data Redundancy After Destination Port Removal 

After disabling the Destination Port feature, it could be seen that the original dataset had a 

lot of redundant data, especially the BENIGN label.  In the absence of Destination Port, 

many network flows that previously had small differences became identical, thus increasing 

the number of duplicate rows. In particular, the number of duplicates rose to 687424 from 

404564 during the last cycle of Preprocessing. The duplicate row frequency after the 

Destination Port has been dropped is given in Table 2.10 : 
Table 2-10 Label Count for Duplicate Rows After Dropping Destination Port 

Traffic Type Duplicate Count 

BENIGN 464,385 

PortScan 157,328 

DoS Hulk 59,564 

SSH-Patator 2,826 

FTP-Patator 2,457 

DoS Slowloris 507 

DoS Slowhttptest 323 

DDoS 20 

DoS GoldenEye 14 

The BENIGN masking tag had a lot of redundancy inserted with 464,385 duplicates, almost 

double the original. In the same way, the PortScan label highly increased redundancy, with 
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157,328 records found to be repeated. The increased redundancy warranted extra processing 

to check for duplicates that might add slackness to the entire process. 

2.2.5.3.Handling Increased Redundancy and Enhancements Over the Previous Stage 

Duplicate entries were also removed in the same way as we did earlier in view of the 

increased data redundancy. To ensure that the data remains free from duplication that could 

alter model treatment, 687,424 identified duplicates were dropped from the data.  

Apart from duplicates removal, the overall preprocessing strategy was kept the same as in 

Section 4. That is, we reapplied label reduction to remove underrepresented classes and 

randomly reduced the BENIGN label to maintain the balance thereafter.  We cleaned the 

remaining inconsistencies like any NaN value, Inf value, negative value and empty rows. 

The big improvement over the last stage was designed to help the model generalize better. 

To ensure that the model did not learn to rely on the Destination Port, this feature was 

removed to prevent easy manipulation. eliminating both Source Port and Destination Port 

meant that we would have to focus on complex features that indicated malware, as opposed 

to simple features where a port is correlated with a traffic type. Its objective was to ensure 

that the model learnt robust features that will generalize to different network conditions. 

The extra discontinuity indicated that Destination Port helped to differentiate flows that were 

otherwise similar. By eliminating this feature and handling the resultant duplicates, the 

shuffled dataset was made to be more uniform, in terms of flowing behaviour and traffic 

characterization rather than using metadata like port numbers. 

2.2.5.4.Splitting the Cleaned Dataset After Destination Port Removal 

After managing the increased redundancy and finalizing data cleaning, the dataset was split 

into training set and test set. The subsets used for developing machine learning models and 

the subsets used for testing will be distinct and split 80:20.  

Both datasets had a balanced class which means all the labels were present so the learning 

would take place effectively on a wide range of network behaviours. The label distributions 

of the training and test datasets after the removal of the Destination Port and further cleaning 

are presented in Table 2.11: 



 

52 

 

Table 2-11 Label Count in the Training and Test Dataset After Removing Destination Port and 

Cleaning 

Label Name Training Dataset  
Record Count 

Test Dataset  
Record Count 

BENIGN 115,400 30,174 
DDoS 65,180 16,296 

DoS GoldenEye 6,167 1,542 

DoS Hulk 130,810 32,771 
DoS Slowhttptest 1,677 465 

DoS slowloris 3,056 831 
FTP-Patator 4,930 1,288 

PortScan 1,382 31,748 
SSH-Patator 2,576 1,176 

 

The tables show that even though removing Destination Port results in an increase in 

redundancy, the cleaned and balanced training and test sets have a similar distribution to the 

preceding case. Keeping this balance is essential to allow the model to properly learn the 

properties of both benign and malicious traffic without being biased towards any particular 

class. 

Elimination of Source Port and Destination Port feature is an important enhancement in the 

preprocessing phase. These features are easy to manipulate, which may cause the model to 

form incorrect associations. 

This may reduce the model’s effectiveness in the real world. The model was better equipped 

to detect behavioral patterns and traffic characteristics because it was not fed port-related 

information at all; that info could easily be spoofed by an attacker.  It was expected that this 

method would result in a more generalized and stronger intrusion detection model that could 

detect various kinds of intrusion on the network under different network situations. 

2.2.5.5.Resulting Datasets of MLCVE_clean and MLCVE_clean_dest 

As a result of the preprocessing steps undertaken in Section 4 and Section 5, two distinct 

datasets were created: 

1. MLCVE_clean: After the pre-processing described in Section 4, the label reduction, 

duplicate rows, random downsampling of the BENIGN class, general cleaning of the 
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data to get rid of inconsistencies, was done to get this dataset. 

2. MLCVE_clean_dest: This dataset incorporates all the preprocessing steps 

performed on MLCVE_clean, with the key distinction that the Destination Port 

feature was also removed. The rationale for dropping Destination Port was to reduce 

the risk of overfitting due to easily manipulated metadata and to ensure the model to 

learn more generalized patterns of network traffic behavior that are less likely to be 

tied to specific ports. 

These two datasets MLCVE_clean and MLCVE_clean_dest aim to analyse how removing 

the Destination Port affects the generalizability and robustness of the model. By checking 

how well the machine learning models work on the two datasets, we can see how significant 

Destination Port is for a network intrusion detection task. We can also see whether removal 

of Destination Port can help create a robust generalizable model. The findings of this 

comparative study will help decide if models should learn deeper flow based behaviour 

rather than metadata which can be easily modified. 

2.2.5.6.Creation of a Binary Classification Dataset 

To simplify the classification task further and to assess the effectiveness of anomaly 

detection regardless of the attack type, a binary classification dataset was created from the 

two previously processed datasets MLCVE_clean and MLCVE_clean_dest. According to 

this strategy, all traffic will be labelled either as normal (benign) or abnormal (anomalous) 

instead of classifying between the types of attacks present in the dataset. The dataset is 

suitable for models that only have to differentiate between ‘good’ traffic and ‘bad’ traffic. 

In the original datasets, the labels signified the type of attack. Hence, a multi-class 

classification. Nonetheless, the labels in the binary classification dataset were combined to 

simplify classification. The label BENIGN was unchanged and assigned 0, meaning normal 

traffic. The other labels representing different attack types were put under one label called 

ABNORMAL which will be assigned as 1. This includes other attacks such as DDoS, 

PortScan, DoS Hulk, FTP-Patator etc. which were labelled as abnormal. 

This made the classification task easier since we would have to tell if the given traffic 

instance was normal or malicious instead of many classes of attacks. 
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2.2.5.6.1. Label Distribution in the Binary Dataset 

Following the conversion, the MLCVE_clean_dest dataset was split into training and 

testing datasets. Below Table 2.12 is the label distributions for both splits: 
Table 2-12 Label Counts in the Binary Training Dataset: 

Label 
Training Dataset 

Count 

Test Dataset 

Count 

BENIGN (0) 115,400 30,174 

ABNORMAL (1) 215,778 86,117 

The binary training data set consist of 215,778 instances of Abnormal and 115,400 instances 

of Benign. Thus, the dataset still remained a bit unbalanced, that is abnormal traffic was 

more than normal traffic. Likewise, there were 86,117 ABNORMAL instances and 30,174 

BENIGN instances in testing data. 

A binary classification dataset was created using MLCVE_clean and MLCVE_clean_dest 

which simplified the intrusion detection problem. Transforming the dataset into a binary 

format means the focus shifted from distinguishing one attack from the other to classifying 

whether the traffic is benign or malicious. This shift seems appropriate for various usages 

where the focus is on spotting any dubious activity without the need for attack type 

specification.  The resulting dataset is still imbalanced but presents a more balanced learning 

opportunity compared to the original multi-class datasets, thus allowing the training of 

binary classifiers for generalized anomaly detection. 

2.2.6. Model Training 

Model training will be explained in here. 

2.2.6.1.Training the Dense Neural Network (DNN) 

To build a strong intrusion detection model TensorFlow Keras was used to implement a 

Dense Neural Network (DNN) The training process is flexible or can be changed depending 

on the outcome of the feature selection and feature importance analysis for obtaining better 

efficiency, generalizability, and performance of the model. 
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2.2.6.1.1. Data Preparation and Feature Selection 

The training datasets MLCVE_clean and MLCVE_clean_dest were preprocessed as 

described in previous sections.  An optional feature selection technique based on the 

importance score was included in the pipeline of training. To facilitate dynamic 

optimization, properties that were not integral to the construction of the empirical model 

were not used in training. 

We get score importance through a permutation-based approach on previously trained 

model.  The features were ranked according to their score and utilized to generate a 

prediction. The feature selection mechanism was designed for on/off functioning, depending 

on the specific experimental demands. For this training, we set the feature selection to false, 

which means we will not drop any features and will use all. This gives the model the most 

extensive input features, providing it with more information present in the network data used 

in probing. 

But using feature selection, the architecture of the model could also change the layers. The 

most important features were prioritized, which might have lowered the input 

dimensionality, thus causing fewer neurons in the input layer. This strategy made sure that 

the model concentrated on the most important features, which lessened the risk of overfitting 

and made the training more efficient. 

An example of feature importance computed from a trained model using MLCVE_clean is 

shown in the following Table 2.13 here: 
Table 2-13 Example of Feature Importance Scores 

Weight Feature 

0.2121 ± 0.0003 Packet Length Mean 

0.1951 ± 0.0002 PSH Flag Count 

0.1829 ± 0.0002 Average Packet Size 

0.1076 ± 0.0003 Packet Length Std 

0.0860 ± 0.0001 ACK Flag Count 

0.0688 ± 0.0002 Fwd IAT Total 
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Weight Feature 

0.0672 ± 0.0002 Destination Port 

0.0613 ± 0.0001 Bwd IAT Std 

0.0493 ± 0.0000 Bwd Packet Length Std 

0.0484 ± 0.0001 Fwd IAT Std 

... ... 

The Destination Port is a significant feature appearing in the table with good feature 

importance of 0.0672 ± 0.0002. Although the Destination Port might be manipulated, it still 

has useful information to distinguish between various network flows. The Destination Port 

serves dual purposes. Its operational nature can be helpful for detection, however, its failure 

to detect was the cause for the removal phase of preprocessing for MLCVE_clean_dest. In 

this research, the trade-off between utility and robustness was a key consideration that drove 

different preprocessing paths to investigate the impact on model performance. 

The feature importance scores showed that features like Packet Length Mean, PSH Flag 

Count, Average Packet Size, Destination Port were significant predictors in the model, while 

the other features were not that significant. It was possible to use this kind of information to 

reduce the input layer size and become a streamlined model focusing on the most essential 

ones. 

2.2.6.1.2. Dense Neural Network Architecture 

The architecture of the Dense Neural Network (DNN) was designed to adapt based on the 

selected number of features. Designed architecture consisted of: 

• Input Layer: The input layer size is based on the number of features that the feature 

selection step retained. If feature selection is off, we take all features (ALL). But 

when feature selection was performed, the input layer was automatically set to be 

compatible with the reduced dimensionality of the selected features. 

• Hidden Layers: The used model has three hidden layers of 128, 64, and 32 neurons. 

Every one of those layers used a ReLU (rectified linear unit) activation function that 

reduces the vanishing gradient problem. In addition, it helps speed up the training. 
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• Output Layer: The output layer had 9 neurons representing different classes of 

network traffic (benign and malicious). We use the softmax activation function 

which generates a probability distribution over all 9 classes for multi-class 

classification. 

The Adam optimizer was employed for model compilation. Its adaptive learning rate 

capability was particularly useful in handling the sparse and noisy nature of network data. 

The loss function used was sparse categorical cross-entropy, well-suited for the multi-class 

classification problem. 

2.2.6.1.3. Model Training Process 

The training of a model follows certain steps and considerations to enhance the model 

performance for it to be robust. Initially, dynamic feature selection contributed greatly to the 

DNN input layer configuration.  According to the feature importance scores, input 

dimensionality was optimized. By performing feature selection, only the most significant 

features were kept to make the model less complex, and less computationally intensive. For 

instance, if only 20 of the original 84 features are found to be significant, the size of the input 

layer is modified. The model became simpler and the model training was focused on 

important features eliminating noise and hence limiting overfitted data. 

The dataset gets used for training and validation set. The model parameters were fitted using 

the training set, while the validation set was used as an independent set to evaluate the 

model’s generalization ability during training. By checking the model’s output on the 

validation set, it was easy to tune the hyperparameters in a dynamic way to avoid overfitting 

on the training set. 

To train the model effectively, a batch size of 256 was used and training was done for 250 

epochs. Due to the large batch size being used, the gradient estimates were more stable. 

Hence, the optimization was easy. Having an access to around 250 epochs for training is 

something that helps the model to get converged. To prevent overfitting, we used early 

stopping methods in our model. These systems allowed the training to stop once the model 

had shown satisfactory performance. Thus preventing the training from continuing so far 

that it would start to memorize.  
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The unequal number of data classes created a problem since BENIGN class was substantially 

larger than the attack classes. Class weights were assigned to the model to ensure enough 

importance is given to the minority classes. More weight was given to the underrepresented 

labels DDoS or SSH-Patator, allowing better learning of the characteristics of these classes. 

The main reason behind this was to prevent the model from being biased towards the 

majority. 

The training also makes sure that the data is shuffled in every epoch. So it shuffled the data 

to ensure that the model does not learn any unintended sequence-based correlations in the 

data. It was especially important as network traffic data can be inherently sequentially or 

temporally dependent. The training samples were shuffled for each epoch so that the model 

sees a different sequence of examples every time. 

The training process was further improved by two callbacks: early stop on F1 score and 

learning rate reduction on plateau. The early stopping callback was set up to keep track of 

the model's validation set F1 score.  The F1 score, which encompasses precision and recall, 

result in a balanced metric to stop training when the model was at a desirable level across all 

classes. F1 score balance was set as macro, resulting in same importance to each class result 

instead of true instances from the data-set. This allowed the model to keep the F1 score 

optimized for better generalization instead of letting the model focus on labels with high 

numbers of instances within the dataset. We set the learning rate ourselves and it would 

halved ever 5 steps when if there are no improvements in F1 score. The model's learning 

score was set to a low value, as well, so as to reduce chances of getting stuck in local minima. 

This was particularly useful for an unbalanced data set which would give false results if 

optimized only for accuracy. The learning rate reduction callback slowed down the learning 

rate whenever validation loss plateaued.  When a set of epochs did not yield an improvement, 

early stopping would terminate the training and reset the weights to the best of the f1 scores 

from the training run. This reduction in dynamic allowed the model make more finer 

adjustment during the liminal stages of training to make convergence more smooth. 

Training of the Dense Neural Network was performed using a combination of dynamic 

feature selection, class weighting, early stopping, learning rate modifications, and shuffling 

of the data. All of these measures combined ensured that the model was still able to learn 

from sufficient and diverse examples without requiring much computational power. With 
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the dynamic tuning of the input layer according to feature importance, class weighting, and 

adaptive training callbacks, the resulting model is strong and capable of detecting a common 

and rare network threat effectively. 

2.2.6.2.Training the Random Forest Classifier 

In addition to Dense Neural Network another model called Random Forest Classifier was 

used for Intrusion Detection. For tabular data, Random Forest algorithm is very suitable. 

This gave a good way to model the complex patterns from the network traffic data. The goal 

was to evaluate its performance against the neural net based method for acknowledging the 

best model for intrusion detection. 

2.2.6.2.1. Data Preparation and Feature Selection 

The MLCVE_clean datasets and MLCVE_clean_dest were used to train the Random Forest 

classifier as discussed in previous sections. Feature selection was useful in random forest 

model to enhance the performance. Random Forest has feature importance metrics, which 

allowed us to rank features based on their contributions to the decision-making process of 

the model. 

A Random Forest model was trained on the traffic data and the importance values of the 

features were derived. This was done to check which features were more important when 

distinguishing between malicious and benign traffic. The following Table 2.14 ranked 

features emerged from analysis: 
Table 2-14 Feature Importance Scores from Random Forest Model 

Rank Feature Name Importance Value 

1 Destination Port 0.0680 

2 Init_Win_bytes_backward 0.0624 

3 Fwd Packet Length Max 0.0349 

4 Flow IAT Mean 0.0345 

5 Init_Win_bytes_forward 0.0314 

... ... ... 
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Destination port feature was most important feature with importance value of 0.0680. This 

characteristic shows impressive power to separate the different network activities, and it also 

had a considerable feature importance during the training of the neural network. Destination 

Port was removed from the MLCVE_clean_dest dataset because it is not robust enough as it 

can be manipulated. It ranks quite highly here which suggests that it may be useful for 

classification in some cases. Thus, it can be anticipated that the Destination Port drop in the 

MLCVE_clean_dest dataset will decrease the Random Forest model performance. If this 

feature is not present, then the model may not be able to classify some network flows 

accurately. 

Init_Win_bytes_backward, Fwd Packet Length Max and Flow IAT Mean are some other 

features that scored high which relevant in identifying different types of networks traffics. 

At the feature selection step, it was possible to reduce the number of features before actual 

modelling took place. Thus, certain features were chosen to be left out because they had little 

effect on the classification. This method made training easier by reducing computation as 

well as noise by less important features which helped to give more robustness to the model. 

2.2.6.2.2. Random Forest Model Setup 

The Random Forest Classifier employed in this study was implemented using the scikit-learn 

library and aimed at capturing non-linear relationships in network traffic via ensemble 

learning. A Random Forest is comprised of decision trees that independently classify data 

and vote on the overall output. This kind of model is resilient and works well for datasets 

that have a lot of dimensions. 

The model was set up with different parameters to make it fairly accurate and doable. We 

set the number of decision trees (estimators) to 100. This balance of prediction quality and 

training performance worked well.  I chose Gini impurity as a criterion for splitting the 

nodes, which helps in finding the best possible splits. Each tree is allowed to grow 

unrestricted in max depth in order to capture all the details of the data as possible.  It is still 

worthwhile to try different max depths in order to better generalize the model. The model 

was also trained using max depth for better generalization and to compare the results.   

Random forests aren't liable to overfitting as the base decision tree. It gives a final decision 

based on several trees. Through averaging, variance is reduced while generalizing 
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capabilities improve as well. 

2.2.6.2.3. Model Training Process 

The Random Forest model training involves the splitting of training dataset into training and 

testing datasets. The Random Forest model was fitted on the training set and validated on 

the independent test set for Generalization evaluation. 

A big plus of Random Forests is that no scaling is needed and they only require unbiased 

features. Many models like neural networks require feature scaling. So your end result of 

your preprocessing will go directly to training in very common ML and DL libraries without 

further normalization and standardization. 

To cope with class imbalance, class weights were assigned dynamically based on label 

distribution in the dataset. In particular, the class_weight parameter was set to ‘balanced’, 

which ‘balances’ the weights inversely proportional to the class frequencies in the training 

data. This ensured that the minority class like DDoS, DoS Slowloris and others were given 

enough importance during model training and not overshadowed by the majority class which 

is BENIGN. This was necessary to balance the model that was capable of detecting both 

frequent and rare types of attacks. 

While training, another robustness was added to the Random Forest model through the use 

of a random subset of features for the construction of each decision tree. Random forest 

avoids overfitting by using random feature selection for each tree, which results in a more 

generalizable model. Randomized feature selection results in less chance of overfitting to a 

particular set of features. Moreover, limiting each node splitting to a certain max number of 

features made sure that the model was not very complex so as to learn noise by heart but 

rather learn the patterns. 

2.2.6.2.4. Feature Importance and Optimization 

The random forest model was optimized through feature importance analysis.  After training 

the model, the feature importance scores were extracted to obtain insights regarding the most 

important features for classifying. According to Table 6.2, the Destination Port, 

Init_Win_bytes_backward, Fwd Packet Length Max, and Flow IAT Mean were the most 

influential features. 



 

62 

 

Destination Port has a high ranking, suggesting that it can help differentiate activities 

associated with different networks, but it may be susceptible to attacker manipulation. This 

insight shows that it is important to select the right features for training the model. 

Manipulatable features can also provide significant predictions under certain circumstances. 

Analysis of Features Importance also helped in retraining the model which could exclude 

the optional features with lower score in further model training.  A retrain of the Random 

Forest classifier with a reduced number of features will make it computationally less 

intensive. That is, the training time will be reduced with a high level of accuracy. The model 

became more robust and safer from being overfitted as a result of this streamlined approach 

to make the model focus more on it. 

The training of Random Forest Classifier was done in an orderly manner using feature 

importance method. The model will use dynamic feature selection, class weighting, and 

random feature sampling to learn from the train data but not overfit.  

it can be seen that since Destination Port is an important feature in Random Forest the 

removal of this feature in MLCVE_clean_dest will affect the performance of the model 

negatively If this functionality is not available, the Random Forest will not work as 

accurately specifically with respect to some attack instances and benign traffic relying on 

port-based functionality. The final aim of using Random Forest was to obtain a classifier 

that is robust yet versatile whose main aim is to detect and classify any sort of network attack. 

2.2.6.3.Training on the Binary Classification Dataset 

After training the MLCVE_train dataset with multi-class classification models, the dense 

neural network (DNN) model and the random forest classifier were also trained on 

MLCVE_clean and MLCVE_clean_dest binary classification dataset. The binary dataset 

merges all attack types into the same label ABNORMAL and keeps BENIGN as the label 

for normal traffic. This change made classification easy to evaluate general anomaly 

detection capabilities. 

2.2.6.3.1. Application of Multi-Class Model Training Configurations 

The dense neural network and random forest models were trained on the binary dataset using 

the same configurations that had been optimized for the multi-class classification case. The 
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aim was to use the best configurations to find out how well these models perform in a binary 

classification, that is, BENIGN and ABNORMAL network traffic, or rather, good and bad 

traffic. 

The Dense Neural Network had the same architecture and train-ing process with just a 

change to the output layer which was made suitable for the binary classification task. The 

output layer was modified to have a single neuron with a sigmoid activation function which 

allows the normal or anomalous class of a traffic flow. The hidden layers, batch size, epochs, 

early stopping and class weighting settings were kept the same as found in the original 

optimized version to keep the new and previous processes consistent. 

Likewise, the parameters that secured the best outcome during multi-class training were 

utilized to train the Random Forest Classifier. The number of estimators, criterion for node 

splitting, and class weighting all remained the same that is identical to the earlier 

configurations considered optimal. The Random Forest used the ensemble learning method 

to combine outputs of individual decision trees to predict the output of BENIGN as 

ABNORMAL.  

The binary classification approach narrowed the problem down to abnormal behavior 

detection only, regardless of what type of attack it is. It emulated real-world use cases where 

intrusion detection systems mainly focused on flagging suspicious activity. By using the 

same optimized parameters in the binary dataset, the generalization capacity of both DNN 

and Random Forest models was assessed with regard to their ability to recognize any form 

of network anomaly. 

2.2.7. Model Architecture Updates 

In this section, tests were done in order to observe the effect of different architecture design 

and configurations for DNN model. 

2.2.7.1.Layer Configuration Updates 

Following Dense Neural Network layer configurations at Table 2.15 were tested as an 

alternative to existing architecture configuration: Bottleneck Architecture, Sparse Wide 

Architecture, Pyramid Architecture, Regularization with Batch Normalization, Gradual 

Compression with Regularization, Single Hidden Layer (32 neurons), Single Hidden Layer 
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(64 neurons), Single Hidden Layer (128 neurons). The table below gives a brief explanation 

of the tested layer configurations. 
Table 2-15 Alternative Layer Configurations 

Configuration Full Name Architecture Features 

BottleNeck Bottleneck 

Architecture 

128 → 32 → 64 → 9 Narrow bottleneck layer 

for compression, 

expansion for 

reconstruction 

Sparse Wide Sparse Wide 

Architecture 

256 → 64 → 128 → 32 

→ 9 

Alternating wide and 

sparse layers for balanced 

feature learning 

Pyramid Pyramid 

Architecture 

512 → 256 → 128 → 64 

→ 32 → 9 

Gradual reduction with 

wide initial layers for 

feature diversity 

Reg. Batch 

Norm. 

Regularization with 

Batch 

Normalization 

128 → BatchNorm → 64 

→ BatchNorm → 32 → 9 

Batch normalization for 

stable training, dropout for 

regularization 

Gradual 

Compression 

Reg. 

Gradual 

Compression with 

Regularization 

256 → 128 → Dropout 

→ 64 → 32 → Dropout 

→ 9 

Dropout regularization 

with gradual compression 

to reduce overfitting 

Single 32 Single Hidden 

Layer (32 neurons) 

32 → 9 Minimalistic single hidden 

layer with 32 neurons 

2.2.7.2.Optimizer Configuration Update 

The learning rate optimizer used in the architecture was the Adam optimizer. Following 

Table 2.16 shows the alternative optimizers tested configuration update. 
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Table 2-16 Optimizer Configuration 

Optimizer Learning Rate Additional Features 

SGD 0.001 Momentum=0.9 (Accelerates convergence) 

RMSprop 0.001 Handles noisy gradients, useful for RNNs 

Adagrad 0.001 Adapts learning rate for each parameter, good for sparse data 

Adadelta 1.0 Addresses Adagrad's aggressive decay problem 

Nadam 0.001 Combines Adam and Nesterov momentum 

2.2.8. Automated Real-Time CICFlowMeter Filtering IDS 

The Automated Real-Time CICFlowMeter Filtering IDS is a system for real-time detection 

of network attack tools. The above goal was to design a scalable system that can capture, 

analyze and classify network traffic using trained models based on flow-based features from 

the CICIDS2017 dataset. The system underwent careful refinement over four distinct 

iterations. Each new version added one or more new detection functions to rectify the 

shortcomings of the previous one. The whole development and deployment of Automated 

Real-Time CICFlowMeter Filtering IDS took place on an NVIDIA Jetson AGX Orin. This 

platform was chosen due to its powerful computing capability for real-time edge processes. 

2.2.8.1.Version 1: Foundational Real-Time IDS System 

The first version of the system was able to introduce a model for an automated real-time 

intrusion detection which performed the flow-based extraction of features from traffic using 

CICFlowMeter and classified the output using Random Forest. At first, we used Tcpdump 

to capture network packets and generate Packet Capture (PCAP) files that were processed 

sequentially by CICFlowMeter to produce flow features.  We decided to use Tcpdump to 

capture packets as we noticed the built-in capture mode of CICFlowMeter was prone to 

dropping packets. 

The first version has main functions that include filter_and_rename_columns(df) and 

filter_and_rename_columns_reverse(df). They are meant to ensure that the features from 

CICflowmeter are consistent with the Random Forest model. Still, because these processes 

are carried out on a sequence, like capturing packets, extracting features, and predicting, a 
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large loss of packets was noticed. This happened because while the previous packets were 

being processed, there was a possibility of missing packets from the flows. 

2.2.8.2.Version 2: Enhanced Concurrent Processing and Threading 

Version 2 improved on Version 1’s limitations with multi-threading that allows concurrent 

processing. Two threads are used to not lose the packets while processing. One thread is 

used to capture the packets and the other thread is used to extract features and prediction. 

This made sure that the capture could go on without interruption and looking at previous 

packets.  

The start_sniffing() function was responsible for continuous packet capturing and the 

process_pcap_with_cicflowmeter() function monitored the directory for new PCAP files to 

perform automated feature extraction and prediction tasks. The use of concurrent processing 

was key to allowing the IDS to maintain a real-time character without affecting the accuracy 

or completeness of network flow analysis. 

2.2.8.3.Version 3: Flow Management with Scapy 

Version 3 went further and added scapy. Scapy is a Python library for sending and capturing 

packets. In other words, we improved our data stream efficiency. Version 3, unlike previous 

versions that concentrated on bulk PCAPs, gave more granular flow-level control.   The 

function track_flow(flow) was implemented to monitor individual network flows to manage 

their life-time. None of the flows will last more than 100 seconds. 

This version significantly reduced latency in the analysis. As soon as flows were processed 

when they were completed or reached the timeout. This change enabled the system to be 

much more dynamic by allowing it to focus on the completion of individual flows rather 

than processing all of them in bulk. 

2.2.8.4.Version 3 Variant: DL Integration with TensorFlow (v3_2) 

The v3_2 variant aimed to leverage the power of deep learning by integrating a Dense Neural 

Network (DNN) using TensorFlow. Given the dependency issues between CICFlowMeter 

and TensorFlow, a dual-environment solution was adopted. The cic_env was used for packet 

capturing and feature extraction, while tensor_env was utilized for TensorFlow-based 

model prediction. 
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The make_prediction_in_tensorflow_env() function facilitated the execution of the 

TensorFlow model in a separate environment to avoid conflicts. Predictions were generated 

using tensorflow_predict.py, which performed feature scaling, model inference, and label 

decoding. The adoption of TensorFlow allowed for improved detection of complex, non-

linear patterns in the data, enhancing the system's capability to identify sophisticated attacks. 

2.2.8.5.System Implementation on NVIDIA Jetson AGX Orin 

To ensure proper functionality, all versions of the Automated Real-Time CICFlowMeter 

Filtering IDS were deployed on the NVIDIA Jetson AGX Orin platform. We have selected 

the Jetson AGX Orin, which has powerful computational capabilities and with its GPU and 

CPU combination, it can handle real-time data capture, feature extraction, and model 

inference. This platform can perform many machine learning tasks at the edge, eliminating 

the delay that occurs when sending data to a central server for processing.  It was able to use 

TensorFlow for deep learning activities, making it useful for complex operations on v3_2 

that utilized the Dense Neural Network. The Jetson AGX Orin hardware accelerators were 

harnessed to speed data analysis, making it a viable candidate for the task. 

2.2.8.6.Summary of Versions and Evolution 

The Automated Real-Time CICFlowMeter Filtering IDS was developed in an iterative 

fashion because the authors wanted to improve network security. Every edition brought new 

features: 

• Version 1 established the core framework, using Tcpdump for packet capture and a 

Random Forest classifier for prediction. 

• Version 2 improved efficiency with concurrent packet capturing and processing, 

minimizing packet loss. 

• Version 3 refined the approach further by integrating flow management with Scapy, 

allowing for more precise and immediate processing of flows. 

• Version 3 Variant (v3_2) represented a major shift by incorporating deep learning, 

which brought new capabilities in detecting non-linear and sophisticated attack 

patterns using TensorFlow. 
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Overcoming challenges while designing a real-time and network anomaly detection requires 

layering functions to the IDS system to make them an effective solution. The iteration we 

did above accomplishes just that. The system's design and implementation with NVIDIA 

Jetson AGX Orin as the development and deployment platform indicates it is a versatile tool 

for edge computing and thus a suitable tool for modern real-time network security.
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3. RESULTS 

3.1. Multiple Classification Results 

3.1.1. Dense Neural Network (DNN) Results 

The performance of the Dense Neural Network (DNN) model was evaluated on the multi-

class datasets, MLCVE_clean and MLCVE_clean_dest, using several configurations. 

These configurations varied based on batch size, learning rate, and whether early stopping 

(ES) was applied during training. For the purpose of evaluating the model, the macro 

average of precision, recall, and F1-score metrics was emphasized as it provides a balanced 

view of performance across all classes, irrespective of class imbalance. 

The DNN results are presented below based on four key sets of experiments for each dataset. 

These results are explained individually before being compared to determine how different 

factors influenced the performance. 

3.1.1.1.MLCVE_clean Dataset Results 

The MLCVE_clean dataset was used in multiple training scenarios. Below, the macro 

average metrics for each configuration are presented, highlighting the model's performance 

on this dataset. 
Figure 3.1 MLCVE_clean (B/S: 64, LR: 0.01, FI: Disabled, ES: Enabled): 
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The model presented in Figure 3.1 achieved notable performance metrics, including a macro 

average precision of 0.848, a macro average recall of 0.931, and a macro average F1-score 

of 0.860. 

In this initial configuration, the DNN model showed good recall, indicating that the model 

was able to detect most of the attack classes well. However, the precision was slightly lower, 

meaning that there was a higher rate of false positives among predicted attack types. The 

macro average F1-score of 0.860 indicated a balanced performance, but there was room for 

improvement. 
Figure 3.2 MLCVE_clean (B/S: 256, LR: 0.01, FI: Disabled, ES: Enabled): 

 

The model presented in Figure 3.2 achieved notable performance metrics, including a macro 

average precision of 0.933, a macro average recall of 0.912, and a macro average F1-score 

of 0.916. 

By increasing the batch size to 256, there was a notable improvement in macro average 

precision to 0.933. This indicates that larger batch sizes helped the model achieve more 

stable gradient estimates, leading to fewer false positives. The macro average F1-score 

improved to 0.916, reflecting a better balance between precision and recall. 
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Figure 3.3 MLCVE_clean (B/S: 256, LR: 0.001, FI: Disabled, ES: Enabled): 

 
The model presented in Figure 3.3 achieved notable performance metrics, including a macro 

average precision of 0.957, a macro average recall of 0.973, and a macro average F1-score 

of 0.964. 

When the learning rate was reduced to 0.001, the DNN achieved significantly higher macro 

average metrics across the board. The F1-score reached 0.964, demonstrating that the model 

benefitted from slower, more precise learning, which led to better optimization. 
Figure 3.4 MLCVE_clean (B/S: 256, LR: 0.001, FI: Disabled, No ES): 
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The model presented in Figure 3.4 achieved notable performance metrics, including a macro 

average precision of 0.921, a macro average recall of 0.936, and a macro average F1-score 

of 0.919. 

When early stopping was disabled, the model performance declined slightly, with an F1-

score of 0.919 compared to 0.964 when early stopping was enabled. This indicates that the 

early stopping mechanism played a significant role in preventing overfitting, leading to 

better generalization when training was halted at the optimal point. 

3.1.1.2.MLCVE_clean_dest Dataset Results 

The MLCVE_clean_dest dataset, which excluded the Destination Port feature, was also 

tested under similar training conditions to understand how the absence of this feature 

affected the model's classification ability. 
Figure 3.5 MLCVE_clean_dest (B/S: 64, LR: 0.01, FI: Disabled, ES: Enabled): 

 

The model presented in Figure 3.5 achieved notable performance metrics, including a macro 

average precision of 0.835, a macro average recall of 0.858, and a macro average F1-score 

of 0.811. 

For the initial configuration, the performance metrics for the MLCVE_clean_dest dataset 

were consistently lower than those for the MLCVE_clean dataset. The macro average F1-
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score of 0.811 suggests that the removal of the Destination Port feature impacted the 

model's ability to effectively classify the network traffic, resulting in lower precision and 

recall. 
Figure 3.6 MLCVE_clean_dest (B/S: 256, LR: 0.01, FI: Disabled, ES: Enabled): 

 

The model presented in Figure 3.6 achieved notable performance metrics, including a macro 

average precision of 0.810, a macro average recall of 0.903, and a macro average F1-score 

of 0.820. 

Increasing the batch size to 256 improved the recall to 0.903, indicating that the model 

could detect more attack types correctly. However, precision dropped slightly to 0.810, 

suggesting an increased number of false positives. The F1-score was 0.820, indicating a 

moderate balance between precision and recall. 
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Figure 3.7 MLCVE_clean_dest (B/S: 256, LR: 0.001, FI: Disabled, ES: Enabled): 

 

The model presented in Figure 3.7 achieved notable performance metrics, including a macro 

average precision of 0.905, a macro average recall of 0.928, and a macro average F1-score 

of 0.909. 

Lowering the learning rate to 0.001 led to improvements in all metrics, with a macro 

average F1-score of 0.909. This shows that even in the absence of the Destination Port 

feature, a lower learning rate allowed the model to optimize better and converge towards 

more accurate predictions. 
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Figure 3.8 MLCVE_clean_dest (B/S: 256, LR: 0.001, FI: Disabled, No ES): 

 

The model presented in Figure 3.8 achieved notable performance metrics, including a macro 

average precision of 0.869, a macro average recall of 0.935, and a macro average F1-score 

of 0.882. 

Training without early stopping resulted in a decline in performance, as seen with the F1-

score of 0.882 compared to 0.909 when early stopping was enabled. This again suggests that 

early stopping is crucial to prevent overfitting and helps achieve better generalization in the 

final model. Now let’s see these results from a comparative perspective. 

3.1.1.3.Comparative Analysis of DNN Results 

The next section compares DNN performance on the MLCVE_clean and 

MLCVE_clean_dest datasets, noting interesting insights obtained from varying training 

configurations such as batch size, learning rate and early stopping (ES). 

A primary comparison was made between the performance of the DNN on the 

MLCVE_clean and MLCVE_clean_dest datasets. In this analysis, we looked at what would 

happen if we dropped the Destination Port feature, which was very important (according to 

feature importance analysis). Table 3.1 summarizes the results of the two datasets under the 

same training conditions. 
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Table 3-1 Comparison of DNN Macro Average Metrics between MLCVE_clean and 

MLCVE_clean_dest 

Dataset 
Batch 

Size 

Learning 

Rate 

Early 

Stopping 

Macro 

Precision 

Macro 

Recall 

Macro 

F1-Score 

MLCVE_clean 64 0.01 Enabled 0.848 0.931 0.860 

MLCVE_clean_dest 64 0.01 Enabled 0.835 0.858 0.811 

MLCVE_clean 256 0.01 Enabled 0.933 0.912 0.916 

MLCVE_clean_dest 256 0.01 Enabled 0.810 0.903 0.820 

 

The analysis of the Table 3.1, the MLCVE_clean dataset is better than MLCVE_clean_dest 

in all configurations.  Macro F1-score spikes for MLCVE_clean_dest in comparison with 

MLCVE_clean. Therefore, the Destination Port feature gave significant information than 

other features for classifying normal and attack traffic. Without this feature, the DNN could 

not classify traffic as effectively, especially the attack classes which might be heavily 

dependent on port information.  

Another vital benchmark was based on the effect of different batch sizes. The influence of 

model convergence and stability was evaluated by training the DNN with batch sizes of 64 

and 256. Table 3.2 shows the macro average metrics for the DNN trained using varying 

batch sizes for each dataset. 
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Table 3-2 Comparison of DNN Macro Average Metrics for Different Batch Sizes 

Dataset 
Batch 

Size 

Learning 

Rate 

Early 

Stopping 

Macro 

Precision 

Macro 

Recall 

Macro 

F1-Score 

MLCVE_clean 64 0.01 Enabled 0.848 0.931 0.860 

MLCVE_clean 256 0.01 Enabled 0.933 0.912 0.916 

MLCVE_clean_dest 64 0.01 Enabled 0.835 0.858 0.811 

MLCVE_clean_dest 256 0.01 Enabled 0.810 0.903 0.820 

For both MLCVE_clean and MLCVE_clean_dest, an increase in the batch size from 64 

to 256 resulted in improved macro average precision. For instance, precision for 

MLCVE_clean increased from 0.848 to 0.933. However, recall dropped slightly, indicating 

that a larger batch size led to fewer false positives but at the potential cost of missing certain 

attack types. 

The learning rate is a critical parameter that affects the model's convergence and overall 

performance. Table 3.3 summarizes the performance metrics of the DNN trained with 

learning rates of 0.01 and 0.001. 
Table 3-3 Comparison of DNN Macro Average Metrics for Different Learning Rates 

Dataset 
Batch 

Size 

Learning 

Rate 

Early 

Stopping 

Macro 

Precision 

Macro 

Recall 

Macro 

F1-Score 

MLCVE_clean 256 0.01 Enabled 0.933 0.912 0.916 

MLCVE_clean 256 0.001 Enabled 0.957 0.973 0.964 

MLCVE_clean_dest 256 0.01 Enabled 0.810 0.903 0.820 

MLCVE_clean_dest 256 0.001 Enabled 0.905 0.928 0.909 
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Lowering the learning rate from 0.01 to 0.001 resulted in significant improvements across 

all metrics for both datasets. For MLCVE_clean, the macro average F1-score increased 

from 0.916 to 0.964, indicating that a slower learning rate allowed the model to make more 

refined weight adjustments during training, reducing the risk of overshooting and leading to 

better optimization. 

Finally, the impact of early stopping (ES) was examined to assess whether its use helped 

prevent overfitting and improved generalization. Table 3.4 presents the metrics for models 

trained with and without early stopping enabled. 
Table 3-4 Comparison of DNN Macro Average Metrics with and without Early Stopping 

Dataset 
Batch 

Size 

Learning 

Rate 

Early 

Stopping 

Macro 

Precision 

Macro 

Recall 

Macro 

F1-Score 

MLCVE_clean 256 0.001 Enabled 0.957 0.973 0.964 

MLCVE_clean 256 0.001 Disabled 0.921 0.936 0.919 

MLCVE_clean_dest 256 0.001 Enabled 0.905 0.928 0.909 

MLCVE_clean_dest 256 0.001 Disabled 0.869 0.935 0.882 

Use of early stopping improved the performance of the model on all metrics. The F1 score 

macro average was 0.964 with early stopping on MLCVE_clean and 0.919 when it was off. 

MLCVE_clean_dest was grown to the similar trend. The early stopping criterion was 

effective at preventing overfitting, meaning that the model did not train long enough to start 

memorizing noise within the data. 

3.1.1.4.Summary of Comparative Insights 

The analysis to compare DNN model trained on both datasets shows us some important 

things. Adding Destination Port feature in MLCVE_clean dataset led to better model 

performance as compared to MLCVE_clean_dest dataset. The result shows Destination 

Port distinguishes between normal and attack traffic and this information plays an important 

role in enhancing the classification capability of the model. Still, we must consider the 
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Destination Port vulnerability that is susceptible to manipulation as well.  

Also, when we increased the batch sizes from 64 to 256, the precision and F1-score improved 

in general which indicated a more stable training along with a fewer false positive.  The 

increased batch sizes helped the model generalize better, which reduced false positives. 

However, there was also a small drop in recall indicating this came at the cost of the model’s 

ability to pick up all attacks. 

Decreasing the learning rate from 0.01 to 0.001 improved model performance across all 

metrics quite significantly. Using a slower learning rate would help adjust the model to better 

optimize the observed values of the image data. The end result was having more precise and 

accurate detection performance with more generalization capabilities. 

The use of stopping early proved to be an important factor in the optimal performance of the 

model. Models that were trained with early stopping had higher F1 scores than those that 

were not The model’s overfitting was avoided through early stopping, enhancing 

generalization on unseen data, which is critical for reliable network intrusion detection. 

The best settings for MLCVE_clean were batch-size 256, learning rate 0.001, and early 

stopping on. This achieved a macro avg f1 score of 0.964. The second-best performance was 

obtained when the batch size was 256, the learning rate was 0.001 and early stopping was 

enabled yielding a macro average F1-score of 0.909 for MLCVE_clean_dest dataset. These 

configurations show that tuning the hyperparameters is essential for the best model result in 

both cases. 

The result shows that the features pointed in this work are needed to be retained such as 

Destination Port and the hyper-parameters was needed to be tuned such as the batch size, 

learning rate, and early stopping, etc. Properly selecting a filter and tuning its parameters can 

greatly improve the capacity of the neural network to generalise. This could allow the neural 

network to detect and classify different types of traffic. 

3.1.1.5.Alternative Architecture Results 

The results for both datasets are shown in this section. It shows the results for multi-

classification by layer architecture to optimizer preference. 
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Table 3-5 DNN Alternative Layer Architecture Results for MLCVE_clean 

Dataset Macro F1-Score Accuracy % Layer Configuration 

MLCVE_clean 0.964 97.8 Original 

MLCVE_clean 0.967 98.7 BottleNeck 

MLCVE_clean 0.971 98.7 Sparse Wide 

MLCVE_clean 0.973 98.7 Pyramid 

MLCVE_clean 0.957 98.0 Reg. Batch Norm. 

MLCVE_clean 0.970 98.7 Gradual Compression Reg. 

MLCVE_clean 0.935 97.7 Single 32 

MLCVE_clean 0.931 98.2 Single 64 

MLCVE_clean 0.872 91.0 Single 128 

The Table 3.5 shows that Sparse Wide and Pyramid Layer configurations improve the 

performance of the model. As the difference between Pyramid and Sparse Wide are 

neglectable, Sparse Wide would be the more preferable choice because of its more cost-

effective architecture compared to Pyramid architecture.  

With Sparse Wide architecture, the accuracy improved over one percent. The f1 score 

improved almost one percent. 
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Table 3-6 Alternative Optimizer Architecture Results for MLCVE_clean 

Dataset Optimizer Learning 

Rate 

Accuracy 

(%) 

Macro F1-

Score 

Additional Features 

MLCVE_clean Adam 0.001 98.7 0.971 - 

MLCVE_clean SGD 0.001 95.7 0.879 Momentum=0.9 

(Accelerates 

convergence) 

MLCVE_clean RMSprop 0.001 87.4 0.812 Handles noisy 

gradients, useful for 

RNNs 

MLCVE_clean Adagrad 0.001 95.8 0.944 Adapts learning rate 

for each parameter, 

good for sparse data 

MLCVE_clean Adadelta 1.0 94.1 0.861 Addresses Adagrad's 

aggressive decay 

problem 

MLCVE_clean Nadam 0.001 90.7 0.847 Combines Adam and 

Nesterov momentum 

Table 3.6 shows that using the Adam optimizer is still more effective compared with other 

alternatives. Next is MLCVE_clean_dest results. 
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Table 3-7 DNN Alternative Layer Architecture Results for MLCVE_clean_dest 

Dataset Macro F1-Score Accuracy % Layer Configuration 

MLCVE_clean_dest 0.909 90.4 Original 

MLCVE_clean_dest 0.883 89.0 BottleNeck 

MLCVE_clean_dest 0.874 85.6 Sparse Wide 

MLCVE_clean_dest 0.894 89.4 Gradual Compression Reg. 

MLCVE_clean_dest 0.894 89.4 Reg. Batch Norm. 

MLCVE_clean_dest 0.894 88.2 Pyramid 

MLCVE_clean_dest 0.897 93.6 Single 128 

MLCVE_clean_dest 0.905 93.9 Single 64 

MLCVE_clean_dest 0.874 92.9 Single 32 

From Table 3.7, it is apparent that when Destination Port info is not given, model 

performance drops. Testing different layer architectures for binary classification saw some 

improvements. Single hidden layer approach improved the performance compared to 

original 3 hidden layer architecture. While f1 score somewhat remined similar, accuracy 

increased by 3.5 percent. Next is the improvements done by optimizer preference in Sparse 

Wide model. 
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Table 3-8 Alternative Optimizer Architecture Results for MLCVE_clean_dest 

Dataset Optimizer Learning 

Rate 

Accuracy 

(%) 

Macro F1-

Score 

Additional Features 

MLCVE_clean_dest Adam 0.001 90.4 0.909 - 

MLCVE_clean_dest Adadelta 1.0 95.5 0.910 Addresses Adagrad's 

aggressive decay 

problem 

MLCVE_clean_dest Nadam 0.001 94.0 0.896 Combines Adam and 

Nesterov momentum 

MLCVE_clean_dest Adagrad 0.001 91.9 0.882 Adapts learning rate 

for each parameter, 

good for sparse data 

MLCVE_clean_dest SGD 0.001 94.8 0.898 Momentum=0.9 

(Accelerates 

convergence) 

MLCVE_clean_dest RMSprop 0.001 94.8 0.906 Handles noisy 

gradients, useful for 

RNNs 

Table 3.8 shows that Adadelta optimizer improved the performance of the model compared 

to Adam optimizer. 
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Table 3-9 DNN Multiclassification Improvement 

Dataset Best Accuracy 

(%) 

Best Macro F1-

Score 

Adjustment 

MLCVE_clean 97.8 0.964 Original 

MLCVE_clean 98.7 0.971 Optimizer: Adam 

Architecture: Sparse Wide 

MLCVE_clean_dest 90.4 0.909 Original 

MLCVE_clean_dest 95.5 0.910 Optimizer: Adadelta 

Architecture: Single 64 

 

From Table 3.9, it can be understood that layer and optimizer adjustments improved the 

model performance. In the next part, we will look into the binary dataset results. 
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3.1.2. Random Forest Results 

The Random Forest (RF) model was evaluated on the MLCVE_clean and 

MLCVE_clean_dest datasets across different configurations. These configurations varied 

based on the maximum depth of decision trees used in the model, allowing us to observe 

the effect of limiting model complexity. The results of each experiment are presented below, 

focusing on the macro average metrics of precision, recall, and F1-score to provide a 

balanced perspective across all classes, regardless of class imbalance. 

3.1.2.1.MLCVE_clean Dataset Results 

The MLCVE_clean dataset, which includes the Destination Port feature, was used in 

several training configurations with Random Forest. 
Figure 3.9 MLCVE_clean - RandomForest Model (No Max Depth Limit): 

 
The model presented in Figure 3.9 achieved notable performance metrics. In the 

configuration without any restriction on the maximum depth of trees, the model achieved 

high precision across all classes, particularly with macro average precision at 0.982. This 

suggests the model effectively identified attack classes with minimal false positives. 

However, the recall was lower (0.797), indicating that the model missed certain attack 

instances, resulting in a macro average F1-score of 0.821. The overall accuracy was 95.7%. 
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Figure 3.10 MLCVE_clean - RandomForest Model (Max Depth: 5): 

 
The model presented in Figure 3.10 achieved notable performance metrics, including a 

macro average precision of 0.816, a macro average recall of 0.831, a macro average F1-score 

of 0.755, and an accuracy of 94.6%. 

Restricting the maximum depth to 5 significantly impacted the model’s precision and recall. 

The model's F1-score dropped to 0.755, reflecting reduced classification effectiveness. 

While simpler models (lower max depth) are typically less prone to overfitting, this 

reduction in complexity negatively impacted the model's ability to accurately classify attack 

classes. 
Figure 3.11 MLCVE_clean - RandomForest Model (Max Depth: 10): 
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The model presented in Figure 3.11 achieved notable performance metrics, including a 

macro average precision of 0.991, a macro average recall of 0.896, a macro average F1-score 

of 0.921, and an accuracy of 98.6% 

With a maximum depth of 10, the Random Forest model improved substantially across all 

metrics. The macro average precision of 0.991 and recall of 0.896 resulted in an F1-score 

of 0.921. The accuracy also increased to 98.6%, indicating a good balance between 

complexity and generalization. 

3.1.2.2.MLCVE_clean_dest Dataset Results 

The MLCVE_clean_dest dataset, in which the Destination Port feature was removed, was 

also evaluated using similar configurations. 
Figure 3.12 MLCVE_clean_dest - RandomForest Model (No Max Depth Limit): 

 

The model presented in Figure 3.12 achieved notable performance metrics, including a 

macro average precision of 0.957, a macro average recall of 0.746, a macro average F1-score 

of 0.766, and an accuracy of 84.2%. 

Without a maximum depth limit, the model's macro average F1-score dropped to 0.766 

when the Destination Port feature was removed. This suggests that the model struggled 

more without this feature, and the reduced recall (0.746) indicates that the model had 

difficulty identifying all instances of attack classes. 
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Figure 3.13 MLCVE_clean_dest - RandomForest Model (Max Depth: 5): 

 

The model presented in Figure 3.13 achieved notable performance metrics, including a 

macro average precision of 0.772, a macro average recall of 0.813, a macro average F1-score 

of 0.714, and an accuracy of 92.2% 

When the maximum depth was restricted to 5, the macro average F1-score dropped further 

to 0.714, and the accuracy was 92.2%. The loss of the Destination Port feature combined 

with reduced tree depth led to a substantial reduction in model performance. 
Figure 3.14 MLCVE_clean_180_dest - RandomForest Model (Max Depth: 10): 
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The model presented in Figure 3.14 achieved notable performance metrics, including a 

macro average precision of 0.947, a macro average recall of 0.759, a macro average F1-score 

of 0.768, and an accuracy of 84.4%. 

Increasing the maximum depth to 10 improved the model’s performance on 

MLCVE_clean_dest. However, the macro average F1-score of 0.768 was still lower 

compared to the MLCVE_clean dataset, indicating that the removal of the Destination Port 

feature negatively impacted overall classification effectiveness. 

3.1.2.3.Comparative Analysis of Random Forest Results 

A comparison of the Random Forest model results on MLCVE_clean and 

MLCVE_clean_dest datasets across different configurations reveals several important 

findings. Table 3.10 summarizes the key metrics for each configuration. 
Table 3-10 Comparison of Random Forest Macro Average Metrics for MLCVE_clean and 

MLCVE_clean_dest 

Dataset 
Max 

Depth 

Macro 

Precision 

Macro 

Recall 

Macro F1-

Score 
Accuracy 

MLCVE_clean None 0.982 0.797 0.821 95.7% 

MLCVE_clean_dest None 0.957 0.746 0.766 84.2% 

MLCVE_clean 5 0.816 0.831 0.755 94.6% 

MLCVE_clean_dest 5 0.772 0.813 0.714 92.2% 

MLCVE_clean 10 0.991 0.896 0.921 98.6% 

MLCVE_clean_dest 10 0.947 0.759 0.768 84.4% 

The comparison shows that MLCVE_clean is better than MLCVE_clean_dest in all 

configurations.  This shows that it is the features related to the Destination Port which is 

critical to the model as removal of it led to large drop in the precision, recall and the F1 

score. 
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For both datasets, we observed a decrease in all metrics after limiting the maximum depth 

of the trees to 5. This means the model was too simple to learn from the data for these stands. 

Raising the maximum depth to 10 allowed to have a decent trade-off between model 

complexity and performance. Particularly MLCVE_clean had a macro average F1-score of 

0.921. 

3.1.2.4.Summary of Comparative Insights 

Performance of Random Forest Model on both the MLCVE_clean and MLCVE_clean_dest 

mentioned about key thing that is features and complexity of the model. The Destinacion 

Port feature removal impacted the model's classification performance badly and the 

precision, recall and F1-score of all configurations reduced. This shows that Destination Port 

allows the differentiation of applications that generate different flows. 

Random Forest model performance was greatly impacted by limiting the maximum depth of 

trees used in it. Keeping the depth limited can avoid overfitting. But, it also decreases the 

ability to classify attack types in both datasets  The 10-depth model is optimal, as it avoids 

overfitting while retaining most of model accuracy, especially for MLCVE_clean.. 

The highest performance was observed in the MLCVE_clean dataset using a maximum 

depth of 10, resulting in a macro average F1-score of 0.921 and an accuracy of 98.6%. 

For MLCVE_clean_dest, the best configuration also used a maximum depth of 10, but the 

performance metrics, including an F1-score of 0.768 and accuracy of 84.4%, were 

significantly lower, reinforcing the importance of the Destination Port feature. 

3.1.3. Comparative Analysis of Dense Neural Network and Random Forest Results 

The DNN model beats the RF model in both MLCVE_clean and MLCVE_clean_dest 

datasets.  The DNN generalizes better across the various classes as seen from the higher 

macro average F1-scores and recall scores.  The top DNN model with a macro average F1-

score of 0.964 for the MLCVE_clean data set was trained with 256 batch size, 0.001 learning 

rate and early stopping. The Random Forest model had the best performance at 10 depth 

with the crop average F1 score of 0.921.  When the Destination Port feature was removed in 

the MLCVE_clean_dest dataset, both the models performed poorly. But the DNN performed 

better with F1-score 0.909 while the Random Forest performed worse with maximum F1-
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score 0.768. The results indicate that although Random Forest can handle feature 

information completely, DNN is more flexible and adaptable, making it the more preferred 

model to use in situations that might experience feature missingness. 
Table 3-11 Best-Performing Model Configurations for Each Dataset 

Dataset Model Type Configuration Details 
Macro F1-

Score 
Accuracy 

MLCVE_clean Dense NN 
B/S: 256, LR: 0.001, ES: 

Enabled 
0.964 99.3% 

MLCVE_clean 
Random 

Forest 
Max Depth: 10 0.921 98.6% 

MLCVE_clean_dest Dense NN 
B/S: 256, LR: 0.001, ES: 

Enabled 
0.909 95.8% 

MLCVE_clean_dest 
Random 

Forest 
Max Depth: 10 0.768 84.4% 

3.2. Binary Classification Results 

3.2.1. DNN Results 

The guessed binary classification results of Dense Neural Network (DNN) model considered 

two datasets, MLCVE_Binary and MLCVE_Binary_Dest. These datasets are created by 

combining the non-BENIGN classes to ABNORMAL of original multiclass datasets which 

are MLCVE and MLCVE_Dest. 

 The here here summarize different model configurations, including batch size, learning rate, 

and the effect of weight changes. 
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3.2.1.1.MLCVE_Binary Dataset Results 

The results for the MLCVE_Binary dataset indicated that smaller batch sizes yielded 

slightly better accuracy and macro F1-scores. When a batch size of 64 and a learning rate 

of 0.001 were employed, the model achieved an accuracy of 98.8% and a macro F1-score 

of 0.985, as shown in Table 3.12 below. The ABNORMAL class F1-score was consistently 

higher than that for the BENIGN class, suggesting a particular proficiency of the DNN 

model in identifying malicious activity. 
Table 3-12 MLCVE_Binary Dataset Results 

Batch 

Size 

Learning 

Rate 
Epochs 

Weight 

Adjustment 

Accuracy 

(%) 

Macro 

F1-

Score 

ABNORMAL 

F1 

BENIGN 

F1 

64 0.001 250 Original 98.8 0.985 0.992 0.977 

256 0.001 250 Original 98.7 0.983 0.991 0.975 

256 0.01 250 Original 98.7 0.983 0.990 0.976 

The findings indicate that smaller batch sizes allow the model to capture the variations in 

the data more accurately ideal for the effective detection of both BENIGN and ABNORMAL 

traffic. Given the rich feature set of MLCVE_Binary, the high overall performance suggests 

that it can be used for binary classification with a DNN model without any significant weight 

changes. 

3.2.1.2.MLCVE_Binary_Dest Dataset Results 

When the Destination Port feature was removed, a significant decline in model performance 

was observed. The initial accuracy was 72.9%, reflecting the importance of this feature in 

distinguishing between benign and malicious traffic. To compensate for this, different 

weight adjustments were applied, which improved the model's ability to classify correctly. 

With Weight Adjustment W4, the accuracy increased to 88.5%, and the macro F1-score 

improved to 0.866. 
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Table 3-13 MLCVE_Binary_Dest Dataset Results 

Batch 

Size 

Learning 

Rate 
Epochs 

Weight 

Adjustment 

Accuracy 

(%) 

Macro 

F1-

Score 

ABNORMAL 

F1 

BENIGN 

F1 

64 0.001 250 Original 72.9 0.716 0.734 0.698 

64 0.001 250 W2 84.4 0.824 0.847 0.801 

64 0.001 250 W3 86.7 0.848 0.863 0.833 

64 0.001 250 W4 88.5 0.866 0.881 0.850 

The results indicate that weight adjustment is an effective method to compensate for 

missing critical features, especially in binary classification tasks. The performance gains 

achieved using W4 show that rebalancing class weights can significantly improve 

classification of both ABNORMAL and BENIGN flows, which would otherwise be 

impaired by the absence of key distinguishing attributes. 

3.2.1.3.Comparative Analysis of DNN Results 

The comparative analysis between the two datasets reveals the substantial impact of the 

Destination Port feature on classification performance. The MLCVE_Binary dataset 

showed a superior accuracy of 98.8%, highlighting its comprehensive nature for anomaly 

detection. In contrast, the MLCVE_Binary_Dest dataset, even with optimized weight 

adjustments, could only reach an accuracy of 88.5%. 

Dataset 
Best Accuracy 

(%) 

Best Macro F1-

Score 

Optimal Weight 

Adjustment 

MLCVE_Binary 98.8 0.985 Original 

MLCVE_Binary_Dest 88.5 0.866 W4 



 

94 

 

These differences underscore the necessity of feature completeness to train good IDS 

models. The Destination Port is important for differentiating traffic type. Without this, 

additional weight tuning is needed to get reasonable performance. 

3.2.1.4.Alternative Architecture Binary Results  

This section is about improvements on binary classification by architecture alternatives. We 

will look into the improvements for both datasets. 
Table 3-14 DNN Alternative Layer Architecture Results for MLCVE_binary 

Dataset Best Accuracy (%) Best Macro F1-

Score 

Configuration 

MLCVE_Binary 98.8 0.985 Original 

MLCVE_Binary 98.7 0.983 BottleNeck 

MLCVE_Binary 98.8 0.984 Sparse Wide 

MLCVE_Binary 98.7 0.983 Pyramid 

MLCVE_Binary 97.9 0.972 Reg. Batch Norm. 

MLCVE_Binary 98.9 0.986 Gradual Compression Reg. 

MLCVE_Binary 95.4 0.936 Single 128 

MLCVE_Binary 95.4 0.937 Single 64 

MLCVE_Binary 93.1 0.901 Single 32 

The Table 3.14 shows that Gradual Compression Reg and Original Layer configurations 

give almost the same performance for the model. As the difference between Gradual 

Compression Reg and Original Layer configurations are neglectable Original would be the 

more preferable choice because of its more cost-effective architecture compared to Gradual 

Compression Reg architecture. 
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Table 3-15 Alternative Optimizer Architecture Results for MLCVE_binary 

Dataset Optimizer Learning 

Rate 

Accuracy 

(%) 

Macro F1-

Score 

Additional Features 

MLCVE_Binary Adam 0.001 98.8 0.985 - 

MLCVE_Binary Adadelta 1.0 98.9 0.986 Addresses Adagrad's 

aggressive decay 

problem 

MLCVE_Binary Nadam 0.001 98.6 0.982 Combines Adam and 

Nesterov momentum 

MLCVE_Binary SGD 0.001 98.9 0.986 Momentum=0.9 

(Accelerates 

convergence) 

MLCVE_Binary Adagrad 0.001 98.6 0.982 Adapts learning rate 

for each parameter, 

good for sparse data 

MLCVE_Binary RMSprop 0.001 98.6 0.982 Handles noisy 

gradients, useful for 

RNNs 

Table 3.15 shows that using the Adam optimizer is still more effective compared with other 

alternatives. Next is MLCVE_binary_dest results. 
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Table 3-16 DNN Alternative Layer Architecture Results for MLCVE_binary_dest 

Dataset Best Accuracy 

(%) 

Best Macro F1-

Score 

Configuration 

MLCVE_Binary_Dest 91.7 0.866 Original 

MLCVE_Binary_Dest 83.4 0.815 BottleNeck 

MLCVE_Binary_Dest 85.6 0.784 Sparse Wide 

MLCVE_Binary_Dest 83.2 0.718 Pyramid 

MLCVE_Binary_Dest 85.6 0.837 Reg. Batch Norm. 

MLCVE_Binary_Dest 87.3 0.847 Gradual Compression Reg. 

MLCVE_Binary_Dest 87.3 0.853 Single 128 

MLCVE_Binary_Dest 87.3 0.848 Single 64 

MLCVE_Binary_Dest 89.0 0.870 Single 32 

MLCVE_Binary_Dest 86.7 0.846 Single 16 

It is apparent in Table 3.16 that when Destination Port info is not given, model performance 

drops. Testing different layer architectures for binary classification saw some changes. Still, 

original architecture remains better. Next is the improvements done by optimizer preference 

in original model. 
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Table 3-17 Alternative Optimizer Architecture Results for MLCVE_binary_dest 

Dataset Optimizer Learning 

Rate 

Accuracy 

(%) 

Macro 

F1-Score 

Additional Features 

MLCVE_Binary_Dest Adam 0.001 91.7 0.866 - 

MLCVE_Binary_Dest Adadelta 1.0 95.1 0.939 Addresses Adagrad's 

aggressive decay 

problem 

MLCVE_Binary_Dest RMSprop 0.001 92.8 0.912 Handles noisy 

gradients, useful for 

RNNs 

MLCVE_Binary_Dest Nadam 0.001 92.8 0.912 Combines Adam 

and Nesterov 

momentum 

MLCVE_Binary_Dest SGD 0.001 88.9 0.870 Momentum=0.9 

(Accelerates 

convergence) 

MLCVE_Binary_Dest Adagrad 0.001 86.6 0.847 Adapts learning rate 

for each parameter, 

good for sparse data 

Table 3.17 shows that Adadelta optimizer improved the performance of the model compared 

to Adam optimizer in here as well, just like in multi-classification. 
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Table 3-18 DNN Binary Classification Improvement 

Dataset Best Accuracy 

(%) 

Best Macro F1-

Score 

Adjustment 

MLCVE_binary 98.8 0.985 Original 

MLCVE_binary 98.9 0.986 Optimizer: Adadelta or SGD 

Architecture: Original 

MLCVE_binary_dest 90.4 0.909 Original 

MLCVE_binary_dest 95.1 0.939 Optimizer: Adadelta 

Architecture: Original 

 

From Table 3.18, it can be understood that layer and optimizer adjustments improved the 

model performance. In the next part, we will look into the binary dataset results. 
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3.2.2. Random Forest Results 

Similar to the DNN results, Random Forest models were also tested for binary classification 

across both datasets. The following sections summarize the key findings. 

3.2.2.1.MLCVE_Binary Dataset Results 

The MLCVE_Binary dataset results for the Random Forest model indicated a high level of 

performance, with an accuracy of 97.6% and a macro F1-score of 0.970. The results, 

presented in below, demonstrate the effectiveness of this traditional machine learning 

approach in detecting anomalies in a feature-rich dataset. 

Max 

Depth 

Weight 

Adjustment 

Accuracy 

(%) 

Macro F1-

Score 

ABNORMAL 

F1 

BENIGN 

F1 

10 Original 97.6 0.970 0.984 0.955 

The ABNORMAL class F1-score again outperformed the BENIGN class, suggesting a 

stronger focus on detecting malicious behavior. This high performance, however, comes at 

the cost of lower interpretability when compared to deep learning models. 

3.2.2.2.MLCVE_Binary_Dest Dataset Results 

When the Destination Port feature was excluded, the performance of the Random Forest 

model also experienced a significant decline, as shown in Table 3.19. The initial accuracy 

was 69.3%, but by applying Weight Adjustment W3, the model's performance improved 

to 85.4% with a macro F1-score of 0.835. 
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Table 3-19 MLCVE_Binary_Dest W3 Results 

Max 

Depth 

Weight 

Adjustment 

Accuracy 

(%) 

Macro F1-

Score 

ABNORMAL 

F1 

BENIGN 

F1 

5 Original 69.3 0.684 0.702 0.665 

10 Original 69.6 0.686 0.704 0.668 

10 W3 85.4 0.835 0.854 0.816 

The W3 Weight Adjustment strategy worked very well to reduce performance loss caused 

by omitting Destination Port. So rebalancing for traditional models becomes important when 

a key feature is missing. 

3.2.2.3 Comparative Analysis of Random Forest Results 

The MLCVE_Binary dataset continued to show strong results, achieving a best accuracy 

of 97.6%. However, the MLCVE_Binary_Dest dataset showed the model's reliance on the 

Destination Port feature. The final performance of 85.4% indicates that the dataset without 

Destination Port is less capable of accurately classifying network events using Random 

Forest. 

Dataset 
Best Accuracy 

(%) 

Best Macro F1-

Score 

Optimal Weight 

Adjustment 

MLCVE_Binary 97.6 0.970 Original 

MLCVE_Binary_Dest 85.4 0.835 W3 

These results further confirm the critical role that certain features play in the accuracy of 

IDS models. In scenarios where feature reduction is necessary, rebalancing techniques can 

mitigate the loss in classification ability. 
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3.2.3 Comparative Analysis of DNN and Random Forest for Binary Classification 

A comparative analysis of the Dense Neural Network (DNN) and Random Forest models 

provides a broader understanding of their capabilities with respect to the two binary 

classification datasets. 
Table 3-20 Comparative Analysis of DNN and Random Forest for Binary Classification 

Dataset Model 
Best 

Accuracy (%) 

Best Macro 

F1-Score 

Optimal Weight 

Adjustment 

MLCVE_Binary DNN 98.8 0.985 Original 

MLCVE_Binary RandomForest 97.6 0.970 Original 

MLCVE_Binary_Dest DNN 88.5 0.866 W4 

MLCVE_Binary_Dest RandomForest 85.4 0.835 W3 

The DNN model was superior to the Random Forest in both datasets. For the 

MLCVE_Binary dataset, the accuracy of DNN was 98.8% and that of Random Forest was 

97.6%, both of which are very good. The dataset’s being rich in features may allow the DNN 

more flexibility giving it a slight advantage. 

For the MLCVE_Binary_Dest dataset, if the Destination Port feature is not included, then 

both models perform worse. The DNN with Weight Adjustment W4, achieved an accuracy 

of 88.5% and was better than Random Forest, which got 85.4% with weigh adjustment W3. 

These findings show that deep learning models can remain effective even when features are 

cut. All they need is proper adjustment. Even though Random Forest was still effective, it 

couldn’t adapt as much as the other algorithms did, which shows its limitations without those 

features. They showed that in IDS applications where feature completeness cannot be 

guaranteed DNN model can be a more robust solution. 
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3.3.Model Training on NVIDIA Jetson AGX Orin and Comparative Analysis 

Through this study, we trained the Deep Neural Network (DNN) model on different 

platforms, specifically the NVIDIA A100, L4, T4 GPUs on Google Colab and the NVIDIA 

Jetson AGX Orin device.  The aim to see if Jetson Orin, which is low-resource and portable 

hardware, can provide performance as well as accuracy on scale with larger, more powerful 

compute units when used to train a model for an IDS application. This analysis is very 

important when we think about using auto IDS anywhere with limited computational 

capacity. 

3.3.1. Training Time Comparison 

The DNN model training times for each of the platforms are summarized in the Table 3.21 

below: 
Table 3-21 DNN model training times for each different platforms  

Platform Training Time (seconds) Accuracy 

NVIDIA A100 (Google Colab) 229.72 0.96 

NVIDIA L4 (Google Colab) 223.90 0.96 

NVIDIA T4 (Google Colab) 217.12 0.96 

NVIDIA Jetson AGX Orin 2311.05 0.96 

As we see in the Table 3.21, the Jetson Orin takes a long time to finish training (2311.05 

seconds), while the high-performance GPUs, a stat of A100, L4 and T4 between 217-230 

seconds. It should be noted, however, the accuracy values that were achieved across all 

platforms were in similar range (0.96 to 0.97). In other words, we can say that because Jetson 

Orin has less computational power, training it will take more time, but the results will be 

similar to strong GPUs. 

3.3.2. Model Training Insights 

Above graphs indicate the training performed on the Jetson AGX Orin along with accuracy 

and performance statistics. The regular accuracy of trained model on all platforms indicate 

that the generalization power of the trained model does not get affected when the platform 
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changes, as long as the model architecture, hyperparameters and training dataset remain 

constant. 

This comparison means that you can train this model on A100 or L4, which speeds up 

training. The trained model can be saved and loaded onto Jetson AGX Orin for inference 

and deployment. It is an effective approach, especially in real life, when training is expensive 

but deployment should be light and energy-efficient. 

3.3.3. Deployment on Jetson AGX Orin 

The Jetson AGX Orin was chosen for use because it is well suited to edge AI. It has quite a 

lot of processing power, and it’s small and efficient. The Orin adapts for inference, which is 

the major function for a real-time intrusion detection system, even though it is slower at 

training. A practical suggestion deriving from the study results is to train the models using 

high-performance computing resources and to then deploy them on the Jetson AGX Orin to 

efficiently monitor and detect real-time networks intrusion. 

Training on powerful GPUs and deploying on a resource-efficient platform like Orin fits into 

the overall strategy of developing a practical and scalable intrusion detection system that 

remains sufficiently accurate and reliable in real-time. 

3.3.3.1.Online Results Analysis from Embedded System  

The prediction results from embedded system were analyzed if the predictions had any 

inconsistency. 4 attacks were detected in the first 800 flows. These attacks were 3 “DoS 

Slowloris” and 1 “DoS Hulk” attacks. When “DoS Slowloris” attacks were analyzed, it was 

determined that they were false positive. All three of them were flows with one packet. The 

common point of these three flows were that their information related to packet length and 

forward, backward packet movements were identical and their destination port were same. 

Other than that, there were no indication to support that these flows were “DoS Slowloris” 

such as keeping server busy as long as possible without ending requests.  

On the other hand, when the single “DoS Hulk” prediction was analyzed, it was noticed that 

it had some striking similarities to the characteristic of the “DoS Hulk” in the training dataset 

of the model. Such as Flow Duration, Flow and Inter-Arrival Times and Idle Metrics. 

However, when the individual flow was extracted from the captured traffic, it had only two 
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packets. It was inconsistent with the buildup of “DoS Hulk” attacks so it determined it was 

also false positive. 

Then same traffic was tested on binary model. The binary model detected only one abnormal 

flow within the traffic in the first 800 flows. When the flow was inspected, it was the same 

one from before that was determined as “DoS Hulk” by multi-classification model. Hence, 

the aforementioned flow having a correlating data with training data was the reason for false 

positive for both models. However, it can be argued that binary model had more consistency 

compared to multi-classification model as it did not false positive other three flows in multi-

classification. 

3.3.4. Conclusion 

To conclude, Jetson AGX Orin can be a reasonable off-the-shelf portable solution for real-

time IDS deployment, which is not most ideal for model training due to slower processing. 

The DNN might be trained on an NVIDIA A100, L4, or T4 before being deployed on Orin 

for inference in this case to offer a balance between computational efficiency and effective 

real-time security monitoring. Therefore, our Automated Real Time CICFlowMeter 

Filtering IDS can perform well without being limited by the processing power of the edge 

hardware.
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4. DISCUSSION 

The rapidly evolving digital world has significantly increased the need for advanced security 

measures to protect our data. This thesis aimed to create an automated real-time intrusion 

detection system (IDS). It followed steps of methodical process of dataset selection, 

preprocessing, and model training. It was followed by an embedded system integration for 

real-time deployment. The main focus of this study was by using state-of-art machine 

learning techniques, Dense Neural Networks (DNN) and Random Forest (RF), and 

combining them with practical computational hardware, such as the NVIDIA Jetson AGX 

Orin to detect malicious network activities. 

Dataset selected was CICIDS2017 dataset. It was selected because of its diversity in 

capturing real-world network behavior. It also included dataset having 15 different classes 

of network traffic. An important aspect of this work lies in detailed pre-processing of this 

dataset. It allowed to create multiple versions, both with and without destination port 

information. As well as binary and multi-class, 9 classes, versions were created. This allowed 

for a detailed evaluation of the impact different features on model performance.  

The finding for models shows that the presence of destination port plays an important role 

model performance. Following information are based on macro F1 scores. This measurement 

is a more correct measurement of the model as it evaluates all the classes in a balanced 

manner. For multi-class classification, the models achieved an average accuracy of 96.4%. 

When destination port information was removed from, it dropped to 91.0%. Similarly, in 

binary classification the accuracy was 86.6% while destination port information was not 

included, compared to 98.5% when included. These results highlight the impact of 

destination port information as a feature in differentiating between different types of network 

activity. Later when alternative architecture approaches were tried. As a result, 

multiclassification result was improved to 95.5% and binary classification result from 95.1% 

when destination info is not given. The Dense Neural Network models were able to capture 

complex attack patterns. They contributed to the higher accuracy observed, especially in the 

multi-class tasks.  
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However, the study also points out some limitations. First, although CICIDS2017 is a great 

dataset compared to older datasets like KDDCup99 and NSL-KDD, it doesn’t cover all 

emerging attack types. Second, even though the inclusion of destination port data improved 

model accuracy, this approach also has risks. It may lead to potential overfitting when 

specific ports are correlated with certain types of attacks which is something that could be 

exploited by adversaries. Lastly, the usage of models on the NVIDIA Jetson AGX Orin.  

While it is effective, it revealed performance differences compared to high-performance 

cloud platforms, with training runtimes being considerably longer. This highlights the trade-

off between using accessible edge devices and the need for high-speed detection in large-

scale networks in matters of model training.  

There were also some unexpected results. The high consistency in accuracy metrics across 

different deployment platforms, such as cloud-based GPUs (A100, L4, T4) and the NVIDIA 

Jetson AGX Orin. This suggests that for these datasets, model quality is primarily influenced 

by the dataset and feature quality rather than the underlying computational platform. Such 

findings open new opportunities for deploying IDS models on edge devices without 

substantial compromises in detection performance.  

These findings align with other research efforts that points out the importance of dataset 

preprocessing and feature engineering in developing effective IDS models. The use of 

advanced machine learning algorithms, such as DNNs, has proven effective for multi-class 

classification in network security, similar to previous studies. However, this study's inclusion 

of both binary and multi-class datasets with different configurations of feature sets, allows 

for a better understanding of how machine learning models behave in different scenarios. It 

also reveals how different types of network features, such as destination ports, can influence 

model performance in a real-world application. However, integrating the trained models into 

an embedded system addresses the application and integration issues of models trained in 

previous researches into the real world. 

Further research is recommended to address the limitations observed in this study. 

Specifically, using semi-supervised or unsupervised learning techniques could help improve 

the adaptability of the IDS to detect new, unseen attack types. 
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This thesis has addressed the challenges of real-time intrusion detection. The approach of 

combining sophisticated machine learning techniques, robust dataset preprocessing, and 

real-time deployment on edge hardware provides a foundation for further development in 

IDS research. Future iterations could focus on improving model efficiency and expanding 

the range of detectable threats to ensure the IDS remains effective in rapidly changing 

cybersecurity environments. 

 



 

108 

 

5. CONCLUSION AND FUTURE WORK 

This thesis used machine learning in an effort to deal with the increasing demand for 

advanced IDS. To achieve this, we employed the Dense Neural Networks (DNN) and 

Random Forest (RF) models. The CICIDS2017 dataset is utilized to build a complete 

pipeline, which includes Preprocessing, Feature Selection, Model Training & Real-time 

deployment. Our detailed results show that if the destination port information is included in 

the model the macro F1 accuracy achieved will be over 97% on multi-class and 98.5% on 

binary. The accuracy achieved would be 91% and 86.6% without inclusion while with layer 

architecture improvements, it increased to 91.1% and 93.9%. Consequently, this highlights 

the quality of the dataset and careful feature selection have a notable influence on the 

efficiency of IDS. 

A major contribution of this research was the deployment of the IDS system on NVIDIA 

Jetson AGX Orin. This demonstrated that sophisticated detection models could run 

effectively on embedded systems. However, training on the Orin took much longer than on 

high-power cloud environments like Google Colab. This led us to recommend training 

models in cloud environments. Then deploying them on edge devices like Orin. This 

approach helps achieve efficient performance while balancing practical constraints, such as 

computational resources and cost. 

Despite these advances, some limitations remain. The dataset has inherent constraints, and 

certain features like destination ports can be manipulated, affecting detection. Future work 

should explore semi-supervised or unsupervised learning methods to detect unknown 

threats. There is also room for improvement by creating lightweight models through pruning 

or using techniques like federated learning. These approaches can enhance scalability, make 

the system more suitable for edge devices, and improve adaptability. This work contributes 

towards developing IDS solutions that are efficient, resilient, and adaptable for real-time 

application on cybersecurity. 
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6. APPENDIX 

APPENDIX A: Explanation of Features in the CICIDS2017 Dataset (Original 

Dataset) 

Feature 
Category 

Feature Name 
(CICIDS2017) 

Feature Name 
(CICFlowMeter) Description 

Basic Flow 
Features Flow ID Flow ID Unique identifier for a 

flow. 
Basic Flow 
Features Source IP Source IP IP address of the source. 

Basic Flow 
Features Source Port Source Port Port number used by the 

source. 
Basic Flow 
Features Destination IP Dst IP IP address of the 

destination. 
Basic Flow 
Features Destination Port Dst Port Port number used by the 

destination. 

Basic Flow 
Features Protocol Protocol 

Protocol used in the 
connection (e.g., TCP, 
UDP, ICMP). 

Basic Flow 
Features Timestamp Timestamp Time when the flow was 

captured. 
Basic Flow 
Features Flow Duration Flow Duration Duration of the flow in 

microseconds. 

Packet-Level 
Features Total Fwd Packets Tot Fwd Pkts 

Total number of packets 
sent from the source to the 
destination. 

Packet-Level 
Features Total Backward Packets Tot Bwd Pkts 

Total number of packets 
sent from the destination to 
the source. 

Packet-Level 
Features 

Total Length of Fwd 
Packets TotLen Fwd Pkts 

Total size (in bytes) of all 
packets sent from source to 
destination. 

Packet-Level 
Features 

Total Length of Bwd 
Packets TotLen Bwd Pkts 

Total size (in bytes) of all 
packets sent from 
destination to source. 

Packet-Level 
Features Fwd Packet Length Max Fwd Pkt Len Max 

Maximum packet size 
observed in the forward 
direction. 

Packet-Level 
Features Fwd Packet Length Min Fwd Pkt Len Min 

Minimum packet size 
observed in the forward 
direction. 
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Feature 
Category 

Feature Name 
(CICIDS2017) 

Feature Name 
(CICFlowMeter) Description 

Packet-Level 
Features Fwd Packet Length Mean Fwd Pkt Len Mean Average packet size in the 

forward direction. 

Packet-Level 
Features Fwd Packet Length Std Fwd Pkt Len Std 

Standard deviation of 
packet sizes in the forward 
direction. 

Packet-Level 
Features Bwd Packet Length Max Bwd Pkt Len Max 

Maximum packet size 
observed in the backward 
direction. 

Packet-Level 
Features Bwd Packet Length Min Bwd Pkt Len Min 

Minimum packet size 
observed in the backward 
direction. 

Packet-Level 
Features Bwd Packet Length Mean Bwd Pkt Len Mean Average packet size in the 

backward direction. 

Packet-Level 
Features Bwd Packet Length Std Bwd Pkt Len Std 

Standard deviation of 
packet sizes in the 
backward direction. 

Flow Statistics Flow Bytes/s Flow Byts/s Number of bytes per 
second for the flow. 

Flow Statistics Flow Packets/s Flow Pkts/s Number of packets per 
second for the flow. 

Flow Statistics Flow IAT Mean Flow IAT Mean 
Mean inter-arrival time 
(IAT) of packets in the 
flow. 

Flow Statistics Flow IAT Std Flow IAT Std Standard deviation of the 
inter-arrival time. 

Flow Statistics Flow IAT Max Flow IAT Max 
Maximum inter-arrival 
time between packets in 
the flow. 

Flow Statistics Flow IAT Min Flow IAT Min 
Minimum inter-arrival time 
between packets in the 
flow. 

Forward (Fwd) 
and Backward 
(Bwd) Inter-
Arrival Times 

Fwd IAT Total Fwd IAT Tot Total inter-arrival time for 
forward packets. 

Forward (Fwd) 
and Backward 
(Bwd) Inter-
Arrival Times 

Fwd IAT Mean Fwd IAT Mean Mean inter-arrival time 
between forward packets. 

Forward (Fwd) 
and Backward 
(Bwd) Inter-
Arrival Times 

Fwd IAT Std Fwd IAT Std Standard deviation of 
forward inter-arrival time. 
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Feature 
Category 

Feature Name 
(CICIDS2017) 

Feature Name 
(CICFlowMeter) Description 

Forward (Fwd) 
and Backward 
(Bwd) Inter-
Arrival Times 

Fwd IAT Max Fwd IAT Max 
Maximum inter-arrival 
time between forward 
packets. 

Forward (Fwd) 
and Backward 
(Bwd) Inter-
Arrival Times 

Fwd IAT Min Fwd IAT Min Minimum inter-arrival time 
between forward packets. 

Forward (Fwd) 
and Backward 
(Bwd) Inter-
Arrival Times 

Bwd IAT Total Bwd IAT Tot Total inter-arrival time for 
backward packets. 

Forward (Fwd) 
and Backward 
(Bwd) Inter-
Arrival Times 

Bwd IAT Mean Bwd IAT Mean Mean inter-arrival time 
between backward packets. 

Forward (Fwd) 
and Backward 
(Bwd) Inter-
Arrival Times 

Bwd IAT Std Bwd IAT Std 
Standard deviation of 
backward inter-arrival 
time. 

Forward (Fwd) 
and Backward 
(Bwd) Inter-
Arrival Times 

Bwd IAT Max Bwd IAT Max 
Maximum inter-arrival 
time between backward 
packets. 

Forward (Fwd) 
and Backward 
(Bwd) Inter-
Arrival Times 

Bwd IAT Min Bwd IAT Min Minimum inter-arrival time 
between backward packets. 

TCP Flag 
Features Fwd PSH Flags Fwd PSH Flags 

Number of times the PSH 
flag was set in packets 
traveling in the forward 
direction. 

TCP Flag 
Features Bwd PSH Flags Bwd PSH Flags 

Number of times the PSH 
flag was set in packets 
traveling in the backward 
direction. 

TCP Flag 
Features Fwd URG Flags Fwd URG Flags 

Number of times the URG 
flag was set in packets 
traveling in the forward 
direction (dropped due to 
being constant). 

TCP Flag 
Features Bwd URG Flags Bwd URG Flags 

Number of times the URG 
flag was set in packets 
traveling in the backward 
direction (dropped due to 
being constant). 
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Feature 
Category 

Feature Name 
(CICIDS2017) 

Feature Name 
(CICFlowMeter) Description 

TCP Flag 
Features Fwd Header Length Fwd Header Len Total header length of 

forward packets. 
TCP Flag 
Features Bwd Header Length Bwd Header Len Total header length of 

backward packets. 
Additional 
Packet Count 
Features 

Fwd Packets/s Fwd Pkts/s Number of forward packets 
per second. 

Additional 
Packet Count 
Features 

Bwd Packets/s Bwd Pkts/s Number of backward 
packets per second. 

Flow Active and 
Idle Times Min Packet Length Pkt Len Min Minimum packet length in 

the flow. 
Flow Active and 
Idle Times Max Packet Length Pkt Len Max Maximum packet length in 

the flow. 
Flow Active and 
Idle Times Packet Length Mean Pkt Len Mean Mean packet length in the 

flow. 
Flow Active and 
Idle Times Packet Length Std Pkt Len Std Standard deviation of 

packet lengths. 
Flow Active and 
Idle Times Packet Length Variance Pkt Len Var Variance in packet lengths. 

TCP Flag 
Features FIN Flag Count FIN Flag Cnt Number of packets with 

FIN flag. 
TCP Flag 
Features SYN Flag Count SYN Flag Cnt Number of packets with 

SYN flag. 
TCP Flag 
Features RST Flag Count RST Flag Cnt Number of packets with 

RST flag. 
TCP Flag 
Features PSH Flag Count PSH Flag Cnt Number of packets with 

PSH flag. 
TCP Flag 
Features ACK Flag Count ACK Flag Cnt Number of packets with 

ACK flag. 
TCP Flag 
Features URG Flag Count URG Flag Cnt Number of packets with 

URG flag. 
TCP Flag 
Features CWR Flag Count CWE Flag Count Number of packets with 

CWR flag. 
TCP Flag 
Features ECE Flag Count ECE Flag Cnt Number of packets with 

ECE flag. 

Flow Statistics Down/Up Ratio Down/Up Ratio Ratio of backward to 
forward traffic. 

Flow Statistics Average Packet Size Pkt Size Avg Average packet size in the 
flow. 

Flow Statistics Avg Fwd Segment Size Fwd Seg Size Avg Average segment size in 
the forward direction. 

Flow Statistics Avg Bwd Segment Size Bwd Seg Size Avg Average segment size in 
the backward direction. 
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Feature 
Category 

Feature Name 
(CICIDS2017) 

Feature Name 
(CICFlowMeter) Description 

Flow Active and 
Idle Times Fwd Avg Bytes/Bulk Fwd Byts/b Avg 

Average number of bytes 
bulked in the forward 
direction. 

Flow Active and 
Idle Times Fwd Avg Packets/Bulk Fwd Pkts/b Avg 

Average number of packets 
bulked in the forward 
direction. 

Flow Active and 
Idle Times Fwd Avg Bulk Rate Fwd Blk Rate Avg Average bulk rate in the 

forward direction. 

Flow Active and 
Idle Times Bwd Avg Bytes/Bulk Bwd Byts/b Avg 

Average number of bytes 
bulked in the backward 
direction. 

Flow Active and 
Idle Times Bwd Avg Packets/Bulk Bwd Pkts/b Avg 

Average number of packets 
bulked in the backward 
direction. 

Flow Active and 
Idle Times Bwd Avg Bulk Rate Bwd Blk Rate Avg Average bulk rate in the 

backward direction. 
Subflow 
Features Subflow Fwd Packets Subflow Fwd Pkts Number of packets in the 

forward subflow. 
Subflow 
Features Subflow Fwd Bytes Subflow Fwd Byts Number of bytes in the 

forward subflow. 
Subflow 
Features Subflow Bwd Packets Subflow Bwd Pkts Number of packets in the 

backward subflow. 
Subflow 
Features Subflow Bwd Bytes Subflow Bwd Byts Number of bytes in the 

backward subflow. 
Window and 
Segment 
Features 

Init_Win_bytes_forward Init Fwd Win Byts Initial window size in bytes 
in the forward direction. 

Window and 
Segment 
Features 

Init_Win_bytes_backward Init Bwd Win Byts Initial window size in bytes 
in the backward direction. 

Window and 
Segment 
Features 

Fwd Act Data Pkts act_data_pkt_fwd 
Number of packets with 
actual data in the forward 
direction. 

Window and 
Segment 
Features 

Min Segment Size 
Forward min_seg_size_forward 

Minimum segment size 
observed in the forward 
direction. 

Flow-based 
Timing Features Active Mean Active Mean Mean time a flow was 

active before going idle. 
Flow-based 
Timing Features Active Std Active Std Standard deviation of time 

the flow was active. 
Flow-based 
Timing Features Active Max Active Max Maximum time a flow was 

active. 
Flow-based 
Timing Features Active Min Active Min Minimum time a flow was 

active. 
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Feature 
Category 

Feature Name 
(CICIDS2017) 

Feature Name 
(CICFlowMeter) Description 

Flow-based 
Timing Features Idle Mean Idle Mean 

Mean time a flow was idle 
before becoming active 
again. 

Flow-based 
Timing Features Idle Std Idle Std Standard deviation of time 

the flow was idle. 
Flow-based 
Timing Features Idle Max Idle Max Maximum time a flow was 

idle. 
Flow-based 
Timing Features Idle Min Idle Min Minimum time a flow was 

idle. 

Label Label Label 

The class label indicating 
whether the flow is benign 
or belongs to a particular 
attack category 
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