

T.C.

TURKISH-GERMAN UNIVERSITY

INSTITUTE OF THE GRADUATE STUDIES

IN SCIENCE AND ENGINEERING

REAL-TIME MACHINE LEARNING ANOMALY DETECTION IN COMPUTER
NETWORKS

Master’s Thesis

Halit Canap DEMİR

ISTANBUL 2024

T.C.

TURKISH-GERMAN UNIVERSITY

INSTITUTE OF THE GRADUATE STUDIES

IN SCIENCE AND ENGINEERING

Master’s Thesis

Halit Canap DEMİR

M.Sc., Computer Science and Engineering, Turkish-German University, 2024

Advisor
Asst. Prof. Dr. Ziya Cihan TAYŞİ

Submitted to the Institute of the Graduate Studies in
Science and Engineering in partial fulfillment of the requirements for the

Master’s Degree

ISTANBUL 2024

i

ii

REAL-TIME MACHINE LEARNING ANOMALY DETECTION IN COMPUTER
NETWORKS

APPROVED BY:

Assistant Prof. Dr. Z. Cihan TAYŞİ
(Thesis Advisor)

Prof. Dr. A. Gökhan YAVUZ
Turkish-German University

Assistant Prof. Dr. Ö. Özgür BOZKURT
Fenerbahçe University

DATE OF APPROVAL: 15 November 2024

iii

ACKNOWLEDGMENTS

This journey of growth and discovery has been truly transformative, and I have been

fortunate to receive immense support from numerous individuals and institutions, to whom

I express my deepest gratitude.

I would like to express my heartfelt thanks to my thesis advisor, Asst. Prof. Dr. Ziya

Cihan TAYŞİ, whose guidance, patience, and encouraging approach have been invaluable

throughout this journey. His mentorship not only advanced my research skills but also

contributed significantly to my personal growth. I am truly grateful for his constant support,

which helped me navigate through the challenges of this work with greater confidence and

clarity. I am also sincerely thankful to Prof. Dr. Ali Gökhan YAVUZ for introducing me to

Dr. TAYŞİ, whose mentorship has significantly shaped the direction and quality of this

work.

My heartfelt thanks go to my parents, Hülya and Hayrettin, whose unwavering

encouragement and belief in my abilities have been my greatest motivation. To my

siblings—Onur, Zafer, Emre, Ömer, Yusuf, and my twin sister Nursima—thank you for your

endless love and support. Growing up with you has been a constant source of strength and

joy, and I am thankful for each one of you.

I am also deeply grateful to my close friend and colleague, Kerim ATMACA, for his

unending support and encouragement throughout this process. His friendship and insight

have been a crucial part of this journey, and I am truly appreciative of his presence, both in

times of challenge and success.

Lastly, I want to thank Prof. Dr. Ali Gökhan YAVUZ and Asst. Prof. Dr. Özgür

BOZKURT for their presence and valuable suggestions during my thesis defense as

committee members.

To everyone mentioned above, and to those who have impacted my journey in ways

both big and small, I am deeply grateful. Your support and influence have made this path

not only possible but profoundly meaningful.

iv

DECLARATION OF AUTHENTICITY

I declare that I completed the master thesis independently and used only the materials

that are listed. All materials used, from published as well as unpublished sources, whether

directly quoted or paraphrased, are duly reported. Furthermore, I declare that the master’s

thesis, or any abridgment of it, was not used for any other degree-seeking purpose and give

the publication rights of the thesis to the Institute of the Graduate Studies in Science and

Engineering, Turkish-German University.

Signature

Halit Canap DEMİR

05.11.2024

v

ABSTRACT

REAL-TIME MACHINE LEARNING ANOMALY DETECTION IN
COMPUTER NETWORKS

In the rapidly evolving digital world, the need for advanced security measures to protect
our data has steadily increased. The growing cyber threats have made it essential to
develop sophisticated Intrusion Detection Systems (IDS) that can adapt to modern network
environments. In this thesis, to address this need, a system that detects malicious traffic by
analyzing network traffic flows using deep learning methods is proposed. Various datasets
that could be used for system development were examined, and the CICIDS2017 dataset,
which stands out in terms of relevance and scope, was chosen. The CICIDS2017 dataset
contains a total of 15 classes, one representing normal network traffic and the others
representing different types of attacks. Training the deep learning model with a consistent
and balanced dataset directly impacts system performance. Therefore, pre-processing steps
such as removing missing or redundant data, eliminating irrelevant features, and balancing
the number of examples in different classes were performed. Dense Neural Networks
(DNN) and Random Forest (RF), methods commonly used in similar studies, were selected
for the proposed model. The models developed could detect network traffic involving
different types of attacks with an average accuracy of 98.5%. The main goal of this study is
to detect attacks on the network. Accordingly, a version of the dataset consisting of two
classes—normal network traffic and attack traffic—was created. Using this dataset,
another system was developed that could detect malicious traffic with 98.8% accuracy. The
systems developed in this thesis aim to detect attacks in real-time within a network.
Therefore, after optimizing performance through experiments with different parameters,
the models were tested in a real network environment using the NVIDIA Jetson AGX Orin
embedded system. For the sustainability of the developed system, training with current
network traffic and attacks is also essential. In this regard, the training of the models on the
embedded system was analyzed in terms of time and performance.

Keywords: Intrusion Detection Systems (IDS), Real-time IDS, CICIDS2017 Dataset,
Machine Learning Models, Deep Learning Models, Multiclass and Binary Classification,
Dense Neural Networks (DNN), Random Forest Classifiers, NVIDIA Jetson AGX Orin

vi

ÖZET

BİLGİSAYAR AĞLARINDA GERÇEK ZAMANLI MAKİNE ÖĞRENİMİ ANOMALİ
TESPİTİ

Hızla gelişen dijital dünyada, verilerimizi korumak için gelişmiş güvenlik önlemlerine
duyulan ihtiyacı giderek artırdı. Artan siber tehditler, modern ağ ortamlarına uyum
sağlayabilen sofistike Saldırı Tespit Sistemlerinin (Intrusion Detection System, IDS)
geliştirilmesini zorunlu hale getirmiştir. Tez kapsamında bu ihtiyacı karşılamak amacıyla ağ
içerisindeki trafik akışlarının derin öğrenme yöntemleri ile incelenerek zararlı trafiğin tespit
edildiği bir sistem önerilmiştir. Sistemin geliştirilmesi için kullanılabilecek çeşitli veri setleri
incelenmiş ve güncellik ve kasam acısından öne çıkan CICIDS2017 veri setinin kullanılması
tercih edilmiştir. CICIDS2017 veri seti içerisinde biri normal ağ trafiğine diğeri ise farklı
tipteki saldırılara ait olmak üzere toplam 15 adet sınıf bulunmaktadır. Oluşturulacak derin
öğrenme modelinin tutarlı ve dengeli bir veri seti ile eğitilmesi Sistem başarımı üzerinde
doğrudan etkilidir. Bu nedenle veri seti üzerinde eksik veya tekrarlı verinin silinmesi,
önemsiz özelliklerin çıkarılması, farklı sınıflardaki örnek sayısının dengelenmesi gibi ön
işlemler gerçekleştirilmiştir. Oluşturulacak model için benzer çalışmalarda yaygın şekilde
kullanılan Yoğun Sinir Ağları (Dense Neural Network, DNN) ve Rastgele Orman (Random
Forest, RF) yöntemlerinin kullanılması tercih edilmiştir. Oluşturulan modeller ile farklı
saldırı tiplerine ait ağ trafiği ortalama olarak %98.5 başarım ile tespit edilebilmektedir.
Çalışma kapsamında temel hedef ağ üzerindeki saldırıların tespit edilmesidir. Buna bağlı
olarak veri setinin normal ağ trafiği ve saldırı trafiği olmak üzere iki sınıftan oluşan bir
versiyonu oluşturulmuştur. Bu veri seti üzerinde yapılan çalışmalar ile zararlı trafiğin %98.8
ile tespit edilebildiği bir sistem daha ortaya konmuştur. Tez kapsamında geliştirilen
sistemlerin bir ağ içerisindeki saldırıları gerçek zamanlı olarak tespit edilebilmesi
hedeflenmektedir. Bu sebeple farklı parametreleri üzerinde yapılan denemeler sonrasında
performansı optimize edilen modeller, NVIDIA Jetson AGX Orin gömülü sistemi üzerinde
ve gerçek ağ ortamında test edilmiştir. Geliştirilen sistemin devamlılığı açısından güncel ağ
trafiği ve saldırılar ile eğitilmesi de önemlidir. Bu kapsamda geliştirilen modellerin gömülü
sistem üzerindeki eğitimleri de zaman ve performans açısından incelenmiştir.

Anahtar Sözcükler: Saldırı Tespit Sistemleri (IDS), Gerçek zamanlı IDS, CICIDS2017 veri
seti, Makine öğrenimi modelleri, Derin Öğrenme Modelleri, Çok sınıflı ve ikili
sınıflandırma, Yoğun Sinir Ağları (DNN), Rastgele Orman (Random Forest)
sınıflandırıcıları, NVIDIA Jetson AGX Orin,

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. iii

DECLARATION OF AUTHENTICITY ... iv

ABSTRACT ... v

ÖZET .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES .. xiii

LIST OF TABLES .. xiv

LIST OF ABBREVIATIONS ... xvi

1. INTRODUCTION .. 1

1.1. Background ... 1

1.2. Problem and importance of the problem ... 9

1.3. Aim and importance of the study .. 9

1.4. Original contributions ... 10

1.5. Organization of the Thesis .. 11

1.5.1. Chapter 1: Introduction and Background .. 11

1.5.2. Chapter 2: Materials and Methods .. 11

1.5.3. Chapter 3: Results .. 11

1.5.4. Chapter 4: Discussion .. 11

1.5.5. Chapter 5: Conclusion and Future Work ... 11

2. MATERIALS AND METHODS .. 12

2.1. DATASETS .. 12

2.1.1. DARPA98 and DARPA99 Datasets .. 13

2.1.1.1. Content and Data Collection ... 13

2.1.1.2. Network Traffic Types .. 14

2.1.1.3. Use in Research and Development ... 14

2.1.1.4. Criticism and Limitations ... 15

2.1.1.5. Data Structure of the DARPA98 and DARPA99 Datasets 15

2.1.1.6. Simulation Environment ... 16

2.1.2. KDDCup99 Dataset ... 16

viii

2.1.2.1. Content and Data Collection ... 17

2.1.2.2. Criticism and Limitations ... 17

2.1.2.3. Simulation Environment ... 18

2.1.3. NSL-KDD Dataset ... 18

2.1.3.1. Improvements Over KDDCup99 .. 19

2.1.3.2. Content and Data Collection ... 19

2.1.3.3. Limitations .. 20

2.1.3.4. Use in Research and Development ... 20

2.1.3.5. Summary and Evolution of Datasets .. 20

2.1.4. UNSW-NB15 Dataset ... 23

2.1.4.1. Content and Features .. 23

2.1.4.2. Types of Attacks ... 23

2.1.4.3. Data Collection ... 24

2.1.4.4. Use in Research and Development ... 25

2.1.4.5. Criticism and Limitations ... 25

2.1.5. MAWI Working Group Traffic Archive ... 26

2.1.5.1. Content and Data Collection ... 26

2.1.5.2. Network Traffic Types .. 27

2.1.5.3. Applications in Research and Development 27

2.1.5.4. Accessibility and Data Format .. 27

2.1.5.5. Limitations and Privacy Considerations ... 28

2.1.6. CICIDS2017 Dataset ... 28

2.1.6.1. Content and Data Collection ... 28

2.1.6.2. Network Traffic Types .. 29

2.1.6.3. Features and Data Format ... 30

2.1.6.4. Labeling and Classification .. 31

2.1.6.5. Use in Research and Development ... 32

2.1.6.6. Limitations .. 32

2.1.6.7. Conclusion .. 33

2.1.6.8. CICIDS2018 Dataset .. 33

2.1.7. Comparison of the Datasets ... 34

2.2. METHODOLOGY ... 36

ix

2.2.1. Dataset Acquisition ... 36

2.2.1.1. Data Cleaning and Label Normalization .. 36

2.2.1.2. Combining the Dataset Files ... 37

2.2.2. Data Integrity and Feature Check .. 38

2.2.3. Dataset Preprocessing Variants ... 39

2.2.3.1. Overview of Preprocessing Techniques ... 39

2.2.3.2. Dataset 1: The CICIDS2017 Machine Learning Dataset (Original

Dataset) 39

2.2.3.3. CICIDS2017 Dataset Description ... 39

2.2.3.3.1. Features and Label Information ... 40

2.2.3.3.2. Label Count Distribution ... 42

2.2.3.3.3. Feature Dropping ... 43

2.2.4. Dataset Preprocessing for Clean Dataset Creation 45

2.2.4.1. Overview of Preprocessing Goals ... 45

2.2.4.2. Label Reduction and Data Imbalance Mitigation 45

2.2.4.3. Data Redundancy Check and Reduction of BENIGN Records 46

2.2.4.3.1. Data Redundancy Check .. 46

2.2.4.3.2. Reduction of BENIGN Records ... 47

2.2.4.4. Handling Missing and Invalid Data .. 47

2.2.4.5. Splitting the Cleaned Dataset .. 48

2.2.5. Preprocessing Dataset with Destination Port Feature Removal 49

2.2.5.1. Rationale for Further Preprocessing ... 49

2.2.5.2. Increased Data Redundancy After Destination Port Removal 50

2.2.5.3. Handling Increased Redundancy and Enhancements Over the Previous

Stage 51

2.2.5.4. Splitting the Cleaned Dataset After Destination Port Removal 51

2.2.5.5. Resulting Datasets of MLCVE_clean and MLCVE_clean_dest 52

2.2.5.6. Creation of a Binary Classification Dataset .. 53

2.2.5.6.1. Label Distribution in the Binary Dataset 54

2.2.6. Model Training .. 54

2.2.6.1. Training the Dense Neural Network (DNN) 54

2.2.6.1.1. Data Preparation and Feature Selection ... 55

x

2.2.6.1.2. Dense Neural Network Architecture .. 56

2.2.6.1.3. Model Training Process ... 57

2.2.6.2. Training the Random Forest Classifier ... 59

2.2.6.2.1. Data Preparation and Feature Selection ... 59

2.2.6.2.2. Random Forest Model Setup .. 60

2.2.6.2.3. Model Training Process ... 61

2.2.6.2.4. Feature Importance and Optimization .. 61

2.2.6.3. Training on the Binary Classification Dataset 62

2.2.6.3.1. Application of Multi-Class Model Training Configurations 62

2.2.7. Model Architecture Updates .. 63

2.2.7.1. Layer Configuration Updates .. 63

2.2.7.2. Optimizer Configuration Update .. 64

2.2.8. Automated Real-Time CICFlowMeter Filtering IDS 65

2.2.8.1. Version 1: Foundational Real-Time IDS System 65

2.2.8.2. Version 2: Enhanced Concurrent Processing and Threading 66

2.2.8.3. Version 3: Flow Management with Scapy .. 66

2.2.8.4. Version 3 Variant: DL Integration with TensorFlow (v3_2) 66

2.2.8.5. System Implementation on NVIDIA Jetson AGX Orin 67

2.2.8.6. Summary of Versions and Evolution .. 67

3. RESULTS ... 69

3.1. Multiple Classification Results ... 69

3.1.1. Dense Neural Network (DNN) Results ... 69

3.1.1.1. MLCVE_clean Dataset Results .. 69

3.1.1.2. MLCVE_clean_dest Dataset Results .. 72

3.1.1.3. Comparative Analysis of DNN Results .. 75

3.1.1.4. Summary of Comparative Insights ... 78

3.1.1.5. Alternative Architecture Results ... 79

3.1.2. Random Forest Results .. 85

3.1.2.1. MLCVE_clean Dataset Results .. 85

3.1.2.2. MLCVE_clean_dest Dataset Results .. 87

3.1.2.3. Comparative Analysis of Random Forest Results 89

3.1.2.4. Summary of Comparative Insights ... 90

xi

3.1.3. Comparative Analysis of Dense Neural Network and Random Forest

Results 90

3.2. Binary Classification Results .. 91

3.2.1. DNN Results .. 91

3.2.1.1. MLCVE_Binary Dataset Results .. 92

3.2.1.2. MLCVE_Binary_Dest Dataset Results .. 92

3.2.1.3. Comparative Analysis of DNN Results .. 93

3.2.1.4. Alternative Architecture Binary Results ... 94

3.2.2. Random Forest Results .. 99

3.2.2.1. MLCVE_Binary Dataset Results .. 99

3.2.2.2. MLCVE_Binary_Dest Dataset Results .. 99

3.3. Model Training on NVIDIA Jetson AGX Orin and Comparative Analysis ... 102

3.3.1. Training Time Comparison ... 102

3.3.2. Model Training Insights .. 102

3.3.3. Deployment on Jetson AGX Orin ... 103

3.3.3.1. Online Results Analysis from Embedded System 103

3.3.4. Conclusion ... 104

4. DISCUSSION ... 105

5. CONCLUSION AND FUTURE WORK ... 108

6. APPENDIX ... 109

APPENDIX A: Explanation of Features in the CICIDS2017 Dataset (Original Dataset)

 ... 109

7. REFERENCES ... 115

xii

xiii

LIST OF FIGURES

Figure 3.1 MLCVE_clean (B/S: 64, LR: 0.01, FI: Disabled, ES: Enabled): 69

Figure 3.2 MLCVE_clean (B/S: 256, LR: 0.01, FI: Disabled, ES: Enabled): 70

Figure 3.3 MLCVE_clean (B/S: 256, LR: 0.001, FI: Disabled, ES: Enabled): 71

Figure 3.4 MLCVE_clean (B/S: 256, LR: 0.001, FI: Disabled, No ES): 71

Figure 3.5 MLCVE_clean_dest (B/S: 64, LR: 0.01, FI: Disabled, ES: Enabled): 72

Figure 3.6 MLCVE_clean_dest (B/S: 256, LR: 0.01, FI: Disabled, ES: Enabled): 73

Figure 3.7 MLCVE_clean_dest (B/S: 256, LR: 0.001, FI: Disabled, ES: Enabled): 74

Figure 3.8 MLCVE_clean_dest (B/S: 256, LR: 0.001, FI: Disabled, No ES): 75

Figure 3.9 MLCVE_clean - RandomForest Model (No Max Depth Limit): 85

Figure 3.10 MLCVE_clean - RandomForest Model (Max Depth: 5): 86

Figure 3.11 MLCVE_clean - RandomForest Model (Max Depth: 10): 86

Figure 3.12 MLCVE_clean_dest - RandomForest Model (No Max Depth Limit): 87

Figure 3.13 MLCVE_clean_dest - RandomForest Model (Max Depth: 5): 88

Figure 3.14 MLCVE_clean_180_dest - RandomForest Model (Max Depth: 10): 88

xiv

LIST OF TABLES

Table 2-1 Summary of the differences between the DARPA98, DARPA99, KDDCup99, and

NSL-KDD datasets .. 22

Table 2-2 Overview of Datasets for Intrusion Detection Systems 35

Table 2-3 Overview of Extracted Files from the Dataset .. 37

Table 2-4 Distribution of Traffic Types in the CICIDS2017 Dataset 38

Table 2-5 Explanation of Features in the CICIDS2017 Dataset (Original Dataset) 40

Table 2-6 Overview of Features in the CICIDS2017 Dataset (Original Dataset) 41

Table 2-7 Distribution of Labels in the CICIDS2017 Dataset ... 42

Table 2-8 Label Count for Duplicate Rows in the Original Dataset 46

Table 2-9 Label Count in the Training and Test Dataset After Cleaning and Splitting 48

Table 2-10 Label Count for Duplicate Rows After Dropping Destination Port 50

Table 2-11 Label Count in the Training and Test Dataset After Removing Destination Port

and Cleaning .. 52

Table 2-12 Label Counts in the Binary Training Dataset: ... 54

Table 2-13 Example of Feature Importance Scores ... 55

Table 2-14 Feature Importance Scores from Random Forest Model 59

Table 2-15 Alternative Layer Configurations .. 64

Table 2-16 Optimizer Configuration ... 65

Table 3-1 Comparison of DNN Macro Average Metrics between MLCVE_clean and

MLCVE_clean_dest ... 76

Table 3-2 Comparison of DNN Macro Average Metrics for Different Batch Sizes 77

Table 3-3 Comparison of DNN Macro Average Metrics for Different Learning Rates 77

Table 3-4 Comparison of DNN Macro Average Metrics with and without Early Stopping78

Table 3-5 DNN Alternative Layer Architecture Results for MLCVE_clean 80

Table 3-6 Alternative Optimizer Architecture Results for MLCVE_clean 81

Table 3-7 DNN Alternative Layer Architecture Results for MLCVE_clean_dest 82

Table 3-8 Alternative Optimizer Architecture Results for MLCVE_clean_dest 83

Table 3-9 DNN Multiclassification Improvement ... 84

Table 3-10 Comparison of Random Forest Macro Average Metrics for MLCVE_clean and

MLCVE_clean_dest ... 89

xv

Table 3-11 Best-Performing Model Configurations for Each Dataset 91

Table 3-12 MLCVE_Binary Dataset Results .. 92

Table 3-13 MLCVE_Binary_Dest Dataset Results ... 93

Table 3-14 DNN Alternative Layer Architecture Results for MLCVE_binary 94

Table 3-15 Alternative Optimizer Architecture Results for MLCVE_binary 95

Table 3-16 DNN Alternative Layer Architecture Results for MLCVE_binary_dest 96

Table 3-17 Alternative Optimizer Architecture Results for MLCVE_binary_dest 97

Table 3-18 DNN Binary Classification Improvement ... 98

Table 3-19 MLCVE_Binary_Dest W3 Results ... 100

Table 3-20 Comparative Analysis of DNN and Random Forest for Binary Classification

 ... 101

Table 3-21 DNN model training times for each different platforms 102

xvi

LIST OF ABBREVIATIONS

EPH Example Placeholder

ACK Acknowledge Flag

AGX Autonomous Machines GPU Accelerated

AI Artificial Intelligence

A100, L4, T4 NVIDIA GPU models used for model training and testing

B/S Batch Size

CICIDS2017 Canadian Institute for Cybersecurity Intrusion Detection System 2017

dataset

CSV Comma-Separated Values

CVE Common Vulnerabilities and Exposures

CWR Congestion Window Reduced

DDoS Distributed Denial of Service

DNN Dense Neural Network

Dst, Dest Destination

ECE Explicit Congestion Notification Echo

ES Early Stopping

FI Feature Importance

GPU Graphics Processing Unit

IAT Inter-Arrival Time

IPC Inter-Process Communication

IP Internet Protocol

LR Learning Rate

MAWI Measurement and Analysis on the WIDE Internet

ML Machine Learning

MLCVE Machine Learning Dataset Clean Validated Experiment

MLCVE_clean Multi-class CVE cleaned dataset

MLCVE_clean_dest Multi-class CVE cleaned dataset without destination port information

MLCVE_binary MLCVE_clean CVE binary dataset

MLCVE_binary_dest MLCVE_clean_dest binary dataset without destination port

information

xvii

PCAP Packet Capture

ReLU Rectified Linear Unit

RF Random Forest

SDD Software Design Description

SRC Source

SRS Software Requirements Specification

SSH Secure Shell

TCP Transmission Control Protocol

UNSW-NB15 University of New South Wales Network-Based 2015 dataset

1

1. INTRODUCTION

1.1. Background

Advancement of technology has always affected the way humans interact with their

environment. Different milestones within history contributed differently to these

interactions. However, modern technology has completely transformed the practices in

which we communicate, especially with the increase in internet access. The increase

naturally added hundreds of millions annually into the numbers of internet users[1]. As a

result, the Internet traffic volume increased 20.5% annually in the last 5 years[2]. Internet

traffic is the flow of data across the entire Internet or specific network connections of its

fundamental networks. A network is basically a web of interconnected servers or devices

that communicate with each other to share resources. A known and widespread example of

a network is the Internet we use. In this context, computer networks constitute the main

element in transporting the internet traffic. This transportation creates network traffic and it

can be described as the amount of data moving across a computer network at any given time.

Given the nature of the network traffic, the data it carries can contain personal, financial

and/or corporation information. The confidential information that is carried can be targeted

for several reasons by several individuals and groups. This results in what is known as the

computer network attacks. It is important to understand what constitutes the computer

networks traffic in order to get a gist of how the attacks occur. The basic construction to

create a traffic.

The data, which constantly flows between various network nodes, is fragmented into smaller

data bits known as network packets or data packets. This fragmentation is essential to allow

effective usage of the network's interconnection medium by all computers within the

network. Data in a network packet is divided into two components: the packet header and

the payload, each with distinct purposes. The packet header is responsible for carrying

essential information such as content, host address, and destination address. In contrast, the

payload consists of the real data that is being transmitted.

2

Network packets are distributed across a network through communication protocols that

enable the transmission and exchange of data within the extensive, interconnected network

of nodes. The Internet Protocol (IP) is a communication protocol that governs the movement

of data packets between different nodes in a network using a defined set of rules. TCP

(Transmission Control Protocol) is a protocol that ensures reliable and orderly delivery of

data over the internet.

Organizations typically employ the Transmission Control Protocol (TCP) in conjunction

with IP to guarantee the accurate transmission and receipt of data packets to their intended

host destinations. Certain communication protocols may include packet footers alongside

packet headers in data packets, serving to provide supplementary information regarding the

packet.

When data packets are grouped to create a single sequence as a data stream based on source

and destination IP addresses, port numbers and protocol type, it forms the basis for network

flow. The Flow is important because it helps identify unusual patterns or traffic volumes

which can point out possible security threats or network problems.

Any deviation from normal network behavior that may indicate security threats, faults, or

performance issues is an anomaly in computer networks. Analyzing the flow of traffic is the

key to detecting the anomalies within the computer networks. The flow-based anomaly

detection can be achieved in different ways. We can divide it into three main categories as

Rule-Based Detection, Signature-Based Detection and AI-Based Anomaly Detection.

Rule-Based Anomaly Detection is a method that identifies abnormal network flow by using

predefined rules and patterns. It compares the observed data with these rules and patterns to

detect anomalies for potential threats and problems. The most typical example can be given

as Firewalls. It decides whether traffic is allowed based on from which source to which

destination with what port it is allowed to communicate. All the communication outside of

the defined rules and patterns are blocked. The models that consist of this structure can be

divided into two approaches. First one blocks everything and only allows the flow structures

that we want. This approach is the most popular one as it is more secure. However the

operational workload is higher for this approach because it requires updates for each new

change. The second approach is allowing all the traffic and blocking the flows that we

3

allowed. This approach however results in the system being open to vulnerabilities all the

time. Essentially, the primary advantage of rule-based anomaly detection is its precision in

identifying specific, well-understood threats. However, rule-based anomaly detection also

has limitations, particularly in its ability to identify new or evolving threats. This results in

Rule-Based Detection to not be popular for dynamic environments.

Signature-Based Anomaly Detection is an approach that uses identifying the threats by

analyzing network traffic against a set of known threat signatures. Signature here means a

predefined and known pattern that can help to identify threats based on their unique

characteristics. System alerts or takes predefined actions to eliminate the threat when it

detects an activity that matches with a threat signature. This is why Signature-Based systems

are highly effective against known threat signatures. This aspect also points out the weakness

of these systems as they are effective against known threats. They struggle when against

new,unknown and evolving threats that do not have similar threat signatures within the

system. Signature-Based systems should check and control all the protocols, services and

practices in order to keep being up-to-date. Every change should be included into the set of

signatures with every change in protocols and applications. This set also keeps maintaining

old signatures as they can still be used. After some point this becomes inconvenient and

unmanageable. To address shortcomings, these systems can be used with other detection

techniques in order to work against unknown threats and zero-day exploits.

At this point, AI-Based Anomaly Detection becomes a leading approach. AI-Based Anomaly

Detection uses artificial intelligence techniques like machine learning and deep learning, to

identify unusual patterns or behaviors in data that deviate from the normal, often detecting

both known and unknown threats more effectively. Unlike traditional rule-based or

signature-based methods, AI-based approaches can learn and adapt to the patterns in data. It

allows them to detect anomalies that may not have been previously identified. This makes it

especially effective against zero-day exploits and complex attacks. Utilizing AI for anomaly

detection requires significant computational capabilities, a robust dataset for training, and

ongoing maintenance to ensure its efficacy in light of evolving anomalies and threats.

What is aimed to be achieved within the Thesis is to create and implement an anomaly

detection system with usage of machine and deep learning.

4

Radford et al. proposed a unique model[3] in 2018. It analyzes the performance of five

different sequence aggregation rules with the help of unsupervised anomaly detection

techniques on the CICIDS2017 dataset[4]. Other studies based on signature-based detection

usually use a frequency-based model. On the other hand, this model uses long short-term

memory (LSTM) recurrent neural networks (RNNs) for modeling. Similarly, this research

focuses on the identification of new or zero-day vulnerabilities in the context of unsupervised

learning for identifying the unknown threats. It evaluates scores for each token in the

sequence in view of the learned model and the subsequent tokens. Consequently, the study

highlights the drawbacks of using the aggregated flow data to model the sequence and

explains that the relative frequency may be more important than the sequence to detect

attacks. It opens a new path for future research to apply deep learning directly on the packet

level data.

The model by S. Garg et al. stands out due to the proposed hybrid model of ImGWO and

ImCNN[5]. It aims to detect anomalies in real-time cloud network big data for data stream

management systems. The suggested hybrid model uses Grey Wolf Optimization (GWO)

for the feature extraction and Convolutional Neural Network(CNN) for the anomaly

classification. Model GWO is enhanced by the ImGWO and CNN is enhanced by the

ImCNN. This dual approach is to improve the feature selection and classification

performance. Different from the conventional methods, this model transforms the data into

RGB format for the ImCNN to process and it can handle large amounts of data and extract

high-level features from the tcpdump logs. The study presents a contribution to network

anomaly detection in the cloud environment.

The study of Siddiqui et al. (2019) is important through the application of unsupervised

anomaly detection with explanations and expert feedback to improve the detection rate[6].

This approach focuses on the use of the Isolation Forest to identify anomalies in a data set

that was gathered from over two million computers. It diverges compared to other methods

as they produce good results only if there is a large set of labeled data. The novelty of this

work comes from the application of Sequential Feature Explanation (SFE) to present

explanations of the identified anomalies. It gives the security analysts an idea of which

features are most impactful in the anomaly score. In addition, the work uses feedback from

analysts who examine and categorize the anomalous cases. It helps to improve the model’s

5

performance with the experts’ assessment. Proposed method also offers an advantage of

being able to learn by itself with little human intervention. This work differs from other

studies because of the integration of anomaly detection, explanatory approaches, and the

input from the subject-matter experts.

Nawir et al. (2019) worked on building a supervised machine learning system for network

anomaly detection that focuses on minimizing the communication costs and network

bandwidth[7]. Analyzing the UNSW-NB15 dataset[8], the research aims at establishing the

most efficient algorithm based on the accuracy and time consumption. The most important

contribution of this research work is the determination of the Averaged One Dependence

Estimator (AODE) as the best algorithm that produced an accuracy of 97. 26 % and a

processing time of approximately seven seconds. Experiments, performed in the WEKA

environment, compared a number of supervised algorithms: Naïve Bayes, Multi-Layer

Perceptron, Radial Basis Function Network, J48 Trees, and selected AODE as the best one.

The proposed work also includes an investigation of the distributed version of the AODE

algorithm to tackle the centralization problem in anomaly detection systems. This distributed

approach is somewhat less precise (95. 86% and 96. 59%), yet it is efficient. This paper also

demonstrates the compromise between the approaches’ effectiveness. This work is

distinctive in that it not only obtains good results on AODE but also introduces a distributed

algorithm to overcome the problem of data centralization. This paper’s strength in achieving

accuracy, processing time, and network performance makes it a substantial contribution to

the network anomaly detection field.

The study by Lin, Ye and Xu (2019) is a new approach to Network Security by using LSTM

networks with an Attention Mechanism[9]. This system focuses on one of the most critical

threats to computer networks namely the imbalances in the class distribution of the CSE-

CIC-IDS2018 dataset[10]. Thus, when applying the SMOTE algorithm and an improved loss

function, the study gets a very high accuracy of 96. 2% classification accuracy. This model

is also evaluated based on the accuracy, precision and recall to show the model’s efficiency

as compared to other machine learning approaches. The deep learning model also uses

TensorFlow and consists of two LSTM layers, three dense layers, and an attention

mechanism to solve the problem of the time series of network traffic classification. This

allows for the model to capture multivariate temporal dependencies of the data that is being

6

analyzed. The model applies these state-of-the-art methods effectively to overcome the

problem of class imbalance and, thus, improve the identification of network anomalies.

Paper states for future works, that it is possible to feed the neural networks with raw network

traffic data to make the model learn the features on its own and enhance the model’s

performance.

Hwang et al. (2020) proposed the D-PACK[11], a system that is suitable for IoT

environments and it incorporates CNN with an unsupervised deep learning model which is

an Autoencoder. This model is especially effective for the early detection of anomalies since

it only needs to inspect the first two packets of each flow; it offers almost perfect detection

with a low false positive rate. This approach is useful especially due to the fact that IoT

devices are among the most exposed to DDoS attacks, and the current protection

mechanisms are insufficient. D-PACK is different by using auto-learning from raw data

without the need to define the features beforehand. The system is proved to be efficient and

scalable on datasets like USTC-TFC2016[12], Mirai-RGU[13], and Mirai-CCU. Mirai-CCU

was built by the research team. The model can analyze large amounts of network traffic

within a short time. This study becomes a new reference that can be used for early anomaly

detection in IoT systems.

Lindemann et al. (2021) gives a detailed description of the application of LSTM networks

in the identification of anomalies by creating a survey[14]. The paper identifies various types

of anomalies. It compares LSTM-based solutions across various domains. It focuses on the

architectures’ capacity to identify perceptual anomalies because of their effectiveness in

modeling temporal dependencies. It also discusses current developments such as graph-

based and the transfer learning to capture the dynamics of the processes and the complex

and heterogeneous data. A large part of the survey is devoted to the identification of the

advantages of LSTM networks in time-series modeling and their use in different fields. The

survey’s findings suggest that future research should integrate LSTM networks with graph-

based methods and transfer learning to improve detection performance and overcome the

data heterogeneity issue. This paper is useful to get the overall idea of the existing and

potential development of the LSTM based anomaly detection methods.

Ullah and Mahmoud (2021) addresses the problem of increasing the level of cybersecurity

in the IoT systems[15] by their model. They glimpse into the utilization of CNNs to this end.

7

The model is tested on several datasets namely BoT-IoT[16][17] and IoT Network

Intrusion[18] and proved to have high accuracy in detecting and differentiating different

types of attacks. The model also adopts transfer learning for both the binary and multiclass

classification, therefore demonstrating the model’s flexibility when dealing with various IoT

network traffic. This research is unique due to the proposed approach for anomaly detection

based on CNNs and focusing on transfer learning to improve the model’s performance.

Despite impressive accuracy, precision, recall, and F1 scores, the paper also discusses

possible issues in deploying the model in resource-limited IoT settings and the necessity to

assess the model’s performance across a more extensive dataset to counter new threats.

The study of Nassif et al. (2021) is a systematic review[19]. It makes the identification of

multiple works related to anomaly detection based on machine learning. It divides the

anomalies as point, contextual, and collective and also mentioned that the majority of the

techniques belongs to unsupervised learning since they don't require labeled data. The review

includes 43 types of applications, which proves the effectiveness of the use of machine

learning in areas such as cyber security, industrial damage identification, and others. The

review also stresses that the multi-dimensional performance metrics should be used for the

evaluation of the models, and the phenomenon of the dominance of unsupervised anomaly

detection is also discussed. Although the review is quite general and includes a vast number

of studies, the author recommends performing new research using data sets from recent years

and using various performance indicators to strengthen the conclusions towards the

effectiveness and efficiency of machine learning models.

The paper by Sayed et al. (2022) proposes the use of LSTM networks and Autoencoders in

identifying DDoS attacks in Software Defined Network (SDN)[20]. Using the techniques of

Information Gain and Random Forest, the research work intends to predict the improvement

in the performance of anomaly detection systems with less frequency of generating alarms.

The evaluation of the proposed approach is carried out using three datasets, namely InSDN,

CICIDS2017, and CICIDS2018. This research is differentiated from other existing literature

in that it focuses on feature selection which is an important aspect in developing efficient

anomaly detection models. LSTM and Autoencoders make the detection of the complex

attacks easier and the incorporation of the two makes the model even better. This study

shows that deep learning is capable of enhancing the security of a network especially in the

8

SDN environment.

The pair of Ullah and Mahmoud (2022) makes another contribution. The authors present a

model that uses flow and control flag features in the identification of IoT network

anomalies[21]. On datasets such as BoT-IoT and MQTT-IoT-IDS2020 it also delivers

excellent results for binary and multiclass classification. The feed-forward neural network

architecture is considered as efficient and accurate than the other models and hence it is best

suited for the proposed model. This paper’s key contribution is its new feature extraction

method and the proper utilization of feed-forward neural network for anomaly detection in

IoT networks. The consideration of the particular characteristics of the network traffic and

the utilization of different datasets help to increase the model’s reliability and its

effectiveness in real-life conditions.

Hephzipah et al. (2023) suggests the new system enhanced by MMGT-ANN[22]. The KDD

crime dataset has been used in the experiment, and the paper reveals that the discussed

system outperforms others in terms of accuracy and time of cyber-crimes detection. The

usage of MMGT for the selection of features and the fine-tuning of an ANN for predicting

crime rates is a major contribution of this work. The described MMGT-ANN model is

characterized by high accuracy and low time complexity, which makes it stand out from

other models of cyber security. This paper’s contribution in the feature selection and ANN

optimization in enhancing the cyber security is therefore valuable for future work.

The paper of Wang et al. (2023) presents a comparative analysis of the most popular deep

learning architectures, namely, DNN, CNN, RNN, LSTM[23]. In this study, the CSE-CIC-

IDS2018 dataset is employed to stress on the significance of pre-processing and using

several deep learning models for the enhancement of network intrusion detection. The

specificity of this work is that a wide range of models was applied and special attention was

paid to data preprocessing. Thus, the study presents the results of the comparison of several

deep learning architectures and the impact of their usage on network security. The extensive

effort invested in data preprocessing of a large dataset and the thorough comparison of

various models are the major contributions of the research to the area of network anomaly

detection.

9

1.2. Problem and importance of the problem

Detecting anomalies in computer networks is extremely important but also very difficult

because of the large amount of complex network traffic. Networks produce huge quantities

of data, which makes it hard to manually spot any unusual patterns or behaviors that could

signal security risks, performance problems, or operational malfunctions. Conventional

techniques like signature-based or rule-based detection have a tough time staying updated

with the changing landscape of cyber threats, such as zero-day exploits and advanced

persistent threats (APTs). These methods often lead to a lot of false alarms, which can

overwhelm network administrators and potentially let actual threats slip through undetected.

AI based approach improves in this aspect. However, detecting anomalies using artificial

intelligence can be difficult. There is a need for a sufficient amount of accurate data that is

correctly labeled for training the models. Getting these datasets can be challenging because

network traffic data is usually extensive, varied, and may include confidential information.

Also, machine learning models can be demanding computationally. They need significant

resources for both training and ongoing analysis. Another challenge is the ever-changing

nature of network environments and the evolving cyber threats. It means that constant

updates and adjustments to the models are important for them to remain effective.

Essentially, Computer Networks are important for modern digital society. They support

different operations from personal communication to national security systems. Failing to

detect and pointing out anomalies quickly can result in data breaches, financial losses and

leaked sensitive information. It is important to improve anomaly detection capabilities to

guard against cyberattacks and maintain network integrity. Implementing advanced methods

like AI-based techniques is necessary to adapt to evolving threats and reduce the risk of

unknown anomalies. They can enhance detection by identifying complex patterns and

unknown threats that traditional methods may miss. Improving machine learning-based

anomaly detection can lead to more accurate and efficient solutions. It can help reduce the

risk of cyber-attacks and false alarms. This is essential for maintaining trust, security, and

resilience in today's interconnected digital world.

1.3. Aim and importance of the study

In this thesis, a machine learning based system will be developed to detect anomalies in a

computer network. There are many studies that use AI with flow-based anomaly detection.

10

However, trained models should be trained, tested and implemented to real world in order

to keep trained models useful. Most of the offered systems within the literature works offline.

They use pre-made datasets to train and test the models that are trained. They present results

according to these datasets. Yet, there are very few works that try to implement trained

models into live structure. In order for the studies to reach an impactful result, they should

be implemented to the backbone of a corporation network or to an ISP structure. This

implementation would result in thousands, even millions of flows to form. Waiting for this

much flow from beginning to end and then evaluating it is not possible with the resources of

these structures. Even when resources are increased, an increase will happen to traffic

volume simultaneously, they will be overwhelmed within time. This situation requires a

model to respond to a certain part of the flow immediately. What we aim for is being able to

respond within this part of the structure.

Another aim of ours is for the model to make successful classifications by using the flowing

traffic within the system. Thus, we are aiming to use NVIDIA Jetson AGX Orin and Nvidia

Jetson developer kits which are kits that are specifically developed for deep learning

implementation purposes.

1.4.Original contributions

In the literature review, two shortcomings were identified in the field of anomaly detection

in computer networks. The first of these points is that the data sets used in the studies are

outdated because they are not suitable for the changing network traffic structure and do not

include new cyber threats and attacks. In Aldweesh et al. (2020), the authors state that only

5% of the data used in the studies consist of real-life or simulated data based on it. Roshan

and Zafar (2021) make similar findings on the subject.

The second main deficiency in existing studies is that these studies are developed to work

offline and are not directly applicable to real life. The reasons for not being suitable for real

life are that the features used in traffic flows can usually be extracted after the entire flow is

finalized, so the studies are carried out offline and the difficulties of implementing machine

learning models in the embedded system.

This research intends to get results from the flow within a manageable time scale. In order

for the system to be developed to be applicable to real life, different criteria will be used in

11

the selection and creation of flow characteristics. Finally, an embedded system will be used

to support the machine learning model at the hardware level such as the backbone of the

system.

1.5. Organization of the Thesis

The organization of the Thesis is as follows:

1.5.1. Chapter 1: Introduction and Background

This chapter contains introduction and related works dedicated to the IDS development. This

chapter explains the problem, aim of the study and why is the intended contribution of the

study.

1.5.2. Chapter 2: Materials and Methods

This chapter explains available materials for the development of the machine learning model

and IDS system detection. It provides a detailed research methodology, Then, it provides

how selected models were developed depending on available methods and materials.

General structure of the selected methods was provided in here.

1.5.3. Chapter 3: Results

The results that are obtained by trained models and system are explained here. Results focus

on distinction on selected models and datasets.

1.5.4. Chapter 4: Discussion

This chapter reveals an analysis of the results and their impact on IDS field. The potential of

the provided system, its advantages over other systems and limitations of the study are

discussed here.

1.5.5. Chapter 5: Conclusion and Future Work

The study is summarized here. The findings and contributions of the thesis to the IDS are

wrapped up here. The impact of the study and its potential is outlined. This chapter ends

with future recommendations to improve the system better with putting forward needing

further validations of similar systems.

12

2. MATERIALS AND METHODS

This chapter outlines the materials used for developing the machine learning model and the

intrusion detection system (IDS). It explains the research methodology in detail, and then

describes how the selected models were built based on the available methods and resources.

Additionally, the general structure of the chosen methods is explained here.

2.1. DATASETS

The datasets are an important element in making Intrusion Detection Systems (IDS) using

Machine Learning better in network security development. These datasets help us train and

test our ML models to detect and respond to cyber threats. This part discusses the important

datasets used in IDS research, their evolution as well as their contributions and limitations.

The DARPA98 and DARPA99 datasets are among the first in IDS research. The DARPA

and MIT Lincoln Lab collaboration created these datasets to simulate intrusions into military

networks. DARPA99 built upon DARPA98 and added more types of attack. Although these

datasets were foundational in their time, their realism was hindered by the fact that the traffic

was synthetic. With this background as a basis, the KDD Cup 1999 (KDD99) [24][25]

dataset came into existence and is widely used in the IDS field. KDD99, however, was not

without shortcomings, such as redundant records and obsolete attacks.

To counter problems in KDD99 that were resulting in biased model validation, the NSL-

KDD [26] was introduced in 2009. It solves the main problem of having redundant entries.

NSL-KDD was better balanced and thus provided a fairer basis for evaluating IDS solutions

that used ML.

The Kyoto 2006+ [27][28] dataset introduced the concept of using real network traffic

captured over three years. The dataset classified the activity as normal, known attacks, and

unknown attacks. It provided a long-term view of the network behaviour that shows what

normal user behaviour would look like and what malicious user behaviour would look like.

It used real traffic so it was much more realistic.

13

The MAWI Working Group Traffic Archive [29][30] also started capturing real traffic from

the network. Instead of simulated attacks, the focus of this dataset was ordinary behavior.

Nevertheless, it lacked attack labels, thus making it not quite useful for supervised learning,

but actually useful to understand the normal behaviour of a network and anomaly detection.

Recently, the datasets from CAIDA [31] and DEFCON [32] gave samples of real network

traffic that had both normal and malice activity. Though NSL-KDD and KDD99 had few

modern attacks, newer datasets like UNSW-NB15[33] [34] [35] [36] [37] and

CICIDS2017[4] improved on that with better attack features. The CSE-CIC-IDS2018[10]

development further broadened the scope of attacks to include a more comprehensive and

current range for IDS research.

2.1.1. DARPA98 and DARPA99 Datasets

The datasets of DARPA 1998 and 1999 Intrusion Detection Evaluation datasets were made

available by DARPA to test on IDS performance. The Defense Advance Research Project

Agency (DARPA) sponsored the datasets created in cooperation with MIT Lincoln

Laboratories. Ultimately the created datasets aimed to provide benchmarks for IDS

capabilities for detecting a long range of cyber-attack. Both the datasets seem to share some

commonalities. However, they are quite different in nature. They also differ in terms of

delayed scope. Moreover, the complexity and types of attacks simulated are also different.

DARPA99 builds on the DARPA98 framework.

2.1.1.1.Content and Data Collection

The DARPA98 dataset has 7 weeks of traffic and audit logs. It was mostly UNIX-based, but

also outsider attacks. The dataset was created to check the capabilities of the IDS through

controlled normal and malicious traffic. The collected dataset contains a mix of benign and

malicious network activities. It has numerous attack types which include Denial of Service

(DoS), Remote to Local (R2L), User to Root (U2R), and Probing.

The DARPA99 data set is a follow-up to the DARPA98 data set and it increased the scope

of the previous dataset by including Windows NT system in addition to UNIX systems. This

version added an offline and real-time evaluation with the simulation of a network to capture

real network activities. The environmental conditions concerning data collected were more

14

varied, including UNIX and Windows systems, meaning that we had a fairer assessment of

the IDS.

2.1.1.2.Network Traffic Types

The DARPA98 dataset contained 38 individual attacks, both old and new. It helps test an

IDS’s ability to detect known and unknown intrusions. (22 words) There are four types of

attacks in total:

• Denial of Service (DoS): Disrupts legitimate users' access to network resources,

thereby rendering services unavailable.

• Remote to Local (R2L): Involves attempts to gain unauthorized access to a machine

from a remote location.

• User to Root (U2R): A local, non-privileged user attempts to escalate privileges to

gain superuser (root) access.

• Probing: Techniques used to gather information about the network, such as scanning

ports or identifying vulnerabilities within the network infrastructure.

DARPA99 increased the attack capacity with 201 attack instances of around 56 attack types.

Thus, it is more rigorous and less easily spoofed. This upgrade made sure that the IDS

models can be tested in a setting offering a wider range of threats, such as newly introduced

attacks and the modification of other.

2.1.1.3.Use in Research and Development

The DARPA98 dataset was a first in IDS research. It created the first comprehensive

benchmark for intrusion detection methods. Scientists carried out research many times using

DARPA98’s datasets to develop IDS models that could detect attacks on UNIX based

systems. They tested their approaches on a varied mix of network traffic.

DARPA99 helped IDS researchers with a more realistic environment for their evaluation,

allowing them to test their systems effectively. This data led to the development of the KDD

Cup 1999 (KDD99) which is heavily used in the IDS community. After KDD, the

importance of the DARAP series in IDS technology development and evolution became

insignificant.

15

2.1.1.4.Criticism and Limitations

Despite their foundational role, both DARPA98 and DARPA99 have been criticized for a

number of limitations despite their foundational role. The datasets were based on synthetic

network traffic generated in controlled environments. Synthetic datasets are generally

artificial datasets where network traffic is built in controlled environments. Real-world

network environments are not synthetic and involve more diverse and unpredictably

complex traffic. The nature was fake and it leads to some kind of biases which may harm

the performance of machine learning models.

In addition, DARPA98 and DARPA99 do not have any modern network protocols or current

types of cyber threats. Which lowers the relevance of their evaluation. According to the

DARPA99 report, the domain is more diverse than DARPA98. However, being a simulation,

it has inherent limitations. These shortcomings made researchers look out of the box for

newer datasets that are able to represent today’s networks threats accurately.

2.1.1.5.Data Structure of the DARPA98 and DARPA99 Datasets

The DARPA98 and DARPA99 datasets have several common features, although DARPA99

expanded upon these:

• TCP/IP Packet Data: Both datasets contain packet-level data that is captured using

TCP/IP protocol which includes packet headers and packet content in some cases.

The information here tells like where is the source and destinations address, size of

packets and kind of protocol used. This data gives important information used to

evaluate networking events i.e. any interaction or communication between the

devices. This can be data transfers, attempts to connect, disconnection of sessions or

anything of like.

• Time Stamps: Each network event in the datasets is associated with a timestamp,

which is crucial for temporal analysis of network behavior. This allows researchers

to track changes in activity over time and identify potential attack patterns.

• Labels: The labels are assigned to each network event signifying whether it is normal

or an attack of specific type. These labels form the basis of supervised learning which

helps train machine learning models to detect various intrusion types.

16

• Additional Features: The DARPA99 dataset includes additional features that provide

insights into network flows, session statistics, and other network-level behaviors.

This provides insights into network flows, session statistics, and other network-level

behaviors. Hence, it is better than DARPA98.

• Data Format: Both dataset's data is formatted in tcpdump-compatible formats so

network analysis tool data. This way they can be used by researchers for various

types of IDS testing and evaluation.

2.1.1.6.Simulation Environment

The DARPA98 dataset was generated in a simulated environment that closely resembled

real conditions, albeit simplified. The network contained several UNIX machines that

mimicked a U.S. An Air Force local-area network which provides a suitable testbed for

evaluation of IDS capabilities. Yet, because the dataset was synthetic, it limited the

randomness and variability present in real networks.

The original simulation environment was modified to include the Windows NT system, in

addition to UNIX, to form a more realistic mixed-OS environment by various research

groups. Even with these advancements, the setting remained artificial, meaning the dataset

was not real.

The datasets of DARPA98 and DARPA99 are important to help in the production of IDS

systems. The researchers tested their models on the dataset and then worked on improving

them, and their impact played a direct role in the KDDCup99 dataset as cyber threats and

network environments evolve, it is important to have modern, realistic datasets that can

depict a network security scenario more faithfully.

2.1.2. KDDCup99 Dataset

The KDDCup99 dataset is a very popular dataset that has been used as an evaluation of any

Intrusion Detection System. The dataset presented in this paper was created for The Third

International Knowledge Discovery and Data Mining Tools Competition (KDD-99) which

was held in conjunction with the Fifth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. It is a benchmark dataset for IDS research.

KDDCup99 is used for IDS model development and benchmarking, it is derived from

17

DARPA98, it is a dataset of normal traffic and malicious traffic. KDDCup99 aimed to

provide a collection of network traffic data, including both normal and malicious activities,

to support the development and evaluation of IDS models.

2.1.2.1.Content and Data Collection

The MIT Lincoln Laboratory did a special program called the DARPA98 IDS in 1998. From

this program, the KDDCup99 dataset was created. It was developed to provide researchers

working on IDS with a general-purpose database. The dataset contains normal network

activities and numerous attacks. Therefore, it provides a bedrock for future researchers to

compare various IDS models. To create the dataset, a wide variety of attack types were used

in order to capture the intrusion behaviour of various attacks.

It is a much simpler and preprocessed version of DARPA 1998 dataset. The dataset is

presented as a set of connection records. Each instance is described by 41 features (e.g.

duration, protocol type, service, number of bytes transferred, etc…). Each connection being

labelled as either normal or an attack which is one of 39 types. User friendly for machine

learning to train and test easily.

The dataset led to the creation of other better datasets, like the NSL-KDD, which fixed some

flaws of the KDDCup99. KDDCup99 has inspired a large volume of research work on

intrusion detection systems, although still exhibiting some flaws after over 20 years.

2.1.2.2.Criticism and Limitations

Although widely employed, the KDDCup99 dataset has many limitations that previous

researchers have pointed out:

• Redundancy: The dataset includes several duplicate entries that can cause bias and

affect the performance of machine learning models. When data records are repetitive,

the models get influenced easily. As a result, they become unable to differentiate

between attacks which haven’t been seen before.

• Lack of Temporal Information: KDDCup99 lacks temporal and sequential data,

which are crucial for understanding the behavior of attacks over time. This absence

limits its applicability for evaluating IDSs that rely on sequential or time-series

analysis.

18

• Unrealistic Data Distribution: The distribution of normal and attack instances in the

dataset does not reflect real-world network environments. The dataset has an

overrepresentation of some types of attacks, which may not be typical of actual

network traffic patterns.

• Outdated: The dataset is derived from DARPA98The dataset of Darpa98 is over

twenty years old. Thus, it does not take into account attacks that occurred after this

date, nor does it take into account the network protocols that exist today.

Because of these issues, newer datasets have come up, like the NSL-KDD dataset, which

tries to solve this issue by removing redundant records and providing a better balanced

dataset.

2.1.2.3.Simulation Environment

The KDDCup99 dataset was generated based on the DARPA98 evaluation, which means

that it was collected in a simulated network environment. The simulation took place with

a controlled network activity and attack situation with the evaluation of the IDS to check its

capabilities to detect the previously known attack. Though a wide range of attacks are

simulated, it does not encompass the high variability and unpredictability of the real-world

network environment.

2.1.3. NSL-KDD Dataset

The NSL-KDD dataset is an upgraded version of the KDDCup99 dataset. This fix was made

to produce the limitations of KDDCup99. Created by the Canadian Institute for

Cybersecurity at the University of New Brunswick, NSL-KDD has become an important

benchmark for Intrusion Detection System (IDS) research, especially in the field of machine

learning. NSL-KDD aimed to provide a better dataset for intrusion detection systems by

fixing the weaknesses of the KDDCup99 dataset.

19

2.1.3.1.Improvements Over KDDCup99

The NSL-KDD data set was generated to tackle some of the most important issues of

KDDCup99. Below are the notable improvements that distinguish NSL-KDD:

• Removal of Redundant Records: The NSL-KDD dataset does not have duplicate

records and irrelevant records which were in abundance in KDDCup99. The KDD

Cup 99 dataset has a lot of duplicates. As a result, our model biases. Thus, it has

become overly tuned to frequent records. Therefore, it is less generalizable. NSL-

KDD was used to tackle this problem by ensuring that this dataset has lesser

redundant records thus, leveling the dataset.

• Balanced Dataset: The training and testing sets of NSL-KDD were adjusted to ensure

similar record sizes, which helped prevent overfitting. By maintaining a more

balanced representation between normal and attack records, NSL-KDD ensured that

machine learning models trained on this dataset were not disproportionately

influenced by particular types of attacks.

• No Need for Random Subsampling: The KDDCup99 dataset is very large.

Researchers have to perform random subsampling because it is too large for

experimentation. The approach led to a missing partial or biased representation of

network activities. NSL-KDD tackled this problem by offering a more realistic

quantity of data, which can be utilized directly in the training and testing of IDS

models without arbitrary reduction.

2.1.3.2.Content and Data Collection

Much like KDDCup99, the NSL-KDD dataset represents network connections as a vector

of features. The dataset retains the structure of KDDCup99 by providing 41 features for each

connection, which include basic attributes of TCP connections, content-based features, and

traffic characteristics derived from a window of network connections. Each connection is

labeled. These labels provide a strong foundation for supervised learning approaches in IDS

research. NSL-KDD essentially captures a range of attack scenarios similar to KDDCup99,

but with the enhanced balance and reduced redundancy discussed above.

20

2.1.3.3.Limitations

Despite the improvements introduced with NSL-KDD, it still has limitations that prevent it

from being fully representative of modern network environments:

• Outdated Data: NSL-KDD is derived from KDDCup99, which, in turn, is based on

the DARPA98 data collected more than two decades ago. As such, it lacks coverage

of more recent types of attacks, as well as current network technologies and

protocols. The outdated nature of the data reduces its applicability in testing IDS

models meant for today’s rapidly evolving cyber threat landscape.

• Retains Basic Features and Format of KDDCup99: Although NSL-KDD addressed

some KDDCup99 problems, such as balancing and redundancy removal, it is still

based on KDDCup99's feature set and basic connection format. Modern network

traffic and attack patterns cannot be completely captured with these characteristics.

2.1.3.4.Use in Research and Development

Widely considered an important new step in the development of IDS datasets, NSL-KDD

set. It has kept a range of KDDCup99 strengths at the same time it has eliminated any major

faults. Consequently, the NSL-KDD dataset has been extensively used to benchmark the

performance of IDS models based on machine learning. The more balanced and manageable

dataset have enabled researchers to train and evaluate an IDS model with less bias and better

generalization than KDDCup99.

NSL-KDD is more refined version of KDD dataset which might not suit the researchers

however still has value. However, owing to the sophistication of cyber threats and the

evolution of network technology, researchers have been increasingly looking for newer

datasets.

2.1.3.5.Summary and Evolution of Datasets

The progression from DARPA98 to KDDCup99, and subsequently to NSL-KDD, illustrates

a continuous effort to address the limitations of earlier datasets and to improve the quality

of IDS training data:

21

• DARPA98 and DARPA99: Foundational but lacked the realism of real-world

network conditions.

• KDDCup99: Expanded the accessibility and usability for machine learning but

introduced biases and redundancy.

• NSL-KDD: Removed redundant records, provided a more balanced dataset, and

minimized the need for random subsampling, thus improving the dataset’s

practicality for IDS research.

However, given that the data for NSL-KDD still originated from a period when network

technologies and threats were vastly different from today, its usability is limited. The need

for more recent and representative datasets has spurred the creation of newer benchmarks

like UNSW-NB15 and CICIDS2017, which attempt to better capture the complexities of

network environments and the evolving landscape of cybersecurity threats.

Following Table 2.1 given below describes the four datasets on network security and how

they evolved over a period of time. It also shows advancements made in each of them.

22

Table 2-1 Summary of the differences between the DARPA98, DARPA99, KDDCup99, and NSL-

KDD datasets

Feature/Aspect DARPA98 DARPA99 KDDCup99 NSL-KDD
Year of

Creation 1998 1999 1999 2009

Content

Simulated
network
traffic,

including
various types

of cyber
attacks and

normal
activities.

Simulated network
traffic with more

diverse attack
scenarios and data

collection.

Processed set
of attacks and
normal traffic
with labeled

features.

Processed set with
redundant and

duplicate records
removed, and a
balanced dataset

with refined
training and
testing splits.

Types of
Attacks

DoS, R2L,
U2R, and
Probing.

DoS, R2L, U2R, and
Probing with more

diverse instances and
multi-stage scenarios.

DoS, R2L,
U2R, and
Probing.

DoS, R2L, U2R,
and Probing with

improved
representation and

balance.

Number of
Attacks

32 unique
attack types.

58 unique attack
types.

39 attack types
derived from
DARPA99.

37 attack types
with improved
distribution and

reduced
redundancy.

Data Format

Raw network
traffic data in

tcpdump
format,

requiring pre-
processing.

Raw network traffic
data in tcpdump

format with
additional traffic

diversity.

Processed
features (41
features per
connection,
labeled) in

CSV format.

Processed features
in CSV format,
with improved
data formatting

and reduced
redundancy.

Labeling

Not labeled;
required

processing
and manual
annotation.

Not labeled; required
manual processing

for analysis.

Labeled as
normal or
attack with

specific attack
types.

Labeled with
reduced

redundancy and
balanced

distribution.

Limitations

Lack of
realism,

limited attack
types, and
artificial
traffic

patterns.

Limited realism and
representativeness,
scalability issues.

Redundant
records,

duplicate data,
lack of

temporal
context, biases.

Based on outdated
traffic, may not

represent current
network scenarios
and attack vectors.

23

2.1.4. UNSW-NB15 Dataset

The UNSW-NB15 dataset is a comprehensive modern dataset developed for the evaluation

of Network Intrusion Detection Systems (NIDS). It aims at overcoming the shortcomings of

previous datasets, like KDDCup99 and NSL-KDD. In 2015 was developed by the Australian

Centre for Cyber Security (ACCS) at the University of New South Wales, it offers a realistic

testing ground for IDS research in the context of the latest cyber threats. By capturing normal

and malicious activities that reflect the real world, UNSW-NB15 uniform dataset offers great

potential value to improve the performance of IDS technologies.

2.1.4.1.Content and Features

The UNSW-NB15 dataset consists of a large amount of network traffic data representing

benign and attack behavior. It has 49 features relevant to the network communications.

These features include:

• General Network Flow Features: This can include the source and destination IP

addresses, port numbers, and protocol types, which give basic information about

individual network connections.

• Content-Based Features: It includes the details of the data transferred in a connection.

Useful for identifying payload-based attacks.

• Calculated Traffic Features: Traffic features based on differential monitoring over a

window of connections. this feature would lend insights into traffic patterns of the

network. this feature would be useful in indicating some kind of anomaly.

This mix of features makes UNSW-NB15 suitable for comprehensive intrusion analysis,

allowing the detection of complex patterns and behaviors that may indicate an intrusion.

2.1.4.2.Types of Attacks

UNSW-NB15 stands out from previous benchmarks through its coverage of a broad

spectrum of contemporary cyber threats and thus, it provides a more comprehensive view of

modern attack scenarios. There are nine types of attacks in the dataset:

• Shellcode: It refers to malicious in nature, with the aim to compromise a system and
acquire control over it.

24

• Fuzzers: Attacks that send unexpected or random input to systems to discover
vulnerabilities.

• Analysis: Analysis is the malicious activity aimed at gathering information or
analyzing vulnerabilities, often part of a reconnaissance campaign.

• Backdoors: Backdoors are a way of covertly getting remote access. It is usually
installed by the Hacker after an intrusion.

• Denial of Service (DoS): They aim to make a network service unavailable to users.
This is done by flooding the service with requests so that it can’t handle it and will
either crash or become unusable.

• Exploits: Exploits are attacks that make use of specific code vulnerabilities in
software or systems via unauthorized actions.

• Generic: Attacks that are not tied to a specific platform or software but exploit
common network or protocol vulnerabilities.

• Reconnaissance: Methods like scanning to gather information about the network and
identify weaknesses.

• Worms: Worms are self-replicating malware that spread in a network. They are
primarily used to create botnets or compromise a large number of hosts.

The assorted and numerous types of attacks contained in UNSW-NB15 are comparable to

the current threats out there, making it a useful benchmark for evaluating IDS model

simulation.

2.1.4.3.Data Collection

The IXIA PerfectStorm tool was used to generate the UNSW-NB15 dataset that simulates

real attack behaviour as well as normal network traffic. The process of data collection

included capturing:

• Real Normal Behaviors: Traffic generated to mimic legitimate user activities,

ensuring that the dataset reflects typical network operations.

• Synthetic Attack Traffic: Created to represent contemporary attack techniques,

providing a realistic context in which to evaluate IDS performance.

25

UNSW-NB15’s realistic dataset and unsophisticated simulated attacks provide a high degree

of accuracy for more modern IDS technologies. Thus, we can conclude that these activities

can be used as a reliable and relevant dataset.

2.1.4.4.Use in Research and Development

UNSW-NB15 data is widely accepted and used in both academic and industrial research for

assessing IDS models, especially ones based on machine learning and data mining

techniques. The dataset is realistic of the currently occurring traffic and incorporates newer

attacks. Therefore, it is suitable for the evaluation of the intrusion detection model compared

to the older datasets like KDDCup99 and NSLKDD.

The dataset has many features, so researchers can try different approaches which range from

simple rule-based systems to complex deep learning systems. The balanced normal and

attack data included allows assessment of model performance in identifying an intrusions

with negligible false positive rates amidst modern cyber threats.

2.1.4.5.Criticism and Limitations

UNSW-NB15 does have its limitations despite being an improvement over the previous

datasets. Some of these limitations are:

• Modeling Real-World Environments: While UNSW-NB15 captures a wide range of

attack types and mimics real traffic patterns, it is still collected in a controlled,

synthetic environment. As a result, it may not fully replicate the chaotic and

unpredictable nature of actual production network environments. Researchers using

this dataset need to be mindful that real-world networks are often messier and contain

traffic types that are not covered in the dataset.

• Dependence on Simulation Tools: The reliance on tools like IXIA PerfectStorm

means that attack scenarios, while realistic, are limited by the capabilities of the tool.

The dataset may not include all possible forms of network intrusions, especially

highly sophisticated attacks that leverage advanced obfuscation techniques or rapidly

evolving attack vectors.

26

2.1.5. MAWI Working Group Traffic Archive

The MAWI Working Group Traffic Archive is a key data set for network research. The

Japanese academic backbone network Widely Integrated Distributed Environment was

created and runs the MAWI Working Group; measurement and analysis on the WIDE

Internet (MAWI), MAWI data set. This dataset has been around since 1999 and has given

researchers actual Internet Traffic Data that greatly improved the understanding of the

network behaviour, performance and security.

2.1.5.1.Content and Data Collection

The goal of the MAWI Traffic Archive is to provide researchers with a source of real data

on the behavior of network traffic. Various points at the backbone of WIDE Project which

connects different research and educational institutions in Japan collects Data. This data

cover a vast geography and give wide perspective on the network activity.

The way that data is collected is using methods like a packet sniffer and other monitoring

tools to capture IP packets and, in some cases, application-level data. To maintain privacy,

we anonymize the data we collect by masking IP addresses and other identifying

information. The MAWI archive is specifically designed to ensure that the data being used

is useful to researchers and protects the privacy of the participants involved.

The dataset provides us with two types of information:

• Packet Traces: These are raw captures of network traffic, like IP headers, and

sometimes payload information. This information shows us how specific things

connect.

• Flow Data: The summary of packets consists of flows that embody common features,

for instance, source address and destination address or source port and destination

port and so on. This kind of data helps in spotting high-level traffic patterns and

behaviors.

27

2.1.5.2.Network Traffic Types

The MAWI Working Group Traffic Archive has a date of benign and malicious data. The

dataset has events and activities that happen every day as well as strange or suspicious

activities. This dataset is very useful for researchers as they can use it for doing anything

with the network. For instance, it can help researchers find out about normal network usage

or malicious usage.

2.1.5.3.Applications in Research and Development

The MAWI Traffic Archive has numerous applications within network research and

education:

• Traffic Flow Analysis: When researchers look at network flow patterns, they can tell

what things are common and what’s uncommon. This may help them better

understand how resilient common protocols and architectures are.

• Network Security Assessment: The archive assists identifies normal and abnormal

events to study attack detection, intrusion prevention, and related cybersecurity

domains.

• Performance Evaluation: It ensures a proper setting of the network under different

traffic conditions and protocols.

• Educational Use: The archive also supports educational use by providing students

with access to realistic network traffic for analysis. By working with live network

data, students will get the opportunity to bridge the gap between theory and practice.

2.1.5.4.Accessibility and Data Format

A key feature of the MAWI Traffic Archive is that it is publicly available. The MAWI

Working Group offers the dataset in common formats (pcap) compatible with popular

network analysis tools (e.g., Wireshark, Tcpdump). Researchers, educators, and students can

easily access the MAWI archive. Nonetheless, it should be noted that most of the archived

files are unlabeled which may require heavy pre-processing for some applications like

training up a supervised learning model for intrusion detection.

28

2.1.5.5.Limitations and Privacy Considerations

Despite its value, the MAWI Traffic Archive has some limitations. The data is unlabeled,

making it challenging to use directly for supervised machine learning applications without

extensive preprocessing. Furthermore, while the data provides real-world traffic, privacy

concerns require that sensitive data be anonymized, which may result in a loss of some useful

network-level details. Nevertheless, the MAWI archive maintains a strong balance between

data usability and participant privacy, making it an invaluable resource in the study of real

network environments. It has played an irreplaceable role in the development of network

research by providing real, high-quality network traffic data for analysis. This data

complements theoretical work and simulations, ultimately leading to more realistic and

effective solutions in network security and technology.

2.1.6. CICIDS2017 Dataset

The CICIDS2017 data set made by Canadian Institute for Cybersecurity for the evaluation

of network Intrusion Detection Systems (IDS). This dataset was created in order to overcome

the shortcomings of older datasets like KDDCup99 and NSL-KDD by giving IDS

researchers a more complete, realistic and recent dataset. Since it was developed, the

CICIDS2017 dataset has established itself as a benchmark of comparison for network IDS

models.

2.1.6.1.Content and Data Collection

The goal of the CICIDS2017 dataset was to mimic legitimate network traffic including the

benign ones and the different kinds of attacks. The data was collected over multiple days

and represented in multiple CSV files. Each file represents a different day of capture or type

of network usage.

The dataset emulates real-world network environments, comprising normal traffic along

with a variety of attacks like DDoS, Heartbleed, Botnet, Infiltration and different types of

web attacks. The dataset is diverse enough to help in training models for different types of

network anomalies and malicious behaviours.

29

2.1.6.2.Network Traffic Types

The CICIDS2017 dataset has a variety of normal and malicious network traffic activities.

The dataset contains 15 labels that consist of the attacks and normal traffic. These labels are:

1. BENIGN: Normal network activity without any malicious behavior.

2. DoS Hulk: A Denial of Service (DoS) attack that floods the target with large amounts

of data to disrupt normal services.

3. PortScan: A reconnaissance attack where the attacker scans various ports to identify

vulnerable services running on the target machine.

4. DDoS: A Distributed Denial of Service attack, which involves multiple systems

flooding a target to render it unusable.

5. DoS GoldenEye: A specific DoS attack designed to overload a web server by sending

a large number of HTTP requests.

6. FTP-Patator: A brute force attack aimed at the FTP service to gain unauthorized

access by attempting numerous login credentials.

7. SSH-Patator: Similar to FTP-Patator, this attack attempts to brute force access to the

SSH service.

8. DoS Slowloris: A type of DoS attack that tries to keep connections open with the

target web server as long as possible, thus preventing legitimate requests from being

fulfilled.

9. DoS Slowhttptest: Another DoS attack that sends HTTP traffic at a very slow rate,

attempting to exhaust server resources.

10. Bot: This attack involves the use of malware to infect and take control of devices,

allowing attackers to conduct further attacks.

30

11. Web Attack - Brute Force: A web attack that uses brute force techniques to try

different combinations of login credentials to gain unauthorized access.

12. Web Attack - XSS (Cross-Site Scripting): An attack targeting web applications to

execute malicious scripts in the user's browser by exploiting vulnerabilities in web

pages.

13. Infiltration: This attack involves unauthorized access to internal networks, often by

exploiting vulnerabilities in network defenses.

14. Web Attack - SQL Injection: A web attack that involves inserting malicious SQL

queries into input fields to manipulate the backend database.

15. Heartbleed: A vulnerability in the OpenSSL library that allows attackers to read

sensitive data from the memory of web servers, including encryption keys and

passwords.

This broad coverage of attack vectors allows for thorough evaluation of IDS models, testing

their ability to distinguish benign traffic from a diverse array of malicious behaviors. It

also enables detailed multiclass classification tasks, as models can be trained to identify each

specific type of attack.

2.1.6.3.Features and Data Format

Each network flow was described by extracting 84 flow-level features from the
CICFlowMeter tool that depicts the traffic. The features describing each flow were
designed for training of the machine learning model. Several types can be seen in features.
The features can be categorized as follows:

• Basic Flow Features: Essential information like source and destination IP addresses,
port numbers, protocol type as well as a timestamp.

• Packet-Level Features: This type includes information on the length of each packet,
the number of packets, the flags, etc. Noise and other related features help in
understanding the makeup of data transmitted over the network..

• Flow Statistics: Statistical features like flow duration, number of packets per second
and bytes per second describes the behaviour of a whole network flow.

31

• Forward (Fwd) and Backward (Bwd) Inter-Arrival Times: These features use timing
packets in forward and backward directions, for example total inter-arrival time and
total average inter-arrival time.

• Flow Active and Idle Times: The details include information about the times the
stream was active or idle. They aid in discovering the spikes in your network activity,
and idle times.

• Flow-based Timing Features: This category gives information about flow times, their
mean, maximum, minimum and standard deviation, so that time-based properties of
network activity can be analyzed.

• TCP Flag Features: The packet captures show TCP metrics like SYN, ACK, FIN,
other TCP flags, etc., to understand what is being established.

• Additional Packet Count Features: The features of this category are recorded at a
packet level. For example, the number of packets sent in the forward or backward
direction per second.

• Subflow Features: Subflow features can break network flows into smaller pieces that
add more information about packets and bytes in subflows in the forward and
backward directions.

• Window and Segment Features: The initial window sizes and minimum segments
sizes seen in the forward and backwards directions are features to put some light on
congestion control issues.

• Label: Each network flow is labeled as either benign or malicious, so it is a great
dataset for supervised learning.

Packet, flow and network level insights are available in CSV format. The format is easy to

process and can be directly used in machine learning.

2.1.6.4.Labeling and Classification

Each instance of a network flow in the dataset is labeled; either benign, or one of the attack

classes. Due to the classification of the input data, it is suitable for supervised learning. In

other words, the model should learn to detect whether the network event is normal or

malicious.

32

The labels in the dataset also identify the various attacks that enable the models for multiclass

classification that help distinguish between the DoS, DDoS, Infiltration and Web Attacks.

The extensive labeling allows for a detailed ground truth on which the researcher can test

and validate the effectiveness of IDSs in identifying wide and subtle attack behaviors.

2.1.6.5.Use in Research and Development

The CICIDS2017 dataset has been widely used by researchers to develop and evaluate IDS

models. Its realistic portrayal of both normal and abnormal network behavior provides a

solid foundation for:

• Supervised Learning: The dataset is useful for training machine learning models that

aim to distinguish between normal traffic and malicious behaviors.

• Anomaly Detection: The rich feature set enables models to learn to detect anomalous

patterns that could indicate emerging threats or zero-day attacks.

• Attack Pattern Analysis: The diversity of attacks provides a basis for evaluating how

effectively different IDS models can identify specific attack types.

2.1.6.6.Limitations

Although this set is helpful, CICIDS2017 dataset has some drawbacks:

• Imbalanced Data: Models that are used for attack detection sometimes do not have

enough data on a certain attack type as compared to other attack types.

• Lack of Novel Attacks: Although there is a variety of sample data, it still does not

contain every emerging attack type. Therefore, this can limit its suitability for the

evaluation of IDSs. In addition, it can be against the most recent types of attacks.

• Preprocessing Requirement: Processing the specification might take long for

systems with high number of complex features. Techniques performed to a dataset

before feeding it into the model is called Preprocessing. It entails redundancy,

handling missing value and normalizing features.

33

2.1.6.7.Conclusion

The CICIDS2017 dataset is a significant contribution to IDS research. It is helpful because

it provides realistic network traffic and multiple attack scenarios, and serves to fill in many

of the gaps in datasets like KDDCup99 and NSL-KDD. The data set has many features which

are highly suited for the classification as well as the anomaly detection task.

Yet, as cyber threats and networking technologies are evolving through time, there is a

requirement for more up-to-date datasets to keep repeat up to date data. Nevertheless,

CICIDS2017 still ranks amongst one of the most recent ones that help train and benchmark

IDSs. This is particularly the case for those working on enhancing the detection and

counteraction of modern attacks that happen over computer networks.

2.1.6.8.CICIDS2018 Dataset

The CICIDS2018 dataset is an extension of the CICIDS2017 dataset, both of which were

developed by the Canadian Institute for Cybersecurity (CIC). The main differences between

the two datasets are:

1. Data Collection Duration:

o CICIDS2018 was collected over ten days (February 14th to March 2nd,

2018), whereas CICIDS2017 was collected over five days (from July 3rd to

July 7th, 2017). The longer collection period of CICIDS2018 aims to capture

more data but doesn’t necessarily translate into greater coverage or

representativeness.

2. Attack Scenarios:

o CICIDS2018 contains additional attack types such as insider threats and data

exfiltration, alongside common attacks like DDoS and brute force.

CICIDS2017 also features diverse attack scenarios, including Web Attacks,

Heartbleed, Infiltration, and DDoS, which effectively represent a wide range

of network threats. The differences in attack types do not necessarily indicate

superiority but rather reflect variations in threat modeling approaches

between the datasets.

34

3. Feature Extraction:

o Both datasets contain 84 features from CICFlowMeter. While CICIDS2017

uses older version, CICIDS2018 uses CICFlowMeter-V3. The features that

were taken out are more or less the same, no new type or usefulness of

features.

4. Purpose and Applicability:

o Both datasets contain 84 features from CICFlowMeter. While CICIDS2017

uses older version, CICIDS2018 uses CICFlowMeter-V3. The features that

were taken out are more or less the same, no new type or usefulness of

features.

Both CICIDS2017 and CICIDS2018 datasets are useful to evaluate intrusion detection

systems. Although the time span, attack scenarios, and data collection methods differ the

two datasets can’t be said to be better than the other. It depends on your intrusion detection

research but each of them can suit your needs. Response It is a benchmark data collection

for anomaly detection and other studies.

2.1.7. Comparison of the Datasets

It is important to have a comparison of the available datasets to have a better understanding.

Following Table 2.2 shows a comparative overview of the discussed datasets so far.

35

Table 2-2 Overview of Datasets for Intrusion Detection Systems

This table shows a comparison between datasets used in IDS training systems.

Dataset

Year
of

Creati
on

Data
Collection

Type

Number
of

Attack
Groups

Features Duration of
Collection Labeling Key

Improvements Limitations

DARPA98 1998
Simulated
Network
Traffic

4
Raw

Packet
Data

7 weeks Normal/At
tack Label

Foundational
dataset for

IDS

Synthetic
traffic,

outdated
attacks

DARPA99 1999
Simulated
Network
Traffic

4
Raw

Packet
Data

5 weeks
(expanded to

real-time
evaluation)

Normal/At
tack Label

Expanded
attack types,

included
Windows NT

systems

Synthetic
traffic,

outdated
attacks

KDDCup99 1999
Derived

from
DARPA98

4 41
Features

Derived from
DARPA98

Normal/At
tack Label

Simplified
data for ML,
large-scale

Redundant
entries,

unrealistic
distribution,

outdated

NSL-KDD 2009
Improved

from
KDDCup99

4 41
Features

Derived from
KDDCup99

Normal/At
tack Label

Removed
redundancy,

balanced
dataset

Still based on
outdated data,

lacks
temporal

information

UNSW-NB15 2015
Real &

Synthetic
Traffic

9 49
Features

IXIA
PerfectStorm

Tool

Normal/At
tack Label

Realistic
traffic, nine

modern attack
types

Limited
ability to

fully model
real-world

environments

MAWI
Archive

Since
1999

Real
Network
Traffic

-
Packet

and Flow
Data

Ongoing No labels
Real-world,
large-scale

traffic

No specific
labels, lacks
systematic

attack
modeling

CICIDS2017 2017
Simulated
Realistic
Traffic

15 84
Features 5 days

Normal/Sp
ecific
Attack
Label

Diverse attack
scenarios,
supervised

learning

Imbalance
between
attack

classes,
limited

timeframe

CICIDS2018 2018
Simulated
Realistic
Traffic

20 84
Features 10 days

Normal/Sp
ecific
Attack
Label

Longer data
collection,
additional

attacks

Imbalance
between
attack

classes,
similar

limitations as
CICIDS2017

36

2.2.METHODOLOGY

Methodology used for model training and system is explained in this section of the thesis.

2.2.1. Dataset Acquisition

This research employs the CICIDS2017 dataset, a common benchmark for network intrusion

detection system (IDS) research. (21 words) The CICIDS2017 dataset created by the

Canadian Institute for Cybersecurity simulates real-life threats with different activities that

include normal traffic as well as different attacks. this diversity makes it well appropriate for

IDS evaluation. You can have labeled flow data, raw network captures (PCAPs), and pre-

processed CSV files for research usage. For this research, the MachineLearningCSV version

was chosen, as it can be directly used for machine learning and required lesser preprocessing.

We downloaded the data using google colab because it has enough power and it easily

integrates with the google drive.

2.2.1.1.Data Cleaning and Label Normalization

After unzipping the dataset, all the csv files were checked for issues like wrong labels and

corrupt data. It was noticed that in one of the files, Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv, there are some characters that were not recognized in the

attack labels with which the web attacks are named. Hence there was a lack of understanding

of what type of attack was represented in (For instance Web Attack � Brute Force). These

symbols which were previously not identified were modified so that all of the characters in

this data are made uniform to aid machine learning algorithms. The unknown characters

were replaced with standard characters to maintain consistency in naming. For example:

• "Web Attack �Brute Force" was renamed to "Web Attack-Brute Force"

• "Web Attack �XSS" was renamed to "Web Attack-XSS"

• "Web Attack �Sql Injection" was renamed to "Web Attack-Sql Injection"

Cleaning the Data was important so that there are no issues while training the models due to

the different labels assigned to different datasets.

37

Table 2.3 provides an overview of the extracted files:
Table 2-3 Overview of Extracted Files from the Dataset

File Name Description

Monday-WorkingHours.pcap_ISCX.csv Network traffic from Monday,
including benign data

Tuesday-WorkingHours.pcap_ISCX.csv Network traffic from Tuesday,
including benign data

Wednesday-workingHours.pcap_ISCX.csv Network traffic from Wednesday,
including benign data

Thursday-WorkingHours-Morning-
WebAttacks.pcap_ISCX.csv

Traffic from Thursday morning,
including web attacks

Thursday-WorkingHours-Afternoon-
Infilteration.pcap_ISCX.csv

Traffic from Thursday afternoon,
including infiltration attempts

Friday-WorkingHours-Morning.pcap_ISCX.csv
Traffic from Friday morning, including

benign data

Friday-WorkingHours-Afternoon-
PortScan.pcap_ISCX.csv

Traffic from Friday afternoon,
including port scanning attacks

Friday-WorkingHours-Afternoon-
DDos.pcap_ISCX.csv

Traffic from Friday afternoon,
including DDoS attacks

2.2.1.2.Combining the Dataset Files

All the CSV files were cleaned and labels normalized after which all of them were made into

one CSV file that would be used to train the model. This compilation made it possible to

analyze the whole network activity including the normal (benign) behavior as well as the

attacks. Merging the files enabled shuffling and splitting of the dataset during the model

training and evaluation phases, effectively.

38

The combined process involved reading each of the csv files and merging them in one

DataFrame. This gave us a very rich dataset which includes many aspects of network

activity: benign traffic and attack. The purpose was to provide the machine learning model

with a varied training dataset that closely represented actual network conditions.

2.2.2. Data Integrity and Feature Check

Once the CSV files were merged, a count of the various class labels was carried out to check

the data integrity and estimate the distribution of different labels of dataset. The dataset

consisting of Normal and Attack records can be seen in Table 2.4:

Table 2-4 Distribution of Traffic Types in the CICIDS2017 Dataset

Traffic Type Record
Count

BENIGN 2,273,097
DoS Hulk 231,073
PortScan 158,930
DDoS 128,027
DoS GoldenEye 10,293
FTP-Patator 7,938
SSH-Patator 5,897
DoS slowloris 5,796
DoS Slowhttptest 5,499
Bot 1,966
Web Attack - Brute Force 1,507
Web Attack - XSS 652
Infiltration 36
Web Attack - SQL Injection 21
Heartbleed 11

This thorough assessment of the distribution of labels showed that the data will provide a

wide variety of traffic scenario, which is crucial for training the IDS to detect the frequent

as well as the rare types of attacks. It was remarked that certain types of attacks like

Heartbleed and SQL Injection didn’t happen as often as others. We must consider this

skewness at the time of model training to avoid bias.

39

The dataset was cleaned and merged before saving to Google Drive for the next stage model

training. This tactic allows them to save the data in a clean and formatted way, along with

a checkpoint for running the same experiments again or making changes without repeating

data preparation. The dataset was then saved as MLCVE.csv and also backed up at Google

Drive folder.

2.2.3. Dataset Preprocessing Variants

After getting the original MachineLearning version of the CICIDS2017, we had to perform

many preprocessing to get a more balanced dataset for model training. This section focuses

on done preprocessing on original dataset and subsequent variants formed of these changes.

2.2.3.1.Overview of Preprocessing Techniques

To prepare the CICIDS2017 dataset for model training, this research employed multiple

preprocessing techniques. Different variations of preprocessing were used to show how data,

if transformed, affects accuracy, generalizability and performance. In this section, we will

focus on the first dataset called MLCVE dataset which had almost no pre-processing as most

of the features from MachineLearningcvs version of CICIDS2017 dataset were retained.

2.2.3.2.Dataset 1: The CICIDS2017 Machine Learning Dataset (Original Dataset)

The MLCVE Dataset used in this research is not a variant created for this study but is instead

the MachineLearningCVS.zip file from the CICIDS2017 dataset. We used this dataset as

a baseline in its original form to check for further preprocessing before moving on to training

machine learning models. We use it as a guide for our enhancements. It also helps us utilize

diverse preprocessing methods in texts that we enhanced.

2.2.3.3. CICIDS2017 Dataset Description

The CICIDS2017 dataset is a good dataset developed by the Canadian Institute for

Cybersecurity. It represents real-world network traffic. This file was created using

CICFlowMeter, which uses PCAP files to extract flow-based features. CICFlowMeter is a

tool used for generating the traffic flows which are developed for the CIC. It is used for

developing 84 types of traffic features. It creates a graphical report after analysing pcap file.

The data set consists of labeled network flows representing both benign and malicious

activity. Researchers have developed and validated network intrusion detection systems

40

(IDS) using this data set.

The dataset has been taken from MachineLearningCVS (MLCVS) version as it contains

CSV files that are labeled for use directly on the MachineLearning Models. It has provided

details at flow level. This dataset version has 79 features that deal with many pieces of

information about that packet length various statistics, protocol, and other flags relevant to

the flow on the network.

2.2.3.3.1. Features and Label Information

The MLCVE Dataset consists of 84 features which are a mixture of basic flow parameters

and statistics along with network parameters. Such features can help classify normal versus

malicious behaviors on the network. Table 2.5 and Table 2.6 below provides an overview

of the features included in the dataset, along with their corresponding names in

CICFlowMeter and a brief explanation. Feature Category is based on CICFlowMeter.
Table 2-5 Explanation of Features in the CICIDS2017 Dataset (Original Dataset)

Feature
Category

Feature Name
(CICIDS2017)

Feature Name
(CICFlowMeter) Description

Basic Flow
Features Flow ID Flow ID Unique identifier for a flow.

Basic Flow
Features Source IP Source IP IP address of the source.

Basic Flow
Features Source Port Source Port Port number used by the source.

Basic Flow
Features Destination IP Dst IP IP address of the destination.

.

.

.

.

.

.

.

.

.

.

.

.
Flow-based

Timing
Features

Idle Min Idle Min Minimum time a flow was idle.

Label Label Label
The class label indicating whether
the flow is benign or belongs to a

particular attack category

Detailed Table of Table 2.5 is at Appendix.

41

Table 2-6 Overview of Features in the CICIDS2017 Dataset (Original Dataset)

SNo Feature Name
(CICIDS2017) SNo Feature Name

(CICIDS2017) SNo Feature Name
(CICIDS2017) SNo Feature Name

(CICIDS2017)
1 Flow ID 22 Flow Packets/s 43 Fwd PSH Flags 64 Down/Up Ratio

2 Source IP 23 Flow IAT
Mean 44 Bwd PSH Flags 65 Average Packet Size

3 Source Port 24 Flow IAT Std 45 Fwd URG Flags 66 Avg Fwd Segment Size
4 Destination IP 25 Flow IAT Max 46 Bwd URG Flags 67 Avg Bwd Segment Size

5 Destination
Port 26 Flow IAT Min 47 Fwd Header

Length 68 Fwd Avg Bytes/Bulk

6 Protocol 27 Fwd IAT Total 48 Bwd Header
Length 69 Fwd Avg Packets/Bulk

7 Timestamp 28 Fwd IAT Mean 49 Fwd Packets/s 70 Fwd Avg Bulk Rate
8 Flow Duration 29 Fwd IAT Std 50 Bwd Packets/s 71 Bwd Avg Bytes/Bulk

9 Total Fwd
Packets 30 Fwd IAT Max 51 Min Packet

Length 72 Bwd Avg Packets/Bulk

10
Total

Backward
Packets

31 Fwd IAT Min 52 Max Packet
Length 73 Bwd Avg Bulk Rate

11 Total Length
of Fwd Packets 32 Bwd IAT Total 53 Packet Length

Mean 74 Subflow Fwd Packets

12
Total Length

of Bwd
Packets

33 Bwd IAT
Mean 54 Packet Length Std 75 Subflow Fwd Bytes

13 Fwd Packet
Length Max 34 Bwd IAT Std 55 Packet Length

Variance 76 Subflow Bwd Packets

14 Fwd Packet
Length Min 35 Bwd IAT Max 56 FIN Flag Count 77 Subflow Bwd Bytes

15 Fwd Packet
Length Mean 36 Bwd IAT Min 57 SYN Flag Count 78 Init_Win_bytes_forward

16 Fwd Packet
Length Std 37 Fwd PSH

Flags 58 RST Flag Count 79 Init_Win_bytes_backward

17 Bwd Packet
Length Max 38 Bwd PSH

Flags 59 PSH Flag Count 80 Fwd Act Data Pkts

18 Bwd Packet
Length Min 39 Fwd URG

Flags 60 ACK Flag Count 81 Min Segment Size
Forward

19 Bwd Packet
Length Mean 40 Bwd URG

Flags 61 URG Flag Count 82 Active Mean

20 Bwd Packet
Length Std 41 Fwd Header

Length 62 CWR Flag Count 83 Active Std

21 Flow Bytes/s 42 Bwd Header
Length 63 ECE Flag Count 84 Active Max

42

2.2.3.3.2. Label Count Distribution

A count of various class labels was involved in the CICIDS2017 Dataset to get a further

insight into their distribution. The count of this label indicates the imbalance between normal

and malicious activities, which is vital while training ML models. Table 2.7 provides a

summary of both normal and attack records present in the dataset:
Table 2-7 Distribution of Labels in the CICIDS2017 Dataset

Traffic Type Record Count

BENIGN 2,273,097

DoS Hulk 231,073

PortScan 158,930

DDoS 128,027

DoS GoldenEye 10,293

FTP-Patator 7,938

SSH-Patator 5,897

DoS Slowloris 5,796

DoS Slowhttptest 5,499

Bot 1,966

Web Attack - Brute Force 1,507

Web Attack - XSS 652

Infiltration 36

Web Attack - SQL Injection 21

Heartbleed 11

This distribution at Table 2.7 reveals that the dataset is highly imbalanced, with certain

attack types having significantly fewer samples compared to the benign traffic. Such

imbalance could bias the model towards the majority class, making it less effective at

detecting the other attack types. Specific preprocessing techniques, such as removing lesser

data or resampling them, may be considered to handle this issue in subsequent steps. Still,

resampling labels with the very low data such as Heartbleed would result on producing

43

synthetic data. It would also have a high probability of overfitting because of lack of the data

to resample.

2.2.3.3.3. Feature Dropping

We drop features of the original data for training to make the model more efficient and

generalizable. We decided to take off some features because they don’t help predict

anything, they make the model feel too similar to the example we train, or they just bias the

model to memorize and not generalize.

To start off, features that had constant values throughout the dataset were dropped. These

constant features are Fwd URG Flags, Bwd URG Flags, and URG Flag Count. Since these

features did not vary across different network flows, they offered no useful information for

distinguishing between benign and malicious traffic. Including such redundant information

could potentially increase computational overhead without providing any added value in

terms of model accuracy. By removing these features, we aimed to reduce unnecessary

complexity and ensure that the machine learning algorithms focused only on features with

meaningful variability.

Next, certain unique identifiers were also dropped, such as Flow ID. The Flow ID uniquely

identifies each flow but has no underlying pattern that could generalize across different

flows. Since the goal of machine learning is to identify patterns applicable to unseen data,

retaining features like Flow ID would likely cause the model to overfit. The model would

end up "memorizing" specific flow identifiers rather than learning generalizable features that

distinguish between benign and malicious activity.

Also, the features that might have worked as shortcuts for the model was removed. The

Source IP (Src IP), Destination IP (Dst IP), timestamp, etc. were also part of it. These

attributes may allow the model to pick up on unintended shortcuts that do not relate to flow

behavior, but have to do with malicious activities' addresses or dates. For example, this

model could learn to associate IP addresses with attacks, reducing its effectiveness if IPs

seen in the real world are new. In the same way, Timestamp might make the model link the

timing of attacks and could help in the identification of attacks any only at the time of a

certain campaign. Such behavior may limit the model's detection of unfamiliar attacks and

impact generalizability. By taking away these attributes, the model would learn better based

44

on malicious activity patterns rather than meta-data specifics which made it robust.

Lastly, the Source Port (Src Port) feature was removed due to its randomness. Ports are

assigned dynamically, so using Source Port to train the model could lead to overfitting. That

is, specific numbers will be associated with attack and benign flows, and that is without any

valid behavioral reason. When met with different port numbers, they will falsely detect such

packets as attacks. This risk was mitigated by dropping the Source Port, to prevent the model

from making false correlations.

During the feature dropping, we also check the shape of the dataset. At first, if from 84

features 6 features are removed, then 78 features will be in the final dataset. When I checked

the shape of the data frame my dataset had more rows/columns. I expected to have 78

features, but I ended up having 79 instead. So, I checked the features list of the original

dataset. I found a column called Fwd Header Length.1 This column was the same as 'Fwd

Header Length'. Hence, 'Fwd Header Length.1' was deleted eliminating the mismatch. The

dataset was finalized and made ready for preprocessing after this minor correction.

Omitting these features was a must to ensure that the models trained on the data have the

best chance of generalising well beyond the training data. This ensures that they detect novel

attacks rather than just overfitting to values, metadata, or situations. To summarize, this

preprocessing was needed to move forward with the model development to achieve a

complexity/accuracy/robustness balance and for improving its reliability.

The CICIDS2017 Dataset developed in this research will be the baseline dataset for

proposing and evaluating the intrusion detection models. This system excluded features

which could introduce redundancy or overfitting or present obstacles to generalization, while

retaining key flow-level features extracted from CICFlowMeter. This version of the dataset

was a baseline, being the closest to the original in data but with certain omissions to improve

model quality. One by one, preprocessing techniques were applied to the dataset.

45

2.2.4. Dataset Preprocessing for Clean Dataset Creation

This part focuses on creating a clean dataset for model training purposes.

2.2.4.1.Overview of Preprocessing Goals

The goal of this cleaning process was to create a clean and balanced dataset for training the

model effectively. Though the CICIDS2017 dataset was integrated and prepared, we still

had issues like imbalanced labels, underrepresented classes and data inconsistency. This prep

process is designed to cut down on these problems through label cutback, removal of

repeated or erroneous data, and similar fixes on the missing or invalid data so that the final

dataset produced a reliable one.

2.2.4.2.Label Reduction and Data Imbalance Mitigation

Major problem with the CICIDS2017 dataset was the extreme imbalance in the distribution

of labels. According to the earlier Label Count Distribution (Table 2.7), some attacks had

far lesser samples than other attacks and would have rendered a very imbalanced dataset if

employed as is for model training. In particular, the attack types Bot, Web Attack – Brute

Force, Web Attack – XSS, Infiltration, Web Attack – SQL Injection, and Heartbleed

accounted for only 4,193 records. The underrepresented classes formed minor proportions

of the entire dataset relative to well-represented classes like BENIGN or DoS Hulk.

Having so few records for these labels may have caused a lot of bias in the model. If a model

is trained with labels that are infrequently seen, it will miss out on or incorrectly label these

types of attacks, making it unable to detect actual network attacks. Therefore, it was decided

to eliminate these branches from the dataset and use only those branches which were

adequately represented. By using this label reduction process, they were able to remove data

sparsity, simplify training and improve generalizability.

46

2.2.4.3.Data Redundancy Check and Reduction of BENIGN Records

This part focuses on data redundancy and reduction of BENIGN records for a more balanced

dataset.

2.2.4.3.1. Data Redundancy Check

First thing I did after minimizing the under-represented labels was to check for redundant or

duplicate instances in the dataset. In case they are present in the dataset, they will unwantedly

bias the model by reinforcing certain representations. Comprehensive data redundancy check

with duplicate rows will be performed for this purpose. Table 2.8 records the label count of

duplicate rows found in the original dataset.
Table 2-8 Label Count for Duplicate Rows in the Original Dataset

Traffic Type Duplicate Count
BENIGN 236,257
PortScan 101,501
DoS Hulk 59,564
SSH-Patator 2,826
FTP-Patator 2,457
DoS Slowloris 507
DoS Slowhttptest 323
Web Attack - Brute Force 62
DDoS 20
Bot 19
DoS GoldenEye 14

The data redundancy check found many duplicates in the data set for several labels. The

label BENIGN had 236,257 duplicate records alone in the dataset. This is a huge part of the

dataset and would have caused biased learning. PortScan and DoS Hulk showed high

redundancy with 101,501 and 59,564 repeated records respectively. These duplicates were

removed so the dataset would represent true, diverse network traffic. The model worked

better on new data because it was trained with data of better quality, as redundant entries

have been removed.

47

2.2.4.3.2. Reduction of BENIGN Records

After balancing the data, the next process targeted the huge presence of BENIGN records in

the data. Over 2.2 million records were provided in the BENIGN label which comprised of

an extremely large number of records. This imbalance could cause the m i t rs to learn too

much towards BENIGN classification making it difficult to learn about malicious activities.

To deal with this, BENIGN records were reduced randomly such that they can be balanced

across different classes and not biased. By utilizing this technique, a great deal of BENIGN

instances were retained so that the model is able to learn about its behaviour while also

preventing this label from dominating the learning. The overall model accuracy for all traffic

types (benign and malicious) was enhanced by decreasing the number of BENIGN samples.

In addition, with proper class balance, the model would be able to learn better and identify

more patterns of attacks without being biased towards the majority class.

2.2.4.4.Handling Missing and Invalid Data

Once the labels got reduced and ensure lesser data redundancy, the next step was to take care

of inconsistency and invalid values that can degrade model training. We cleaned the data

during this step to remove any entries that may compromise the robustness of the data set.

Rows with NaN values were deleted. NaN denotes missing or undefined information. Thus,

NaNs in a dataset would yield incomplete or inaccurate training information and thus

prediction. Dealing with NaN values was crucial for having a complete sample for training

purposes.

Rows with Infinity (Inf) values were also discovered and deleted in addition to NaN values.

The value is often due to numerical operations, like a zero divided by zero or overflow errors.

Keeping Inf numbers will make the model unstable, as ML algorithms do not understand the

Inf value. It was important to eliminate them which ensured numerical stability during

training.

They also removed negative values from the data. Negative values are logically impossible

in many of the features represented in the CICIDS2017 dataset like packet sizes or flow

durations. The negative sign indicates some mistake either in data collection or data

48

corruption and cannot train the model as it is not the logical or accurate answer. Therefore,

these were removed for the integrity of data.

Finally, any empty row in a dataset has also deleted. These rows give no useful information

and will only provide noise, adding unnecessary computation during training.

Based on the steps of data cleaning together the final set of data was valid and consistent.

The cleaned dataset was used for building a machine learning model that can detect all types

of intrusions in the network.

2.2.4.5.Splitting the Cleaned Dataset

After the dataset has been cleaned and processed thoroughly, the last step was to the train-

test split of the dataset. The motive behind the split was to have the ability to create and

evaluate machine learning models in an unbiased way. The model was able to work well on

new data that it wasn't taught on, meaning it could do its job in a real-world application.

Training Dataset which was utilized to train the ML models and it helped the model learn

the patterns which are present in the network traffic or classifying the traffic as BENIGN or

malicious. In addition, a different Test Dataset was kept to examine model efficiency which

estimates how well the model would generalize to data it had never seen before.

The cleaned dataset was split in such a way that the classes were balanced across the training

and test datasets so that both subsets trained on all labels fairly. Table 2.9 shows the label

distribution among the training and test datasets:

Table 2-9 Label Count in the Training and Test Dataset After Cleaning and Splitting

Label Name
Train Dataset

Record Count

 Test Dataset

Record Count

BENIGN 120,362 30,174

DDoS 65,180 16,296

DoS GoldenEye 6,167 1,542

DoS Hulk 130,810 32,771

49

Label Name
Train Dataset

Record Count

 Test Dataset

Record Count

DoS Slowhttptest 1,677 465

DoS Slowloris 3,056 831

FTP-Patator 4,930 1,288

PortScan 92,109 31,748

SSH-Patator 2,576 1,176

These tables describe the balance obtained among various classes in training and test

datasets. The BENIGN label still had enough records, but it was reduced to a significant

amount compared to other labels so that it doesn’t dominate the learning. This balance in the

representation means that the model has sufficient samples from both these classes so that it

may learn to distinguish between not just the benign traffic but also the many types of

attacks. The data pre-processing steps explained in this section were a key factor for

converting the raw CICIDS2017 dataset into a reliable representative dataset that could be

used to train an ML model.

As a result of these endeavours, the final dataset was created to be clean, consistent and

adequately balanced so as to be a good base for building a strong model of intrusion

detection. The machine learning model was expected to have enhanced accuracy,

generalizability, and reliability for the detection of common and rare network intrusions by

solving data quality issues in totality.

2.2.5. Preprocessing Dataset with Destination Port Feature Removal

This part focuses on preprocessing dataset towards Destination Port feature removal.

2.2.5.1.Rationale for Further Preprocessing

The next phase of data preparation focused on intricate data operations where cleaning and

splitting already executed in Section 4 were executed with only one modification. The

Destination Port feature was removed from the dataset. They took this decision to avoid

50

manipulation in the Destination Port as it was found easy to manipulate this port making a

no good feature to distinguish benign and mediocre traffic in ML.

Attackers can easily manipulate both Source Port and Destination Port. Before Source Port

got removed for the same reason. Then, the model may become overfit. These are

correlations valid under one configuration of the network but not under all configurations

over the environment. By taking away the Source Port and Destination Port, it forced the

model to learn the invariant and meaningful behavior of the network traffic instead of relying

on association based on port information that may be misleading.

2.2.5.2.Increased Data Redundancy After Destination Port Removal

After disabling the Destination Port feature, it could be seen that the original dataset had a

lot of redundant data, especially the BENIGN label. In the absence of Destination Port,

many network flows that previously had small differences became identical, thus increasing

the number of duplicate rows. In particular, the number of duplicates rose to 687424 from

404564 during the last cycle of Preprocessing. The duplicate row frequency after the

Destination Port has been dropped is given in Table 2.10 :
Table 2-10 Label Count for Duplicate Rows After Dropping Destination Port

Traffic Type Duplicate Count

BENIGN 464,385

PortScan 157,328

DoS Hulk 59,564

SSH-Patator 2,826

FTP-Patator 2,457

DoS Slowloris 507

DoS Slowhttptest 323

DDoS 20

DoS GoldenEye 14

The BENIGN masking tag had a lot of redundancy inserted with 464,385 duplicates, almost

double the original. In the same way, the PortScan label highly increased redundancy, with

51

157,328 records found to be repeated. The increased redundancy warranted extra processing

to check for duplicates that might add slackness to the entire process.

2.2.5.3.Handling Increased Redundancy and Enhancements Over the Previous Stage

Duplicate entries were also removed in the same way as we did earlier in view of the

increased data redundancy. To ensure that the data remains free from duplication that could

alter model treatment, 687,424 identified duplicates were dropped from the data.

Apart from duplicates removal, the overall preprocessing strategy was kept the same as in

Section 4. That is, we reapplied label reduction to remove underrepresented classes and

randomly reduced the BENIGN label to maintain the balance thereafter. We cleaned the

remaining inconsistencies like any NaN value, Inf value, negative value and empty rows.

The big improvement over the last stage was designed to help the model generalize better.

To ensure that the model did not learn to rely on the Destination Port, this feature was

removed to prevent easy manipulation. eliminating both Source Port and Destination Port

meant that we would have to focus on complex features that indicated malware, as opposed

to simple features where a port is correlated with a traffic type. Its objective was to ensure

that the model learnt robust features that will generalize to different network conditions.

The extra discontinuity indicated that Destination Port helped to differentiate flows that were

otherwise similar. By eliminating this feature and handling the resultant duplicates, the

shuffled dataset was made to be more uniform, in terms of flowing behaviour and traffic

characterization rather than using metadata like port numbers.

2.2.5.4.Splitting the Cleaned Dataset After Destination Port Removal

After managing the increased redundancy and finalizing data cleaning, the dataset was split

into training set and test set. The subsets used for developing machine learning models and

the subsets used for testing will be distinct and split 80:20.

Both datasets had a balanced class which means all the labels were present so the learning

would take place effectively on a wide range of network behaviours. The label distributions

of the training and test datasets after the removal of the Destination Port and further cleaning

are presented in Table 2.11:

52

Table 2-11 Label Count in the Training and Test Dataset After Removing Destination Port and

Cleaning

Label Name Training Dataset
Record Count

Test Dataset
Record Count

BENIGN 115,400 30,174
DDoS 65,180 16,296

DoS GoldenEye 6,167 1,542

DoS Hulk 130,810 32,771
DoS Slowhttptest 1,677 465

DoS slowloris 3,056 831
FTP-Patator 4,930 1,288

PortScan 1,382 31,748
SSH-Patator 2,576 1,176

The tables show that even though removing Destination Port results in an increase in

redundancy, the cleaned and balanced training and test sets have a similar distribution to the

preceding case. Keeping this balance is essential to allow the model to properly learn the

properties of both benign and malicious traffic without being biased towards any particular

class.

Elimination of Source Port and Destination Port feature is an important enhancement in the

preprocessing phase. These features are easy to manipulate, which may cause the model to

form incorrect associations.

This may reduce the model’s effectiveness in the real world. The model was better equipped

to detect behavioral patterns and traffic characteristics because it was not fed port-related

information at all; that info could easily be spoofed by an attacker. It was expected that this

method would result in a more generalized and stronger intrusion detection model that could

detect various kinds of intrusion on the network under different network situations.

2.2.5.5.Resulting Datasets of MLCVE_clean and MLCVE_clean_dest

As a result of the preprocessing steps undertaken in Section 4 and Section 5, two distinct

datasets were created:

1. MLCVE_clean: After the pre-processing described in Section 4, the label reduction,

duplicate rows, random downsampling of the BENIGN class, general cleaning of the

53

data to get rid of inconsistencies, was done to get this dataset.

2. MLCVE_clean_dest: This dataset incorporates all the preprocessing steps

performed on MLCVE_clean, with the key distinction that the Destination Port

feature was also removed. The rationale for dropping Destination Port was to reduce

the risk of overfitting due to easily manipulated metadata and to ensure the model to

learn more generalized patterns of network traffic behavior that are less likely to be

tied to specific ports.

These two datasets MLCVE_clean and MLCVE_clean_dest aim to analyse how removing

the Destination Port affects the generalizability and robustness of the model. By checking

how well the machine learning models work on the two datasets, we can see how significant

Destination Port is for a network intrusion detection task. We can also see whether removal

of Destination Port can help create a robust generalizable model. The findings of this

comparative study will help decide if models should learn deeper flow based behaviour

rather than metadata which can be easily modified.

2.2.5.6.Creation of a Binary Classification Dataset

To simplify the classification task further and to assess the effectiveness of anomaly

detection regardless of the attack type, a binary classification dataset was created from the

two previously processed datasets MLCVE_clean and MLCVE_clean_dest. According to

this strategy, all traffic will be labelled either as normal (benign) or abnormal (anomalous)

instead of classifying between the types of attacks present in the dataset. The dataset is

suitable for models that only have to differentiate between ‘good’ traffic and ‘bad’ traffic.

In the original datasets, the labels signified the type of attack. Hence, a multi-class

classification. Nonetheless, the labels in the binary classification dataset were combined to

simplify classification. The label BENIGN was unchanged and assigned 0, meaning normal

traffic. The other labels representing different attack types were put under one label called

ABNORMAL which will be assigned as 1. This includes other attacks such as DDoS,

PortScan, DoS Hulk, FTP-Patator etc. which were labelled as abnormal.

This made the classification task easier since we would have to tell if the given traffic

instance was normal or malicious instead of many classes of attacks.

54

2.2.5.6.1. Label Distribution in the Binary Dataset

Following the conversion, the MLCVE_clean_dest dataset was split into training and

testing datasets. Below Table 2.12 is the label distributions for both splits:
Table 2-12 Label Counts in the Binary Training Dataset:

Label
Training Dataset

Count

Test Dataset

Count

BENIGN (0) 115,400 30,174

ABNORMAL (1) 215,778 86,117

The binary training data set consist of 215,778 instances of Abnormal and 115,400 instances

of Benign. Thus, the dataset still remained a bit unbalanced, that is abnormal traffic was

more than normal traffic. Likewise, there were 86,117 ABNORMAL instances and 30,174

BENIGN instances in testing data.

A binary classification dataset was created using MLCVE_clean and MLCVE_clean_dest

which simplified the intrusion detection problem. Transforming the dataset into a binary

format means the focus shifted from distinguishing one attack from the other to classifying

whether the traffic is benign or malicious. This shift seems appropriate for various usages

where the focus is on spotting any dubious activity without the need for attack type

specification. The resulting dataset is still imbalanced but presents a more balanced learning

opportunity compared to the original multi-class datasets, thus allowing the training of

binary classifiers for generalized anomaly detection.

2.2.6. Model Training

Model training will be explained in here.

2.2.6.1.Training the Dense Neural Network (DNN)

To build a strong intrusion detection model TensorFlow Keras was used to implement a

Dense Neural Network (DNN) The training process is flexible or can be changed depending

on the outcome of the feature selection and feature importance analysis for obtaining better

efficiency, generalizability, and performance of the model.

55

2.2.6.1.1. Data Preparation and Feature Selection

The training datasets MLCVE_clean and MLCVE_clean_dest were preprocessed as

described in previous sections. An optional feature selection technique based on the

importance score was included in the pipeline of training. To facilitate dynamic

optimization, properties that were not integral to the construction of the empirical model

were not used in training.

We get score importance through a permutation-based approach on previously trained

model. The features were ranked according to their score and utilized to generate a

prediction. The feature selection mechanism was designed for on/off functioning, depending

on the specific experimental demands. For this training, we set the feature selection to false,

which means we will not drop any features and will use all. This gives the model the most

extensive input features, providing it with more information present in the network data used

in probing.

But using feature selection, the architecture of the model could also change the layers. The

most important features were prioritized, which might have lowered the input

dimensionality, thus causing fewer neurons in the input layer. This strategy made sure that

the model concentrated on the most important features, which lessened the risk of overfitting

and made the training more efficient.

An example of feature importance computed from a trained model using MLCVE_clean is

shown in the following Table 2.13 here:
Table 2-13 Example of Feature Importance Scores

Weight Feature

0.2121 ± 0.0003 Packet Length Mean

0.1951 ± 0.0002 PSH Flag Count

0.1829 ± 0.0002 Average Packet Size

0.1076 ± 0.0003 Packet Length Std

0.0860 ± 0.0001 ACK Flag Count

0.0688 ± 0.0002 Fwd IAT Total

56

Weight Feature

0.0672 ± 0.0002 Destination Port

0.0613 ± 0.0001 Bwd IAT Std

0.0493 ± 0.0000 Bwd Packet Length Std

0.0484 ± 0.0001 Fwd IAT Std

... ...

The Destination Port is a significant feature appearing in the table with good feature

importance of 0.0672 ± 0.0002. Although the Destination Port might be manipulated, it still

has useful information to distinguish between various network flows. The Destination Port

serves dual purposes. Its operational nature can be helpful for detection, however, its failure

to detect was the cause for the removal phase of preprocessing for MLCVE_clean_dest. In

this research, the trade-off between utility and robustness was a key consideration that drove

different preprocessing paths to investigate the impact on model performance.

The feature importance scores showed that features like Packet Length Mean, PSH Flag

Count, Average Packet Size, Destination Port were significant predictors in the model, while

the other features were not that significant. It was possible to use this kind of information to

reduce the input layer size and become a streamlined model focusing on the most essential

ones.

2.2.6.1.2. Dense Neural Network Architecture

The architecture of the Dense Neural Network (DNN) was designed to adapt based on the

selected number of features. Designed architecture consisted of:

• Input Layer: The input layer size is based on the number of features that the feature

selection step retained. If feature selection is off, we take all features (ALL). But

when feature selection was performed, the input layer was automatically set to be

compatible with the reduced dimensionality of the selected features.

• Hidden Layers: The used model has three hidden layers of 128, 64, and 32 neurons.

Every one of those layers used a ReLU (rectified linear unit) activation function that

reduces the vanishing gradient problem. In addition, it helps speed up the training.

57

• Output Layer: The output layer had 9 neurons representing different classes of

network traffic (benign and malicious). We use the softmax activation function

which generates a probability distribution over all 9 classes for multi-class

classification.

The Adam optimizer was employed for model compilation. Its adaptive learning rate

capability was particularly useful in handling the sparse and noisy nature of network data.

The loss function used was sparse categorical cross-entropy, well-suited for the multi-class

classification problem.

2.2.6.1.3. Model Training Process

The training of a model follows certain steps and considerations to enhance the model

performance for it to be robust. Initially, dynamic feature selection contributed greatly to the

DNN input layer configuration. According to the feature importance scores, input

dimensionality was optimized. By performing feature selection, only the most significant

features were kept to make the model less complex, and less computationally intensive. For

instance, if only 20 of the original 84 features are found to be significant, the size of the input

layer is modified. The model became simpler and the model training was focused on

important features eliminating noise and hence limiting overfitted data.

The dataset gets used for training and validation set. The model parameters were fitted using

the training set, while the validation set was used as an independent set to evaluate the

model’s generalization ability during training. By checking the model’s output on the

validation set, it was easy to tune the hyperparameters in a dynamic way to avoid overfitting

on the training set.

To train the model effectively, a batch size of 256 was used and training was done for 250

epochs. Due to the large batch size being used, the gradient estimates were more stable.

Hence, the optimization was easy. Having an access to around 250 epochs for training is

something that helps the model to get converged. To prevent overfitting, we used early

stopping methods in our model. These systems allowed the training to stop once the model

had shown satisfactory performance. Thus preventing the training from continuing so far

that it would start to memorize.

58

The unequal number of data classes created a problem since BENIGN class was substantially

larger than the attack classes. Class weights were assigned to the model to ensure enough

importance is given to the minority classes. More weight was given to the underrepresented

labels DDoS or SSH-Patator, allowing better learning of the characteristics of these classes.

The main reason behind this was to prevent the model from being biased towards the

majority.

The training also makes sure that the data is shuffled in every epoch. So it shuffled the data

to ensure that the model does not learn any unintended sequence-based correlations in the

data. It was especially important as network traffic data can be inherently sequentially or

temporally dependent. The training samples were shuffled for each epoch so that the model

sees a different sequence of examples every time.

The training process was further improved by two callbacks: early stop on F1 score and

learning rate reduction on plateau. The early stopping callback was set up to keep track of

the model's validation set F1 score. The F1 score, which encompasses precision and recall,

result in a balanced metric to stop training when the model was at a desirable level across all

classes. F1 score balance was set as macro, resulting in same importance to each class result

instead of true instances from the data-set. This allowed the model to keep the F1 score

optimized for better generalization instead of letting the model focus on labels with high

numbers of instances within the dataset. We set the learning rate ourselves and it would

halved ever 5 steps when if there are no improvements in F1 score. The model's learning

score was set to a low value, as well, so as to reduce chances of getting stuck in local minima.

This was particularly useful for an unbalanced data set which would give false results if

optimized only for accuracy. The learning rate reduction callback slowed down the learning

rate whenever validation loss plateaued. When a set of epochs did not yield an improvement,

early stopping would terminate the training and reset the weights to the best of the f1 scores

from the training run. This reduction in dynamic allowed the model make more finer

adjustment during the liminal stages of training to make convergence more smooth.

Training of the Dense Neural Network was performed using a combination of dynamic

feature selection, class weighting, early stopping, learning rate modifications, and shuffling

of the data. All of these measures combined ensured that the model was still able to learn

from sufficient and diverse examples without requiring much computational power. With

59

the dynamic tuning of the input layer according to feature importance, class weighting, and

adaptive training callbacks, the resulting model is strong and capable of detecting a common

and rare network threat effectively.

2.2.6.2.Training the Random Forest Classifier

In addition to Dense Neural Network another model called Random Forest Classifier was

used for Intrusion Detection. For tabular data, Random Forest algorithm is very suitable.

This gave a good way to model the complex patterns from the network traffic data. The goal

was to evaluate its performance against the neural net based method for acknowledging the

best model for intrusion detection.

2.2.6.2.1. Data Preparation and Feature Selection

The MLCVE_clean datasets and MLCVE_clean_dest were used to train the Random Forest

classifier as discussed in previous sections. Feature selection was useful in random forest

model to enhance the performance. Random Forest has feature importance metrics, which

allowed us to rank features based on their contributions to the decision-making process of

the model.

A Random Forest model was trained on the traffic data and the importance values of the

features were derived. This was done to check which features were more important when

distinguishing between malicious and benign traffic. The following Table 2.14 ranked

features emerged from analysis:
Table 2-14 Feature Importance Scores from Random Forest Model

Rank Feature Name Importance Value

1 Destination Port 0.0680

2 Init_Win_bytes_backward 0.0624

3 Fwd Packet Length Max 0.0349

4 Flow IAT Mean 0.0345

5 Init_Win_bytes_forward 0.0314

...

60

Destination port feature was most important feature with importance value of 0.0680. This

characteristic shows impressive power to separate the different network activities, and it also

had a considerable feature importance during the training of the neural network. Destination

Port was removed from the MLCVE_clean_dest dataset because it is not robust enough as it

can be manipulated. It ranks quite highly here which suggests that it may be useful for

classification in some cases. Thus, it can be anticipated that the Destination Port drop in the

MLCVE_clean_dest dataset will decrease the Random Forest model performance. If this

feature is not present, then the model may not be able to classify some network flows

accurately.

Init_Win_bytes_backward, Fwd Packet Length Max and Flow IAT Mean are some other

features that scored high which relevant in identifying different types of networks traffics.

At the feature selection step, it was possible to reduce the number of features before actual

modelling took place. Thus, certain features were chosen to be left out because they had little

effect on the classification. This method made training easier by reducing computation as

well as noise by less important features which helped to give more robustness to the model.

2.2.6.2.2. Random Forest Model Setup

The Random Forest Classifier employed in this study was implemented using the scikit-learn

library and aimed at capturing non-linear relationships in network traffic via ensemble

learning. A Random Forest is comprised of decision trees that independently classify data

and vote on the overall output. This kind of model is resilient and works well for datasets

that have a lot of dimensions.

The model was set up with different parameters to make it fairly accurate and doable. We

set the number of decision trees (estimators) to 100. This balance of prediction quality and

training performance worked well. I chose Gini impurity as a criterion for splitting the

nodes, which helps in finding the best possible splits. Each tree is allowed to grow

unrestricted in max depth in order to capture all the details of the data as possible. It is still

worthwhile to try different max depths in order to better generalize the model. The model

was also trained using max depth for better generalization and to compare the results.

Random forests aren't liable to overfitting as the base decision tree. It gives a final decision

based on several trees. Through averaging, variance is reduced while generalizing

61

capabilities improve as well.

2.2.6.2.3. Model Training Process

The Random Forest model training involves the splitting of training dataset into training and

testing datasets. The Random Forest model was fitted on the training set and validated on

the independent test set for Generalization evaluation.

A big plus of Random Forests is that no scaling is needed and they only require unbiased

features. Many models like neural networks require feature scaling. So your end result of

your preprocessing will go directly to training in very common ML and DL libraries without

further normalization and standardization.

To cope with class imbalance, class weights were assigned dynamically based on label

distribution in the dataset. In particular, the class_weight parameter was set to ‘balanced’,

which ‘balances’ the weights inversely proportional to the class frequencies in the training

data. This ensured that the minority class like DDoS, DoS Slowloris and others were given

enough importance during model training and not overshadowed by the majority class which

is BENIGN. This was necessary to balance the model that was capable of detecting both

frequent and rare types of attacks.

While training, another robustness was added to the Random Forest model through the use

of a random subset of features for the construction of each decision tree. Random forest

avoids overfitting by using random feature selection for each tree, which results in a more

generalizable model. Randomized feature selection results in less chance of overfitting to a

particular set of features. Moreover, limiting each node splitting to a certain max number of

features made sure that the model was not very complex so as to learn noise by heart but

rather learn the patterns.

2.2.6.2.4. Feature Importance and Optimization

The random forest model was optimized through feature importance analysis. After training

the model, the feature importance scores were extracted to obtain insights regarding the most

important features for classifying. According to Table 6.2, the Destination Port,

Init_Win_bytes_backward, Fwd Packet Length Max, and Flow IAT Mean were the most

influential features.

62

Destination Port has a high ranking, suggesting that it can help differentiate activities

associated with different networks, but it may be susceptible to attacker manipulation. This

insight shows that it is important to select the right features for training the model.

Manipulatable features can also provide significant predictions under certain circumstances.

Analysis of Features Importance also helped in retraining the model which could exclude

the optional features with lower score in further model training. A retrain of the Random

Forest classifier with a reduced number of features will make it computationally less

intensive. That is, the training time will be reduced with a high level of accuracy. The model

became more robust and safer from being overfitted as a result of this streamlined approach

to make the model focus more on it.

The training of Random Forest Classifier was done in an orderly manner using feature

importance method. The model will use dynamic feature selection, class weighting, and

random feature sampling to learn from the train data but not overfit.

it can be seen that since Destination Port is an important feature in Random Forest the

removal of this feature in MLCVE_clean_dest will affect the performance of the model

negatively If this functionality is not available, the Random Forest will not work as

accurately specifically with respect to some attack instances and benign traffic relying on

port-based functionality. The final aim of using Random Forest was to obtain a classifier

that is robust yet versatile whose main aim is to detect and classify any sort of network attack.

2.2.6.3.Training on the Binary Classification Dataset

After training the MLCVE_train dataset with multi-class classification models, the dense

neural network (DNN) model and the random forest classifier were also trained on

MLCVE_clean and MLCVE_clean_dest binary classification dataset. The binary dataset

merges all attack types into the same label ABNORMAL and keeps BENIGN as the label

for normal traffic. This change made classification easy to evaluate general anomaly

detection capabilities.

2.2.6.3.1. Application of Multi-Class Model Training Configurations

The dense neural network and random forest models were trained on the binary dataset using

the same configurations that had been optimized for the multi-class classification case. The

63

aim was to use the best configurations to find out how well these models perform in a binary

classification, that is, BENIGN and ABNORMAL network traffic, or rather, good and bad

traffic.

The Dense Neural Network had the same architecture and train-ing process with just a

change to the output layer which was made suitable for the binary classification task. The

output layer was modified to have a single neuron with a sigmoid activation function which

allows the normal or anomalous class of a traffic flow. The hidden layers, batch size, epochs,

early stopping and class weighting settings were kept the same as found in the original

optimized version to keep the new and previous processes consistent.

Likewise, the parameters that secured the best outcome during multi-class training were

utilized to train the Random Forest Classifier. The number of estimators, criterion for node

splitting, and class weighting all remained the same that is identical to the earlier

configurations considered optimal. The Random Forest used the ensemble learning method

to combine outputs of individual decision trees to predict the output of BENIGN as

ABNORMAL.

The binary classification approach narrowed the problem down to abnormal behavior

detection only, regardless of what type of attack it is. It emulated real-world use cases where

intrusion detection systems mainly focused on flagging suspicious activity. By using the

same optimized parameters in the binary dataset, the generalization capacity of both DNN

and Random Forest models was assessed with regard to their ability to recognize any form

of network anomaly.

2.2.7. Model Architecture Updates

In this section, tests were done in order to observe the effect of different architecture design

and configurations for DNN model.

2.2.7.1.Layer Configuration Updates

Following Dense Neural Network layer configurations at Table 2.15 were tested as an

alternative to existing architecture configuration: Bottleneck Architecture, Sparse Wide

Architecture, Pyramid Architecture, Regularization with Batch Normalization, Gradual

Compression with Regularization, Single Hidden Layer (32 neurons), Single Hidden Layer

64

(64 neurons), Single Hidden Layer (128 neurons). The table below gives a brief explanation

of the tested layer configurations.
Table 2-15 Alternative Layer Configurations

Configuration Full Name Architecture Features

BottleNeck Bottleneck

Architecture

128 → 32 → 64 → 9 Narrow bottleneck layer

for compression,

expansion for

reconstruction

Sparse Wide Sparse Wide

Architecture

256 → 64 → 128 → 32

→ 9

Alternating wide and

sparse layers for balanced

feature learning

Pyramid Pyramid

Architecture

512 → 256 → 128 → 64

→ 32 → 9

Gradual reduction with

wide initial layers for

feature diversity

Reg. Batch

Norm.

Regularization with

Batch

Normalization

128 → BatchNorm → 64

→ BatchNorm → 32 → 9

Batch normalization for

stable training, dropout for

regularization

Gradual

Compression

Reg.

Gradual

Compression with

Regularization

256 → 128 → Dropout

→ 64 → 32 → Dropout

→ 9

Dropout regularization

with gradual compression

to reduce overfitting

Single 32 Single Hidden

Layer (32 neurons)

32 → 9 Minimalistic single hidden

layer with 32 neurons

2.2.7.2.Optimizer Configuration Update

The learning rate optimizer used in the architecture was the Adam optimizer. Following

Table 2.16 shows the alternative optimizers tested configuration update.

65

Table 2-16 Optimizer Configuration

Optimizer Learning Rate Additional Features

SGD 0.001 Momentum=0.9 (Accelerates convergence)

RMSprop 0.001 Handles noisy gradients, useful for RNNs

Adagrad 0.001 Adapts learning rate for each parameter, good for sparse data

Adadelta 1.0 Addresses Adagrad's aggressive decay problem

Nadam 0.001 Combines Adam and Nesterov momentum

2.2.8. Automated Real-Time CICFlowMeter Filtering IDS

The Automated Real-Time CICFlowMeter Filtering IDS is a system for real-time detection

of network attack tools. The above goal was to design a scalable system that can capture,

analyze and classify network traffic using trained models based on flow-based features from

the CICIDS2017 dataset. The system underwent careful refinement over four distinct

iterations. Each new version added one or more new detection functions to rectify the

shortcomings of the previous one. The whole development and deployment of Automated

Real-Time CICFlowMeter Filtering IDS took place on an NVIDIA Jetson AGX Orin. This

platform was chosen due to its powerful computing capability for real-time edge processes.

2.2.8.1.Version 1: Foundational Real-Time IDS System

The first version of the system was able to introduce a model for an automated real-time

intrusion detection which performed the flow-based extraction of features from traffic using

CICFlowMeter and classified the output using Random Forest. At first, we used Tcpdump

to capture network packets and generate Packet Capture (PCAP) files that were processed

sequentially by CICFlowMeter to produce flow features. We decided to use Tcpdump to

capture packets as we noticed the built-in capture mode of CICFlowMeter was prone to

dropping packets.

The first version has main functions that include filter_and_rename_columns(df) and

filter_and_rename_columns_reverse(df). They are meant to ensure that the features from

CICflowmeter are consistent with the Random Forest model. Still, because these processes

are carried out on a sequence, like capturing packets, extracting features, and predicting, a

66

large loss of packets was noticed. This happened because while the previous packets were

being processed, there was a possibility of missing packets from the flows.

2.2.8.2.Version 2: Enhanced Concurrent Processing and Threading

Version 2 improved on Version 1’s limitations with multi-threading that allows concurrent

processing. Two threads are used to not lose the packets while processing. One thread is

used to capture the packets and the other thread is used to extract features and prediction.

This made sure that the capture could go on without interruption and looking at previous

packets.

The start_sniffing() function was responsible for continuous packet capturing and the

process_pcap_with_cicflowmeter() function monitored the directory for new PCAP files to

perform automated feature extraction and prediction tasks. The use of concurrent processing

was key to allowing the IDS to maintain a real-time character without affecting the accuracy

or completeness of network flow analysis.

2.2.8.3.Version 3: Flow Management with Scapy

Version 3 went further and added scapy. Scapy is a Python library for sending and capturing

packets. In other words, we improved our data stream efficiency. Version 3, unlike previous

versions that concentrated on bulk PCAPs, gave more granular flow-level control. The

function track_flow(flow) was implemented to monitor individual network flows to manage

their life-time. None of the flows will last more than 100 seconds.

This version significantly reduced latency in the analysis. As soon as flows were processed

when they were completed or reached the timeout. This change enabled the system to be

much more dynamic by allowing it to focus on the completion of individual flows rather

than processing all of them in bulk.

2.2.8.4.Version 3 Variant: DL Integration with TensorFlow (v3_2)

The v3_2 variant aimed to leverage the power of deep learning by integrating a Dense Neural

Network (DNN) using TensorFlow. Given the dependency issues between CICFlowMeter

and TensorFlow, a dual-environment solution was adopted. The cic_env was used for packet

capturing and feature extraction, while tensor_env was utilized for TensorFlow-based

model prediction.

67

The make_prediction_in_tensorflow_env() function facilitated the execution of the

TensorFlow model in a separate environment to avoid conflicts. Predictions were generated

using tensorflow_predict.py, which performed feature scaling, model inference, and label

decoding. The adoption of TensorFlow allowed for improved detection of complex, non-

linear patterns in the data, enhancing the system's capability to identify sophisticated attacks.

2.2.8.5.System Implementation on NVIDIA Jetson AGX Orin

To ensure proper functionality, all versions of the Automated Real-Time CICFlowMeter

Filtering IDS were deployed on the NVIDIA Jetson AGX Orin platform. We have selected

the Jetson AGX Orin, which has powerful computational capabilities and with its GPU and

CPU combination, it can handle real-time data capture, feature extraction, and model

inference. This platform can perform many machine learning tasks at the edge, eliminating

the delay that occurs when sending data to a central server for processing. It was able to use

TensorFlow for deep learning activities, making it useful for complex operations on v3_2

that utilized the Dense Neural Network. The Jetson AGX Orin hardware accelerators were

harnessed to speed data analysis, making it a viable candidate for the task.

2.2.8.6.Summary of Versions and Evolution

The Automated Real-Time CICFlowMeter Filtering IDS was developed in an iterative

fashion because the authors wanted to improve network security. Every edition brought new

features:

• Version 1 established the core framework, using Tcpdump for packet capture and a

Random Forest classifier for prediction.

• Version 2 improved efficiency with concurrent packet capturing and processing,

minimizing packet loss.

• Version 3 refined the approach further by integrating flow management with Scapy,

allowing for more precise and immediate processing of flows.

• Version 3 Variant (v3_2) represented a major shift by incorporating deep learning,

which brought new capabilities in detecting non-linear and sophisticated attack

patterns using TensorFlow.

68

Overcoming challenges while designing a real-time and network anomaly detection requires

layering functions to the IDS system to make them an effective solution. The iteration we

did above accomplishes just that. The system's design and implementation with NVIDIA

Jetson AGX Orin as the development and deployment platform indicates it is a versatile tool

for edge computing and thus a suitable tool for modern real-time network security.

69

3. RESULTS

3.1. Multiple Classification Results

3.1.1. Dense Neural Network (DNN) Results

The performance of the Dense Neural Network (DNN) model was evaluated on the multi-

class datasets, MLCVE_clean and MLCVE_clean_dest, using several configurations.

These configurations varied based on batch size, learning rate, and whether early stopping

(ES) was applied during training. For the purpose of evaluating the model, the macro

average of precision, recall, and F1-score metrics was emphasized as it provides a balanced

view of performance across all classes, irrespective of class imbalance.

The DNN results are presented below based on four key sets of experiments for each dataset.

These results are explained individually before being compared to determine how different

factors influenced the performance.

3.1.1.1.MLCVE_clean Dataset Results

The MLCVE_clean dataset was used in multiple training scenarios. Below, the macro

average metrics for each configuration are presented, highlighting the model's performance

on this dataset.
Figure 3.1 MLCVE_clean (B/S: 64, LR: 0.01, FI: Disabled, ES: Enabled):

70

The model presented in Figure 3.1 achieved notable performance metrics, including a macro

average precision of 0.848, a macro average recall of 0.931, and a macro average F1-score

of 0.860.

In this initial configuration, the DNN model showed good recall, indicating that the model

was able to detect most of the attack classes well. However, the precision was slightly lower,

meaning that there was a higher rate of false positives among predicted attack types. The

macro average F1-score of 0.860 indicated a balanced performance, but there was room for

improvement.
Figure 3.2 MLCVE_clean (B/S: 256, LR: 0.01, FI: Disabled, ES: Enabled):

The model presented in Figure 3.2 achieved notable performance metrics, including a macro

average precision of 0.933, a macro average recall of 0.912, and a macro average F1-score

of 0.916.

By increasing the batch size to 256, there was a notable improvement in macro average

precision to 0.933. This indicates that larger batch sizes helped the model achieve more

stable gradient estimates, leading to fewer false positives. The macro average F1-score

improved to 0.916, reflecting a better balance between precision and recall.

71

Figure 3.3 MLCVE_clean (B/S: 256, LR: 0.001, FI: Disabled, ES: Enabled):

The model presented in Figure 3.3 achieved notable performance metrics, including a macro

average precision of 0.957, a macro average recall of 0.973, and a macro average F1-score

of 0.964.

When the learning rate was reduced to 0.001, the DNN achieved significantly higher macro

average metrics across the board. The F1-score reached 0.964, demonstrating that the model

benefitted from slower, more precise learning, which led to better optimization.
Figure 3.4 MLCVE_clean (B/S: 256, LR: 0.001, FI: Disabled, No ES):

72

The model presented in Figure 3.4 achieved notable performance metrics, including a macro

average precision of 0.921, a macro average recall of 0.936, and a macro average F1-score

of 0.919.

When early stopping was disabled, the model performance declined slightly, with an F1-

score of 0.919 compared to 0.964 when early stopping was enabled. This indicates that the

early stopping mechanism played a significant role in preventing overfitting, leading to

better generalization when training was halted at the optimal point.

3.1.1.2.MLCVE_clean_dest Dataset Results

The MLCVE_clean_dest dataset, which excluded the Destination Port feature, was also

tested under similar training conditions to understand how the absence of this feature

affected the model's classification ability.
Figure 3.5 MLCVE_clean_dest (B/S: 64, LR: 0.01, FI: Disabled, ES: Enabled):

The model presented in Figure 3.5 achieved notable performance metrics, including a macro

average precision of 0.835, a macro average recall of 0.858, and a macro average F1-score

of 0.811.

For the initial configuration, the performance metrics for the MLCVE_clean_dest dataset

were consistently lower than those for the MLCVE_clean dataset. The macro average F1-

73

score of 0.811 suggests that the removal of the Destination Port feature impacted the

model's ability to effectively classify the network traffic, resulting in lower precision and

recall.
Figure 3.6 MLCVE_clean_dest (B/S: 256, LR: 0.01, FI: Disabled, ES: Enabled):

The model presented in Figure 3.6 achieved notable performance metrics, including a macro

average precision of 0.810, a macro average recall of 0.903, and a macro average F1-score

of 0.820.

Increasing the batch size to 256 improved the recall to 0.903, indicating that the model

could detect more attack types correctly. However, precision dropped slightly to 0.810,

suggesting an increased number of false positives. The F1-score was 0.820, indicating a

moderate balance between precision and recall.

74

Figure 3.7 MLCVE_clean_dest (B/S: 256, LR: 0.001, FI: Disabled, ES: Enabled):

The model presented in Figure 3.7 achieved notable performance metrics, including a macro

average precision of 0.905, a macro average recall of 0.928, and a macro average F1-score

of 0.909.

Lowering the learning rate to 0.001 led to improvements in all metrics, with a macro

average F1-score of 0.909. This shows that even in the absence of the Destination Port

feature, a lower learning rate allowed the model to optimize better and converge towards

more accurate predictions.

75

Figure 3.8 MLCVE_clean_dest (B/S: 256, LR: 0.001, FI: Disabled, No ES):

The model presented in Figure 3.8 achieved notable performance metrics, including a macro

average precision of 0.869, a macro average recall of 0.935, and a macro average F1-score

of 0.882.

Training without early stopping resulted in a decline in performance, as seen with the F1-

score of 0.882 compared to 0.909 when early stopping was enabled. This again suggests that

early stopping is crucial to prevent overfitting and helps achieve better generalization in the

final model. Now let’s see these results from a comparative perspective.

3.1.1.3.Comparative Analysis of DNN Results

The next section compares DNN performance on the MLCVE_clean and

MLCVE_clean_dest datasets, noting interesting insights obtained from varying training

configurations such as batch size, learning rate and early stopping (ES).

A primary comparison was made between the performance of the DNN on the

MLCVE_clean and MLCVE_clean_dest datasets. In this analysis, we looked at what would

happen if we dropped the Destination Port feature, which was very important (according to

feature importance analysis). Table 3.1 summarizes the results of the two datasets under the

same training conditions.

76

Table 3-1 Comparison of DNN Macro Average Metrics between MLCVE_clean and

MLCVE_clean_dest

Dataset
Batch

Size

Learning

Rate

Early

Stopping

Macro

Precision

Macro

Recall

Macro

F1-Score

MLCVE_clean 64 0.01 Enabled 0.848 0.931 0.860

MLCVE_clean_dest 64 0.01 Enabled 0.835 0.858 0.811

MLCVE_clean 256 0.01 Enabled 0.933 0.912 0.916

MLCVE_clean_dest 256 0.01 Enabled 0.810 0.903 0.820

The analysis of the Table 3.1, the MLCVE_clean dataset is better than MLCVE_clean_dest

in all configurations. Macro F1-score spikes for MLCVE_clean_dest in comparison with

MLCVE_clean. Therefore, the Destination Port feature gave significant information than

other features for classifying normal and attack traffic. Without this feature, the DNN could

not classify traffic as effectively, especially the attack classes which might be heavily

dependent on port information.

Another vital benchmark was based on the effect of different batch sizes. The influence of

model convergence and stability was evaluated by training the DNN with batch sizes of 64

and 256. Table 3.2 shows the macro average metrics for the DNN trained using varying

batch sizes for each dataset.

77

Table 3-2 Comparison of DNN Macro Average Metrics for Different Batch Sizes

Dataset
Batch

Size

Learning

Rate

Early

Stopping

Macro

Precision

Macro

Recall

Macro

F1-Score

MLCVE_clean 64 0.01 Enabled 0.848 0.931 0.860

MLCVE_clean 256 0.01 Enabled 0.933 0.912 0.916

MLCVE_clean_dest 64 0.01 Enabled 0.835 0.858 0.811

MLCVE_clean_dest 256 0.01 Enabled 0.810 0.903 0.820

For both MLCVE_clean and MLCVE_clean_dest, an increase in the batch size from 64

to 256 resulted in improved macro average precision. For instance, precision for

MLCVE_clean increased from 0.848 to 0.933. However, recall dropped slightly, indicating

that a larger batch size led to fewer false positives but at the potential cost of missing certain

attack types.

The learning rate is a critical parameter that affects the model's convergence and overall

performance. Table 3.3 summarizes the performance metrics of the DNN trained with

learning rates of 0.01 and 0.001.
Table 3-3 Comparison of DNN Macro Average Metrics for Different Learning Rates

Dataset
Batch

Size

Learning

Rate

Early

Stopping

Macro

Precision

Macro

Recall

Macro

F1-Score

MLCVE_clean 256 0.01 Enabled 0.933 0.912 0.916

MLCVE_clean 256 0.001 Enabled 0.957 0.973 0.964

MLCVE_clean_dest 256 0.01 Enabled 0.810 0.903 0.820

MLCVE_clean_dest 256 0.001 Enabled 0.905 0.928 0.909

78

Lowering the learning rate from 0.01 to 0.001 resulted in significant improvements across

all metrics for both datasets. For MLCVE_clean, the macro average F1-score increased

from 0.916 to 0.964, indicating that a slower learning rate allowed the model to make more

refined weight adjustments during training, reducing the risk of overshooting and leading to

better optimization.

Finally, the impact of early stopping (ES) was examined to assess whether its use helped

prevent overfitting and improved generalization. Table 3.4 presents the metrics for models

trained with and without early stopping enabled.
Table 3-4 Comparison of DNN Macro Average Metrics with and without Early Stopping

Dataset
Batch

Size

Learning

Rate

Early

Stopping

Macro

Precision

Macro

Recall

Macro

F1-Score

MLCVE_clean 256 0.001 Enabled 0.957 0.973 0.964

MLCVE_clean 256 0.001 Disabled 0.921 0.936 0.919

MLCVE_clean_dest 256 0.001 Enabled 0.905 0.928 0.909

MLCVE_clean_dest 256 0.001 Disabled 0.869 0.935 0.882

Use of early stopping improved the performance of the model on all metrics. The F1 score

macro average was 0.964 with early stopping on MLCVE_clean and 0.919 when it was off.

MLCVE_clean_dest was grown to the similar trend. The early stopping criterion was

effective at preventing overfitting, meaning that the model did not train long enough to start

memorizing noise within the data.

3.1.1.4.Summary of Comparative Insights

The analysis to compare DNN model trained on both datasets shows us some important

things. Adding Destination Port feature in MLCVE_clean dataset led to better model

performance as compared to MLCVE_clean_dest dataset. The result shows Destination

Port distinguishes between normal and attack traffic and this information plays an important

role in enhancing the classification capability of the model. Still, we must consider the

79

Destination Port vulnerability that is susceptible to manipulation as well.

Also, when we increased the batch sizes from 64 to 256, the precision and F1-score improved

in general which indicated a more stable training along with a fewer false positive. The

increased batch sizes helped the model generalize better, which reduced false positives.

However, there was also a small drop in recall indicating this came at the cost of the model’s

ability to pick up all attacks.

Decreasing the learning rate from 0.01 to 0.001 improved model performance across all

metrics quite significantly. Using a slower learning rate would help adjust the model to better

optimize the observed values of the image data. The end result was having more precise and

accurate detection performance with more generalization capabilities.

The use of stopping early proved to be an important factor in the optimal performance of the

model. Models that were trained with early stopping had higher F1 scores than those that

were not The model’s overfitting was avoided through early stopping, enhancing

generalization on unseen data, which is critical for reliable network intrusion detection.

The best settings for MLCVE_clean were batch-size 256, learning rate 0.001, and early

stopping on. This achieved a macro avg f1 score of 0.964. The second-best performance was

obtained when the batch size was 256, the learning rate was 0.001 and early stopping was

enabled yielding a macro average F1-score of 0.909 for MLCVE_clean_dest dataset. These

configurations show that tuning the hyperparameters is essential for the best model result in

both cases.

The result shows that the features pointed in this work are needed to be retained such as

Destination Port and the hyper-parameters was needed to be tuned such as the batch size,

learning rate, and early stopping, etc. Properly selecting a filter and tuning its parameters can

greatly improve the capacity of the neural network to generalise. This could allow the neural

network to detect and classify different types of traffic.

3.1.1.5.Alternative Architecture Results

The results for both datasets are shown in this section. It shows the results for multi-

classification by layer architecture to optimizer preference.

80

Table 3-5 DNN Alternative Layer Architecture Results for MLCVE_clean

Dataset Macro F1-Score Accuracy % Layer Configuration

MLCVE_clean 0.964 97.8 Original

MLCVE_clean 0.967 98.7 BottleNeck

MLCVE_clean 0.971 98.7 Sparse Wide

MLCVE_clean 0.973 98.7 Pyramid

MLCVE_clean 0.957 98.0 Reg. Batch Norm.

MLCVE_clean 0.970 98.7 Gradual Compression Reg.

MLCVE_clean 0.935 97.7 Single 32

MLCVE_clean 0.931 98.2 Single 64

MLCVE_clean 0.872 91.0 Single 128

The Table 3.5 shows that Sparse Wide and Pyramid Layer configurations improve the

performance of the model. As the difference between Pyramid and Sparse Wide are

neglectable, Sparse Wide would be the more preferable choice because of its more cost-

effective architecture compared to Pyramid architecture.

With Sparse Wide architecture, the accuracy improved over one percent. The f1 score

improved almost one percent.

81

Table 3-6 Alternative Optimizer Architecture Results for MLCVE_clean

Dataset Optimizer Learning

Rate

Accuracy

(%)

Macro F1-

Score

Additional Features

MLCVE_clean Adam 0.001 98.7 0.971 -

MLCVE_clean SGD 0.001 95.7 0.879 Momentum=0.9

(Accelerates

convergence)

MLCVE_clean RMSprop 0.001 87.4 0.812 Handles noisy

gradients, useful for

RNNs

MLCVE_clean Adagrad 0.001 95.8 0.944 Adapts learning rate

for each parameter,

good for sparse data

MLCVE_clean Adadelta 1.0 94.1 0.861 Addresses Adagrad's

aggressive decay

problem

MLCVE_clean Nadam 0.001 90.7 0.847 Combines Adam and

Nesterov momentum

Table 3.6 shows that using the Adam optimizer is still more effective compared with other

alternatives. Next is MLCVE_clean_dest results.

82

Table 3-7 DNN Alternative Layer Architecture Results for MLCVE_clean_dest

Dataset Macro F1-Score Accuracy % Layer Configuration

MLCVE_clean_dest 0.909 90.4 Original

MLCVE_clean_dest 0.883 89.0 BottleNeck

MLCVE_clean_dest 0.874 85.6 Sparse Wide

MLCVE_clean_dest 0.894 89.4 Gradual Compression Reg.

MLCVE_clean_dest 0.894 89.4 Reg. Batch Norm.

MLCVE_clean_dest 0.894 88.2 Pyramid

MLCVE_clean_dest 0.897 93.6 Single 128

MLCVE_clean_dest 0.905 93.9 Single 64

MLCVE_clean_dest 0.874 92.9 Single 32

From Table 3.7, it is apparent that when Destination Port info is not given, model

performance drops. Testing different layer architectures for binary classification saw some

improvements. Single hidden layer approach improved the performance compared to

original 3 hidden layer architecture. While f1 score somewhat remined similar, accuracy

increased by 3.5 percent. Next is the improvements done by optimizer preference in Sparse

Wide model.

83

Table 3-8 Alternative Optimizer Architecture Results for MLCVE_clean_dest

Dataset Optimizer Learning

Rate

Accuracy

(%)

Macro F1-

Score

Additional Features

MLCVE_clean_dest Adam 0.001 90.4 0.909 -

MLCVE_clean_dest Adadelta 1.0 95.5 0.910 Addresses Adagrad's

aggressive decay

problem

MLCVE_clean_dest Nadam 0.001 94.0 0.896 Combines Adam and

Nesterov momentum

MLCVE_clean_dest Adagrad 0.001 91.9 0.882 Adapts learning rate

for each parameter,

good for sparse data

MLCVE_clean_dest SGD 0.001 94.8 0.898 Momentum=0.9

(Accelerates

convergence)

MLCVE_clean_dest RMSprop 0.001 94.8 0.906 Handles noisy

gradients, useful for

RNNs

Table 3.8 shows that Adadelta optimizer improved the performance of the model compared

to Adam optimizer.

84

Table 3-9 DNN Multiclassification Improvement

Dataset Best Accuracy

(%)

Best Macro F1-

Score

Adjustment

MLCVE_clean 97.8 0.964 Original

MLCVE_clean 98.7 0.971 Optimizer: Adam

Architecture: Sparse Wide

MLCVE_clean_dest 90.4 0.909 Original

MLCVE_clean_dest 95.5 0.910 Optimizer: Adadelta

Architecture: Single 64

From Table 3.9, it can be understood that layer and optimizer adjustments improved the

model performance. In the next part, we will look into the binary dataset results.

85

3.1.2. Random Forest Results

The Random Forest (RF) model was evaluated on the MLCVE_clean and

MLCVE_clean_dest datasets across different configurations. These configurations varied

based on the maximum depth of decision trees used in the model, allowing us to observe

the effect of limiting model complexity. The results of each experiment are presented below,

focusing on the macro average metrics of precision, recall, and F1-score to provide a

balanced perspective across all classes, regardless of class imbalance.

3.1.2.1.MLCVE_clean Dataset Results

The MLCVE_clean dataset, which includes the Destination Port feature, was used in

several training configurations with Random Forest.
Figure 3.9 MLCVE_clean - RandomForest Model (No Max Depth Limit):

The model presented in Figure 3.9 achieved notable performance metrics. In the

configuration without any restriction on the maximum depth of trees, the model achieved

high precision across all classes, particularly with macro average precision at 0.982. This

suggests the model effectively identified attack classes with minimal false positives.

However, the recall was lower (0.797), indicating that the model missed certain attack

instances, resulting in a macro average F1-score of 0.821. The overall accuracy was 95.7%.

86

Figure 3.10 MLCVE_clean - RandomForest Model (Max Depth: 5):

The model presented in Figure 3.10 achieved notable performance metrics, including a

macro average precision of 0.816, a macro average recall of 0.831, a macro average F1-score

of 0.755, and an accuracy of 94.6%.

Restricting the maximum depth to 5 significantly impacted the model’s precision and recall.

The model's F1-score dropped to 0.755, reflecting reduced classification effectiveness.

While simpler models (lower max depth) are typically less prone to overfitting, this

reduction in complexity negatively impacted the model's ability to accurately classify attack

classes.
Figure 3.11 MLCVE_clean - RandomForest Model (Max Depth: 10):

87

The model presented in Figure 3.11 achieved notable performance metrics, including a

macro average precision of 0.991, a macro average recall of 0.896, a macro average F1-score

of 0.921, and an accuracy of 98.6%

With a maximum depth of 10, the Random Forest model improved substantially across all

metrics. The macro average precision of 0.991 and recall of 0.896 resulted in an F1-score

of 0.921. The accuracy also increased to 98.6%, indicating a good balance between

complexity and generalization.

3.1.2.2.MLCVE_clean_dest Dataset Results

The MLCVE_clean_dest dataset, in which the Destination Port feature was removed, was

also evaluated using similar configurations.
Figure 3.12 MLCVE_clean_dest - RandomForest Model (No Max Depth Limit):

The model presented in Figure 3.12 achieved notable performance metrics, including a

macro average precision of 0.957, a macro average recall of 0.746, a macro average F1-score

of 0.766, and an accuracy of 84.2%.

Without a maximum depth limit, the model's macro average F1-score dropped to 0.766

when the Destination Port feature was removed. This suggests that the model struggled

more without this feature, and the reduced recall (0.746) indicates that the model had

difficulty identifying all instances of attack classes.

88

Figure 3.13 MLCVE_clean_dest - RandomForest Model (Max Depth: 5):

The model presented in Figure 3.13 achieved notable performance metrics, including a

macro average precision of 0.772, a macro average recall of 0.813, a macro average F1-score

of 0.714, and an accuracy of 92.2%

When the maximum depth was restricted to 5, the macro average F1-score dropped further

to 0.714, and the accuracy was 92.2%. The loss of the Destination Port feature combined

with reduced tree depth led to a substantial reduction in model performance.
Figure 3.14 MLCVE_clean_180_dest - RandomForest Model (Max Depth: 10):

89

The model presented in Figure 3.14 achieved notable performance metrics, including a

macro average precision of 0.947, a macro average recall of 0.759, a macro average F1-score

of 0.768, and an accuracy of 84.4%.

Increasing the maximum depth to 10 improved the model’s performance on

MLCVE_clean_dest. However, the macro average F1-score of 0.768 was still lower

compared to the MLCVE_clean dataset, indicating that the removal of the Destination Port

feature negatively impacted overall classification effectiveness.

3.1.2.3.Comparative Analysis of Random Forest Results

A comparison of the Random Forest model results on MLCVE_clean and

MLCVE_clean_dest datasets across different configurations reveals several important

findings. Table 3.10 summarizes the key metrics for each configuration.
Table 3-10 Comparison of Random Forest Macro Average Metrics for MLCVE_clean and

MLCVE_clean_dest

Dataset
Max

Depth

Macro

Precision

Macro

Recall

Macro F1-

Score
Accuracy

MLCVE_clean None 0.982 0.797 0.821 95.7%

MLCVE_clean_dest None 0.957 0.746 0.766 84.2%

MLCVE_clean 5 0.816 0.831 0.755 94.6%

MLCVE_clean_dest 5 0.772 0.813 0.714 92.2%

MLCVE_clean 10 0.991 0.896 0.921 98.6%

MLCVE_clean_dest 10 0.947 0.759 0.768 84.4%

The comparison shows that MLCVE_clean is better than MLCVE_clean_dest in all

configurations. This shows that it is the features related to the Destination Port which is

critical to the model as removal of it led to large drop in the precision, recall and the F1

score.

90

For both datasets, we observed a decrease in all metrics after limiting the maximum depth

of the trees to 5. This means the model was too simple to learn from the data for these stands.

Raising the maximum depth to 10 allowed to have a decent trade-off between model

complexity and performance. Particularly MLCVE_clean had a macro average F1-score of

0.921.

3.1.2.4.Summary of Comparative Insights

Performance of Random Forest Model on both the MLCVE_clean and MLCVE_clean_dest

mentioned about key thing that is features and complexity of the model. The Destinacion

Port feature removal impacted the model's classification performance badly and the

precision, recall and F1-score of all configurations reduced. This shows that Destination Port

allows the differentiation of applications that generate different flows.

Random Forest model performance was greatly impacted by limiting the maximum depth of

trees used in it. Keeping the depth limited can avoid overfitting. But, it also decreases the

ability to classify attack types in both datasets The 10-depth model is optimal, as it avoids

overfitting while retaining most of model accuracy, especially for MLCVE_clean..

The highest performance was observed in the MLCVE_clean dataset using a maximum

depth of 10, resulting in a macro average F1-score of 0.921 and an accuracy of 98.6%.

For MLCVE_clean_dest, the best configuration also used a maximum depth of 10, but the

performance metrics, including an F1-score of 0.768 and accuracy of 84.4%, were

significantly lower, reinforcing the importance of the Destination Port feature.

3.1.3. Comparative Analysis of Dense Neural Network and Random Forest Results

The DNN model beats the RF model in both MLCVE_clean and MLCVE_clean_dest

datasets. The DNN generalizes better across the various classes as seen from the higher

macro average F1-scores and recall scores. The top DNN model with a macro average F1-

score of 0.964 for the MLCVE_clean data set was trained with 256 batch size, 0.001 learning

rate and early stopping. The Random Forest model had the best performance at 10 depth

with the crop average F1 score of 0.921. When the Destination Port feature was removed in

the MLCVE_clean_dest dataset, both the models performed poorly. But the DNN performed

better with F1-score 0.909 while the Random Forest performed worse with maximum F1-

91

score 0.768. The results indicate that although Random Forest can handle feature

information completely, DNN is more flexible and adaptable, making it the more preferred

model to use in situations that might experience feature missingness.
Table 3-11 Best-Performing Model Configurations for Each Dataset

Dataset Model Type Configuration Details
Macro F1-

Score
Accuracy

MLCVE_clean Dense NN
B/S: 256, LR: 0.001, ES:

Enabled
0.964 99.3%

MLCVE_clean
Random

Forest
Max Depth: 10 0.921 98.6%

MLCVE_clean_dest Dense NN
B/S: 256, LR: 0.001, ES:

Enabled
0.909 95.8%

MLCVE_clean_dest
Random

Forest
Max Depth: 10 0.768 84.4%

3.2. Binary Classification Results

3.2.1. DNN Results

The guessed binary classification results of Dense Neural Network (DNN) model considered

two datasets, MLCVE_Binary and MLCVE_Binary_Dest. These datasets are created by

combining the non-BENIGN classes to ABNORMAL of original multiclass datasets which

are MLCVE and MLCVE_Dest.

 The here here summarize different model configurations, including batch size, learning rate,

and the effect of weight changes.

92

3.2.1.1.MLCVE_Binary Dataset Results

The results for the MLCVE_Binary dataset indicated that smaller batch sizes yielded

slightly better accuracy and macro F1-scores. When a batch size of 64 and a learning rate

of 0.001 were employed, the model achieved an accuracy of 98.8% and a macro F1-score

of 0.985, as shown in Table 3.12 below. The ABNORMAL class F1-score was consistently

higher than that for the BENIGN class, suggesting a particular proficiency of the DNN

model in identifying malicious activity.
Table 3-12 MLCVE_Binary Dataset Results

Batch

Size

Learning

Rate
Epochs

Weight

Adjustment

Accuracy

(%)

Macro

F1-

Score

ABNORMAL

F1

BENIGN

F1

64 0.001 250 Original 98.8 0.985 0.992 0.977

256 0.001 250 Original 98.7 0.983 0.991 0.975

256 0.01 250 Original 98.7 0.983 0.990 0.976

The findings indicate that smaller batch sizes allow the model to capture the variations in

the data more accurately ideal for the effective detection of both BENIGN and ABNORMAL

traffic. Given the rich feature set of MLCVE_Binary, the high overall performance suggests

that it can be used for binary classification with a DNN model without any significant weight

changes.

3.2.1.2.MLCVE_Binary_Dest Dataset Results

When the Destination Port feature was removed, a significant decline in model performance

was observed. The initial accuracy was 72.9%, reflecting the importance of this feature in

distinguishing between benign and malicious traffic. To compensate for this, different

weight adjustments were applied, which improved the model's ability to classify correctly.

With Weight Adjustment W4, the accuracy increased to 88.5%, and the macro F1-score

improved to 0.866.

93

Table 3-13 MLCVE_Binary_Dest Dataset Results

Batch

Size

Learning

Rate
Epochs

Weight

Adjustment

Accuracy

(%)

Macro

F1-

Score

ABNORMAL

F1

BENIGN

F1

64 0.001 250 Original 72.9 0.716 0.734 0.698

64 0.001 250 W2 84.4 0.824 0.847 0.801

64 0.001 250 W3 86.7 0.848 0.863 0.833

64 0.001 250 W4 88.5 0.866 0.881 0.850

The results indicate that weight adjustment is an effective method to compensate for

missing critical features, especially in binary classification tasks. The performance gains

achieved using W4 show that rebalancing class weights can significantly improve

classification of both ABNORMAL and BENIGN flows, which would otherwise be

impaired by the absence of key distinguishing attributes.

3.2.1.3.Comparative Analysis of DNN Results

The comparative analysis between the two datasets reveals the substantial impact of the

Destination Port feature on classification performance. The MLCVE_Binary dataset

showed a superior accuracy of 98.8%, highlighting its comprehensive nature for anomaly

detection. In contrast, the MLCVE_Binary_Dest dataset, even with optimized weight

adjustments, could only reach an accuracy of 88.5%.

Dataset
Best Accuracy

(%)

Best Macro F1-

Score

Optimal Weight

Adjustment

MLCVE_Binary 98.8 0.985 Original

MLCVE_Binary_Dest 88.5 0.866 W4

94

These differences underscore the necessity of feature completeness to train good IDS

models. The Destination Port is important for differentiating traffic type. Without this,

additional weight tuning is needed to get reasonable performance.

3.2.1.4.Alternative Architecture Binary Results

This section is about improvements on binary classification by architecture alternatives. We

will look into the improvements for both datasets.
Table 3-14 DNN Alternative Layer Architecture Results for MLCVE_binary

Dataset Best Accuracy (%) Best Macro F1-

Score

Configuration

MLCVE_Binary 98.8 0.985 Original

MLCVE_Binary 98.7 0.983 BottleNeck

MLCVE_Binary 98.8 0.984 Sparse Wide

MLCVE_Binary 98.7 0.983 Pyramid

MLCVE_Binary 97.9 0.972 Reg. Batch Norm.

MLCVE_Binary 98.9 0.986 Gradual Compression Reg.

MLCVE_Binary 95.4 0.936 Single 128

MLCVE_Binary 95.4 0.937 Single 64

MLCVE_Binary 93.1 0.901 Single 32

The Table 3.14 shows that Gradual Compression Reg and Original Layer configurations

give almost the same performance for the model. As the difference between Gradual

Compression Reg and Original Layer configurations are neglectable Original would be the

more preferable choice because of its more cost-effective architecture compared to Gradual

Compression Reg architecture.

95

Table 3-15 Alternative Optimizer Architecture Results for MLCVE_binary

Dataset Optimizer Learning

Rate

Accuracy

(%)

Macro F1-

Score

Additional Features

MLCVE_Binary Adam 0.001 98.8 0.985 -

MLCVE_Binary Adadelta 1.0 98.9 0.986 Addresses Adagrad's

aggressive decay

problem

MLCVE_Binary Nadam 0.001 98.6 0.982 Combines Adam and

Nesterov momentum

MLCVE_Binary SGD 0.001 98.9 0.986 Momentum=0.9

(Accelerates

convergence)

MLCVE_Binary Adagrad 0.001 98.6 0.982 Adapts learning rate

for each parameter,

good for sparse data

MLCVE_Binary RMSprop 0.001 98.6 0.982 Handles noisy

gradients, useful for

RNNs

Table 3.15 shows that using the Adam optimizer is still more effective compared with other

alternatives. Next is MLCVE_binary_dest results.

96

Table 3-16 DNN Alternative Layer Architecture Results for MLCVE_binary_dest

Dataset Best Accuracy

(%)

Best Macro F1-

Score

Configuration

MLCVE_Binary_Dest 91.7 0.866 Original

MLCVE_Binary_Dest 83.4 0.815 BottleNeck

MLCVE_Binary_Dest 85.6 0.784 Sparse Wide

MLCVE_Binary_Dest 83.2 0.718 Pyramid

MLCVE_Binary_Dest 85.6 0.837 Reg. Batch Norm.

MLCVE_Binary_Dest 87.3 0.847 Gradual Compression Reg.

MLCVE_Binary_Dest 87.3 0.853 Single 128

MLCVE_Binary_Dest 87.3 0.848 Single 64

MLCVE_Binary_Dest 89.0 0.870 Single 32

MLCVE_Binary_Dest 86.7 0.846 Single 16

It is apparent in Table 3.16 that when Destination Port info is not given, model performance

drops. Testing different layer architectures for binary classification saw some changes. Still,

original architecture remains better. Next is the improvements done by optimizer preference

in original model.

97

Table 3-17 Alternative Optimizer Architecture Results for MLCVE_binary_dest

Dataset Optimizer Learning

Rate

Accuracy

(%)

Macro

F1-Score

Additional Features

MLCVE_Binary_Dest Adam 0.001 91.7 0.866 -

MLCVE_Binary_Dest Adadelta 1.0 95.1 0.939 Addresses Adagrad's

aggressive decay

problem

MLCVE_Binary_Dest RMSprop 0.001 92.8 0.912 Handles noisy

gradients, useful for

RNNs

MLCVE_Binary_Dest Nadam 0.001 92.8 0.912 Combines Adam

and Nesterov

momentum

MLCVE_Binary_Dest SGD 0.001 88.9 0.870 Momentum=0.9

(Accelerates

convergence)

MLCVE_Binary_Dest Adagrad 0.001 86.6 0.847 Adapts learning rate

for each parameter,

good for sparse data

Table 3.17 shows that Adadelta optimizer improved the performance of the model compared

to Adam optimizer in here as well, just like in multi-classification.

98

Table 3-18 DNN Binary Classification Improvement

Dataset Best Accuracy

(%)

Best Macro F1-

Score

Adjustment

MLCVE_binary 98.8 0.985 Original

MLCVE_binary 98.9 0.986 Optimizer: Adadelta or SGD

Architecture: Original

MLCVE_binary_dest 90.4 0.909 Original

MLCVE_binary_dest 95.1 0.939 Optimizer: Adadelta

Architecture: Original

From Table 3.18, it can be understood that layer and optimizer adjustments improved the

model performance. In the next part, we will look into the binary dataset results.

99

3.2.2. Random Forest Results

Similar to the DNN results, Random Forest models were also tested for binary classification

across both datasets. The following sections summarize the key findings.

3.2.2.1.MLCVE_Binary Dataset Results

The MLCVE_Binary dataset results for the Random Forest model indicated a high level of

performance, with an accuracy of 97.6% and a macro F1-score of 0.970. The results,

presented in below, demonstrate the effectiveness of this traditional machine learning

approach in detecting anomalies in a feature-rich dataset.

Max

Depth

Weight

Adjustment

Accuracy

(%)

Macro F1-

Score

ABNORMAL

F1

BENIGN

F1

10 Original 97.6 0.970 0.984 0.955

The ABNORMAL class F1-score again outperformed the BENIGN class, suggesting a

stronger focus on detecting malicious behavior. This high performance, however, comes at

the cost of lower interpretability when compared to deep learning models.

3.2.2.2.MLCVE_Binary_Dest Dataset Results

When the Destination Port feature was excluded, the performance of the Random Forest

model also experienced a significant decline, as shown in Table 3.19. The initial accuracy

was 69.3%, but by applying Weight Adjustment W3, the model's performance improved

to 85.4% with a macro F1-score of 0.835.

100

Table 3-19 MLCVE_Binary_Dest W3 Results

Max

Depth

Weight

Adjustment

Accuracy

(%)

Macro F1-

Score

ABNORMAL

F1

BENIGN

F1

5 Original 69.3 0.684 0.702 0.665

10 Original 69.6 0.686 0.704 0.668

10 W3 85.4 0.835 0.854 0.816

The W3 Weight Adjustment strategy worked very well to reduce performance loss caused

by omitting Destination Port. So rebalancing for traditional models becomes important when

a key feature is missing.

3.2.2.3 Comparative Analysis of Random Forest Results

The MLCVE_Binary dataset continued to show strong results, achieving a best accuracy

of 97.6%. However, the MLCVE_Binary_Dest dataset showed the model's reliance on the

Destination Port feature. The final performance of 85.4% indicates that the dataset without

Destination Port is less capable of accurately classifying network events using Random

Forest.

Dataset
Best Accuracy

(%)

Best Macro F1-

Score

Optimal Weight

Adjustment

MLCVE_Binary 97.6 0.970 Original

MLCVE_Binary_Dest 85.4 0.835 W3

These results further confirm the critical role that certain features play in the accuracy of

IDS models. In scenarios where feature reduction is necessary, rebalancing techniques can

mitigate the loss in classification ability.

101

3.2.3 Comparative Analysis of DNN and Random Forest for Binary Classification

A comparative analysis of the Dense Neural Network (DNN) and Random Forest models

provides a broader understanding of their capabilities with respect to the two binary

classification datasets.
Table 3-20 Comparative Analysis of DNN and Random Forest for Binary Classification

Dataset Model
Best

Accuracy (%)

Best Macro

F1-Score

Optimal Weight

Adjustment

MLCVE_Binary DNN 98.8 0.985 Original

MLCVE_Binary RandomForest 97.6 0.970 Original

MLCVE_Binary_Dest DNN 88.5 0.866 W4

MLCVE_Binary_Dest RandomForest 85.4 0.835 W3

The DNN model was superior to the Random Forest in both datasets. For the

MLCVE_Binary dataset, the accuracy of DNN was 98.8% and that of Random Forest was

97.6%, both of which are very good. The dataset’s being rich in features may allow the DNN

more flexibility giving it a slight advantage.

For the MLCVE_Binary_Dest dataset, if the Destination Port feature is not included, then

both models perform worse. The DNN with Weight Adjustment W4, achieved an accuracy

of 88.5% and was better than Random Forest, which got 85.4% with weigh adjustment W3.

These findings show that deep learning models can remain effective even when features are

cut. All they need is proper adjustment. Even though Random Forest was still effective, it

couldn’t adapt as much as the other algorithms did, which shows its limitations without those

features. They showed that in IDS applications where feature completeness cannot be

guaranteed DNN model can be a more robust solution.

102

3.3.Model Training on NVIDIA Jetson AGX Orin and Comparative Analysis

Through this study, we trained the Deep Neural Network (DNN) model on different

platforms, specifically the NVIDIA A100, L4, T4 GPUs on Google Colab and the NVIDIA

Jetson AGX Orin device. The aim to see if Jetson Orin, which is low-resource and portable

hardware, can provide performance as well as accuracy on scale with larger, more powerful

compute units when used to train a model for an IDS application. This analysis is very

important when we think about using auto IDS anywhere with limited computational

capacity.

3.3.1. Training Time Comparison

The DNN model training times for each of the platforms are summarized in the Table 3.21

below:
Table 3-21 DNN model training times for each different platforms

Platform Training Time (seconds) Accuracy

NVIDIA A100 (Google Colab) 229.72 0.96

NVIDIA L4 (Google Colab) 223.90 0.96

NVIDIA T4 (Google Colab) 217.12 0.96

NVIDIA Jetson AGX Orin 2311.05 0.96

As we see in the Table 3.21, the Jetson Orin takes a long time to finish training (2311.05

seconds), while the high-performance GPUs, a stat of A100, L4 and T4 between 217-230

seconds. It should be noted, however, the accuracy values that were achieved across all

platforms were in similar range (0.96 to 0.97). In other words, we can say that because Jetson

Orin has less computational power, training it will take more time, but the results will be

similar to strong GPUs.

3.3.2. Model Training Insights

Above graphs indicate the training performed on the Jetson AGX Orin along with accuracy

and performance statistics. The regular accuracy of trained model on all platforms indicate

that the generalization power of the trained model does not get affected when the platform

103

changes, as long as the model architecture, hyperparameters and training dataset remain

constant.

This comparison means that you can train this model on A100 or L4, which speeds up

training. The trained model can be saved and loaded onto Jetson AGX Orin for inference

and deployment. It is an effective approach, especially in real life, when training is expensive

but deployment should be light and energy-efficient.

3.3.3. Deployment on Jetson AGX Orin

The Jetson AGX Orin was chosen for use because it is well suited to edge AI. It has quite a

lot of processing power, and it’s small and efficient. The Orin adapts for inference, which is

the major function for a real-time intrusion detection system, even though it is slower at

training. A practical suggestion deriving from the study results is to train the models using

high-performance computing resources and to then deploy them on the Jetson AGX Orin to

efficiently monitor and detect real-time networks intrusion.

Training on powerful GPUs and deploying on a resource-efficient platform like Orin fits into

the overall strategy of developing a practical and scalable intrusion detection system that

remains sufficiently accurate and reliable in real-time.

3.3.3.1.Online Results Analysis from Embedded System

The prediction results from embedded system were analyzed if the predictions had any

inconsistency. 4 attacks were detected in the first 800 flows. These attacks were 3 “DoS

Slowloris” and 1 “DoS Hulk” attacks. When “DoS Slowloris” attacks were analyzed, it was

determined that they were false positive. All three of them were flows with one packet. The

common point of these three flows were that their information related to packet length and

forward, backward packet movements were identical and their destination port were same.

Other than that, there were no indication to support that these flows were “DoS Slowloris”

such as keeping server busy as long as possible without ending requests.

On the other hand, when the single “DoS Hulk” prediction was analyzed, it was noticed that

it had some striking similarities to the characteristic of the “DoS Hulk” in the training dataset

of the model. Such as Flow Duration, Flow and Inter-Arrival Times and Idle Metrics.

However, when the individual flow was extracted from the captured traffic, it had only two

104

packets. It was inconsistent with the buildup of “DoS Hulk” attacks so it determined it was

also false positive.

Then same traffic was tested on binary model. The binary model detected only one abnormal

flow within the traffic in the first 800 flows. When the flow was inspected, it was the same

one from before that was determined as “DoS Hulk” by multi-classification model. Hence,

the aforementioned flow having a correlating data with training data was the reason for false

positive for both models. However, it can be argued that binary model had more consistency

compared to multi-classification model as it did not false positive other three flows in multi-

classification.

3.3.4. Conclusion

To conclude, Jetson AGX Orin can be a reasonable off-the-shelf portable solution for real-

time IDS deployment, which is not most ideal for model training due to slower processing.

The DNN might be trained on an NVIDIA A100, L4, or T4 before being deployed on Orin

for inference in this case to offer a balance between computational efficiency and effective

real-time security monitoring. Therefore, our Automated Real Time CICFlowMeter

Filtering IDS can perform well without being limited by the processing power of the edge

hardware.

105

4. DISCUSSION

The rapidly evolving digital world has significantly increased the need for advanced security

measures to protect our data. This thesis aimed to create an automated real-time intrusion

detection system (IDS). It followed steps of methodical process of dataset selection,

preprocessing, and model training. It was followed by an embedded system integration for

real-time deployment. The main focus of this study was by using state-of-art machine

learning techniques, Dense Neural Networks (DNN) and Random Forest (RF), and

combining them with practical computational hardware, such as the NVIDIA Jetson AGX

Orin to detect malicious network activities.

Dataset selected was CICIDS2017 dataset. It was selected because of its diversity in

capturing real-world network behavior. It also included dataset having 15 different classes

of network traffic. An important aspect of this work lies in detailed pre-processing of this

dataset. It allowed to create multiple versions, both with and without destination port

information. As well as binary and multi-class, 9 classes, versions were created. This allowed

for a detailed evaluation of the impact different features on model performance.

The finding for models shows that the presence of destination port plays an important role

model performance. Following information are based on macro F1 scores. This measurement

is a more correct measurement of the model as it evaluates all the classes in a balanced

manner. For multi-class classification, the models achieved an average accuracy of 96.4%.

When destination port information was removed from, it dropped to 91.0%. Similarly, in

binary classification the accuracy was 86.6% while destination port information was not

included, compared to 98.5% when included. These results highlight the impact of

destination port information as a feature in differentiating between different types of network

activity. Later when alternative architecture approaches were tried. As a result,

multiclassification result was improved to 95.5% and binary classification result from 95.1%

when destination info is not given. The Dense Neural Network models were able to capture

complex attack patterns. They contributed to the higher accuracy observed, especially in the

multi-class tasks.

106

However, the study also points out some limitations. First, although CICIDS2017 is a great

dataset compared to older datasets like KDDCup99 and NSL-KDD, it doesn’t cover all

emerging attack types. Second, even though the inclusion of destination port data improved

model accuracy, this approach also has risks. It may lead to potential overfitting when

specific ports are correlated with certain types of attacks which is something that could be

exploited by adversaries. Lastly, the usage of models on the NVIDIA Jetson AGX Orin.

While it is effective, it revealed performance differences compared to high-performance

cloud platforms, with training runtimes being considerably longer. This highlights the trade-

off between using accessible edge devices and the need for high-speed detection in large-

scale networks in matters of model training.

There were also some unexpected results. The high consistency in accuracy metrics across

different deployment platforms, such as cloud-based GPUs (A100, L4, T4) and the NVIDIA

Jetson AGX Orin. This suggests that for these datasets, model quality is primarily influenced

by the dataset and feature quality rather than the underlying computational platform. Such

findings open new opportunities for deploying IDS models on edge devices without

substantial compromises in detection performance.

These findings align with other research efforts that points out the importance of dataset

preprocessing and feature engineering in developing effective IDS models. The use of

advanced machine learning algorithms, such as DNNs, has proven effective for multi-class

classification in network security, similar to previous studies. However, this study's inclusion

of both binary and multi-class datasets with different configurations of feature sets, allows

for a better understanding of how machine learning models behave in different scenarios. It

also reveals how different types of network features, such as destination ports, can influence

model performance in a real-world application. However, integrating the trained models into

an embedded system addresses the application and integration issues of models trained in

previous researches into the real world.

Further research is recommended to address the limitations observed in this study.

Specifically, using semi-supervised or unsupervised learning techniques could help improve

the adaptability of the IDS to detect new, unseen attack types.

107

This thesis has addressed the challenges of real-time intrusion detection. The approach of

combining sophisticated machine learning techniques, robust dataset preprocessing, and

real-time deployment on edge hardware provides a foundation for further development in

IDS research. Future iterations could focus on improving model efficiency and expanding

the range of detectable threats to ensure the IDS remains effective in rapidly changing

cybersecurity environments.

108

5. CONCLUSION AND FUTURE WORK

This thesis used machine learning in an effort to deal with the increasing demand for

advanced IDS. To achieve this, we employed the Dense Neural Networks (DNN) and

Random Forest (RF) models. The CICIDS2017 dataset is utilized to build a complete

pipeline, which includes Preprocessing, Feature Selection, Model Training & Real-time

deployment. Our detailed results show that if the destination port information is included in

the model the macro F1 accuracy achieved will be over 97% on multi-class and 98.5% on

binary. The accuracy achieved would be 91% and 86.6% without inclusion while with layer

architecture improvements, it increased to 91.1% and 93.9%. Consequently, this highlights

the quality of the dataset and careful feature selection have a notable influence on the

efficiency of IDS.

A major contribution of this research was the deployment of the IDS system on NVIDIA

Jetson AGX Orin. This demonstrated that sophisticated detection models could run

effectively on embedded systems. However, training on the Orin took much longer than on

high-power cloud environments like Google Colab. This led us to recommend training

models in cloud environments. Then deploying them on edge devices like Orin. This

approach helps achieve efficient performance while balancing practical constraints, such as

computational resources and cost.

Despite these advances, some limitations remain. The dataset has inherent constraints, and

certain features like destination ports can be manipulated, affecting detection. Future work

should explore semi-supervised or unsupervised learning methods to detect unknown

threats. There is also room for improvement by creating lightweight models through pruning

or using techniques like federated learning. These approaches can enhance scalability, make

the system more suitable for edge devices, and improve adaptability. This work contributes

towards developing IDS solutions that are efficient, resilient, and adaptable for real-time

application on cybersecurity.

109

6. APPENDIX

APPENDIX A: Explanation of Features in the CICIDS2017 Dataset (Original

Dataset)

Feature
Category

Feature Name
(CICIDS2017)

Feature Name
(CICFlowMeter) Description

Basic Flow
Features Flow ID Flow ID Unique identifier for a

flow.
Basic Flow
Features Source IP Source IP IP address of the source.

Basic Flow
Features Source Port Source Port Port number used by the

source.
Basic Flow
Features Destination IP Dst IP IP address of the

destination.
Basic Flow
Features Destination Port Dst Port Port number used by the

destination.

Basic Flow
Features Protocol Protocol

Protocol used in the
connection (e.g., TCP,
UDP, ICMP).

Basic Flow
Features Timestamp Timestamp Time when the flow was

captured.
Basic Flow
Features Flow Duration Flow Duration Duration of the flow in

microseconds.

Packet-Level
Features Total Fwd Packets Tot Fwd Pkts

Total number of packets
sent from the source to the
destination.

Packet-Level
Features Total Backward Packets Tot Bwd Pkts

Total number of packets
sent from the destination to
the source.

Packet-Level
Features

Total Length of Fwd
Packets TotLen Fwd Pkts

Total size (in bytes) of all
packets sent from source to
destination.

Packet-Level
Features

Total Length of Bwd
Packets TotLen Bwd Pkts

Total size (in bytes) of all
packets sent from
destination to source.

Packet-Level
Features Fwd Packet Length Max Fwd Pkt Len Max

Maximum packet size
observed in the forward
direction.

Packet-Level
Features Fwd Packet Length Min Fwd Pkt Len Min

Minimum packet size
observed in the forward
direction.

110

Feature
Category

Feature Name
(CICIDS2017)

Feature Name
(CICFlowMeter) Description

Packet-Level
Features Fwd Packet Length Mean Fwd Pkt Len Mean Average packet size in the

forward direction.

Packet-Level
Features Fwd Packet Length Std Fwd Pkt Len Std

Standard deviation of
packet sizes in the forward
direction.

Packet-Level
Features Bwd Packet Length Max Bwd Pkt Len Max

Maximum packet size
observed in the backward
direction.

Packet-Level
Features Bwd Packet Length Min Bwd Pkt Len Min

Minimum packet size
observed in the backward
direction.

Packet-Level
Features Bwd Packet Length Mean Bwd Pkt Len Mean Average packet size in the

backward direction.

Packet-Level
Features Bwd Packet Length Std Bwd Pkt Len Std

Standard deviation of
packet sizes in the
backward direction.

Flow Statistics Flow Bytes/s Flow Byts/s Number of bytes per
second for the flow.

Flow Statistics Flow Packets/s Flow Pkts/s Number of packets per
second for the flow.

Flow Statistics Flow IAT Mean Flow IAT Mean
Mean inter-arrival time
(IAT) of packets in the
flow.

Flow Statistics Flow IAT Std Flow IAT Std Standard deviation of the
inter-arrival time.

Flow Statistics Flow IAT Max Flow IAT Max
Maximum inter-arrival
time between packets in
the flow.

Flow Statistics Flow IAT Min Flow IAT Min
Minimum inter-arrival time
between packets in the
flow.

Forward (Fwd)
and Backward
(Bwd) Inter-
Arrival Times

Fwd IAT Total Fwd IAT Tot Total inter-arrival time for
forward packets.

Forward (Fwd)
and Backward
(Bwd) Inter-
Arrival Times

Fwd IAT Mean Fwd IAT Mean Mean inter-arrival time
between forward packets.

Forward (Fwd)
and Backward
(Bwd) Inter-
Arrival Times

Fwd IAT Std Fwd IAT Std Standard deviation of
forward inter-arrival time.

111

Feature
Category

Feature Name
(CICIDS2017)

Feature Name
(CICFlowMeter) Description

Forward (Fwd)
and Backward
(Bwd) Inter-
Arrival Times

Fwd IAT Max Fwd IAT Max
Maximum inter-arrival
time between forward
packets.

Forward (Fwd)
and Backward
(Bwd) Inter-
Arrival Times

Fwd IAT Min Fwd IAT Min Minimum inter-arrival time
between forward packets.

Forward (Fwd)
and Backward
(Bwd) Inter-
Arrival Times

Bwd IAT Total Bwd IAT Tot Total inter-arrival time for
backward packets.

Forward (Fwd)
and Backward
(Bwd) Inter-
Arrival Times

Bwd IAT Mean Bwd IAT Mean Mean inter-arrival time
between backward packets.

Forward (Fwd)
and Backward
(Bwd) Inter-
Arrival Times

Bwd IAT Std Bwd IAT Std
Standard deviation of
backward inter-arrival
time.

Forward (Fwd)
and Backward
(Bwd) Inter-
Arrival Times

Bwd IAT Max Bwd IAT Max
Maximum inter-arrival
time between backward
packets.

Forward (Fwd)
and Backward
(Bwd) Inter-
Arrival Times

Bwd IAT Min Bwd IAT Min Minimum inter-arrival time
between backward packets.

TCP Flag
Features Fwd PSH Flags Fwd PSH Flags

Number of times the PSH
flag was set in packets
traveling in the forward
direction.

TCP Flag
Features Bwd PSH Flags Bwd PSH Flags

Number of times the PSH
flag was set in packets
traveling in the backward
direction.

TCP Flag
Features Fwd URG Flags Fwd URG Flags

Number of times the URG
flag was set in packets
traveling in the forward
direction (dropped due to
being constant).

TCP Flag
Features Bwd URG Flags Bwd URG Flags

Number of times the URG
flag was set in packets
traveling in the backward
direction (dropped due to
being constant).

112

Feature
Category

Feature Name
(CICIDS2017)

Feature Name
(CICFlowMeter) Description

TCP Flag
Features Fwd Header Length Fwd Header Len Total header length of

forward packets.
TCP Flag
Features Bwd Header Length Bwd Header Len Total header length of

backward packets.
Additional
Packet Count
Features

Fwd Packets/s Fwd Pkts/s Number of forward packets
per second.

Additional
Packet Count
Features

Bwd Packets/s Bwd Pkts/s Number of backward
packets per second.

Flow Active and
Idle Times Min Packet Length Pkt Len Min Minimum packet length in

the flow.
Flow Active and
Idle Times Max Packet Length Pkt Len Max Maximum packet length in

the flow.
Flow Active and
Idle Times Packet Length Mean Pkt Len Mean Mean packet length in the

flow.
Flow Active and
Idle Times Packet Length Std Pkt Len Std Standard deviation of

packet lengths.
Flow Active and
Idle Times Packet Length Variance Pkt Len Var Variance in packet lengths.

TCP Flag
Features FIN Flag Count FIN Flag Cnt Number of packets with

FIN flag.
TCP Flag
Features SYN Flag Count SYN Flag Cnt Number of packets with

SYN flag.
TCP Flag
Features RST Flag Count RST Flag Cnt Number of packets with

RST flag.
TCP Flag
Features PSH Flag Count PSH Flag Cnt Number of packets with

PSH flag.
TCP Flag
Features ACK Flag Count ACK Flag Cnt Number of packets with

ACK flag.
TCP Flag
Features URG Flag Count URG Flag Cnt Number of packets with

URG flag.
TCP Flag
Features CWR Flag Count CWE Flag Count Number of packets with

CWR flag.
TCP Flag
Features ECE Flag Count ECE Flag Cnt Number of packets with

ECE flag.

Flow Statistics Down/Up Ratio Down/Up Ratio Ratio of backward to
forward traffic.

Flow Statistics Average Packet Size Pkt Size Avg Average packet size in the
flow.

Flow Statistics Avg Fwd Segment Size Fwd Seg Size Avg Average segment size in
the forward direction.

Flow Statistics Avg Bwd Segment Size Bwd Seg Size Avg Average segment size in
the backward direction.

113

Feature
Category

Feature Name
(CICIDS2017)

Feature Name
(CICFlowMeter) Description

Flow Active and
Idle Times Fwd Avg Bytes/Bulk Fwd Byts/b Avg

Average number of bytes
bulked in the forward
direction.

Flow Active and
Idle Times Fwd Avg Packets/Bulk Fwd Pkts/b Avg

Average number of packets
bulked in the forward
direction.

Flow Active and
Idle Times Fwd Avg Bulk Rate Fwd Blk Rate Avg Average bulk rate in the

forward direction.

Flow Active and
Idle Times Bwd Avg Bytes/Bulk Bwd Byts/b Avg

Average number of bytes
bulked in the backward
direction.

Flow Active and
Idle Times Bwd Avg Packets/Bulk Bwd Pkts/b Avg

Average number of packets
bulked in the backward
direction.

Flow Active and
Idle Times Bwd Avg Bulk Rate Bwd Blk Rate Avg Average bulk rate in the

backward direction.
Subflow
Features Subflow Fwd Packets Subflow Fwd Pkts Number of packets in the

forward subflow.
Subflow
Features Subflow Fwd Bytes Subflow Fwd Byts Number of bytes in the

forward subflow.
Subflow
Features Subflow Bwd Packets Subflow Bwd Pkts Number of packets in the

backward subflow.
Subflow
Features Subflow Bwd Bytes Subflow Bwd Byts Number of bytes in the

backward subflow.
Window and
Segment
Features

Init_Win_bytes_forward Init Fwd Win Byts Initial window size in bytes
in the forward direction.

Window and
Segment
Features

Init_Win_bytes_backward Init Bwd Win Byts Initial window size in bytes
in the backward direction.

Window and
Segment
Features

Fwd Act Data Pkts act_data_pkt_fwd
Number of packets with
actual data in the forward
direction.

Window and
Segment
Features

Min Segment Size
Forward min_seg_size_forward

Minimum segment size
observed in the forward
direction.

Flow-based
Timing Features Active Mean Active Mean Mean time a flow was

active before going idle.
Flow-based
Timing Features Active Std Active Std Standard deviation of time

the flow was active.
Flow-based
Timing Features Active Max Active Max Maximum time a flow was

active.
Flow-based
Timing Features Active Min Active Min Minimum time a flow was

active.

114

Feature
Category

Feature Name
(CICIDS2017)

Feature Name
(CICFlowMeter) Description

Flow-based
Timing Features Idle Mean Idle Mean

Mean time a flow was idle
before becoming active
again.

Flow-based
Timing Features Idle Std Idle Std Standard deviation of time

the flow was idle.
Flow-based
Timing Features Idle Max Idle Max Maximum time a flow was

idle.
Flow-based
Timing Features Idle Min Idle Min Minimum time a flow was

idle.

Label Label Label

The class label indicating
whether the flow is benign
or belongs to a particular
attack category

115

7. REFERENCES

[1]Facts and Figures 2023 - Internet use. (2023, October 10). https://www.itu.int/itu-

d/reports/statistics/2023/10/10/ff23-internet-use/

[2]IBISWorld - industry market research, reports, and statistics. (n.d.).

https://www.ibisworld.com/us/bed/internet-traffic-volume/88089/

[3] B.J. Radford, B.D. Richardson and S.E. Davis, "Sequence Aggregation Rules for

Anomaly Detection in Computer Network Traffic," 2018. [Online]. Available:

https://doi.org/10.48550/arxiv.1805.03735.

[4] IDS 2017 | Datasets | Research | Canadian Institute for Cybersecurity | UNB.

(n.d.). https://www.unb.ca/cic/datasets/ids-2017.html

[5] S. Garg et al., "A Hybrid Deep Learning-Based Model for Anomaly Detection in

Cloud Datacenter Networks," IEEE Transactions on Network and Service Management, vol.

16, no. 3, pp. 924-935, 2019. [Online]. Available:

https://doi.org/10.1109/tnsm.2019.2927886.

[6]Siddiqui, M. A., Stokes, J. W., Seifert, C., Argyle, E., McCann, R., Neil, J., &

Carroll, J. (2019). Detecting Cyber Attacks Using Anomaly Detection with Explanations

and Expert Feedback. ICASSP 2019 - 2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). https://doi.org/10.1109/icassp.2019.8683212

[7]Nawir, M., Amir, A., Yaakob, N., & Lynn, O. B. (2019b). Effective and efficient

network anomaly detection system using machine learning algorithm. Bulletin of Electrical

Engineering and Informatics, 8(1), 46–51. https://doi.org/10.11591/eei.v8i1.1387

[8] The UNSW-NB15 Dataset | UNSW Research. (n.d.).

https://research.unsw.edu.au/projects/unsw-nb15-dataset

[9] Lin, P., Ye, K., & Xu, C. (2019). Dynamic network Anomaly Detection System

by using deep learning techniques. In Lecture notes in computer science (pp. 161–176).

https://doi.org/10.1007/978-3-030-23502-4_12

[10] IDS 2018 | Datasets | Research | Canadian Institute for Cybersecurity | UNB.

(n.d.). https://www.unb.ca/cic/datasets/ids-2018.html

116

[11] Hwang, R., Peng, M., Huang, C., Lin, P., & Nguyen, V. (2020). An unsupervised

deep learning model for early network traffic anomaly detection. IEEE Access, 8, 30387–

30399. https://doi.org/10.1109/access.2020.2973023

[12] Wang, N. W., Zhu, N. M., Zeng, N. X., Ye, N. X., & Sheng, N. Y. (2017).

Malware traffic classification using convolutional neural network for representation

learning. 2017 International Conference on Information Networking (ICOIN).

https://doi.org/10.1109/icoin.2017.7899588

[13] McDermott, C. D., Majdani, F., & Petrovski, A. V. (2018). Botnet Detection in

the Internet of Things using Deep Learning Approaches. International Joint Conference on

Neural Networks 2018. https://doi.org/10.1109/ijcnn.2018.8489489

[14] Lindemann, B., Maschler, B., Sahlab, N., & Weyrich, M. (2021). A survey on

anomaly detection for technical systems using LSTM networks. Computers in Industry, 131,

103498. https://doi.org/10.1016/j.compind.2021.103498

[15] Ullah, I., & Mahmoud, Q. H. (2021). Design and development of a Deep

Learning-Based Model for Anomaly Detection in IoT networks. IEEE Access, 9, 103906–

103926. https://doi.org/10.1109/access.2021.3094024

[16] The Bot-IoT Dataset | UNSW Research. (n.d.).

https://research.unsw.edu.au/projects/bot-iot-dataset

[17] Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2018, November

2). Towards the development of realistic botnet dataset in the internet of things for network

forensic analytics: BoT-IoT Dataset. arXiv.org. https://arxiv.org/abs/1811.00701

[18] Kim, H. K. (2019, September 27). IoT network intrusion dataset. IEEE

DataPort. https://ieee-dataport.org/open-access/iot-network-intrusion-dataset

[19] Nassif, A. B., Talib, M. A., Nasir, Q., & Dakalbab, F. M. (2021). Machine

Learning for Anomaly Detection: A Systematic Review. IEEE Access, 9, 78658–78700.

https://doi.org/10.1109/access.2021.3083060

[20] Sayed, M. S. E., Le-Khac, N., Azer, M. A., & Jurcut, A. D. (2022). A Flow-

Based anomaly detection approach with feature selection method against DDOS attacks in

SDNs. IEEE Transactions on Cognitive Communications and Networking/IEEE

Transactions on Cognitive Communications and Networking, 8(4), 1862–1880.

https://doi.org/10.1109/tccn.2022.3186331

117

[21] Ullah, I., & Mahmoud, Q. H. (2022). An Anomaly Detection Model for IoT

Networks based on Flow and Flag Features using a Feed-Forward Neural Network. 2022

IEEE 19th Annual Consumer Communications & Networking Conference (CCNC).

https://doi.org/10.1109/ccnc49033.2022.9700597

[22] Hephzipah, J., Vallem, R. R., Sheela, M., & Dhanalakshmi, G. (2023). An

efficient cyber security system based on flow-based anomaly detection using Artificial

neural network. Mesopotamian Journal of Cybersecurity Vol. 2023, 48–56.

https://doi.org/10.58496/mjcs/2023/009

[23] Wang, Y., Houng, Y., Chen, H., & Tseng, S. (2023). Network Anomaly

Intrusion Detection based on deep learning approach. Sensors, 23(4), 2171.

https://doi.org/10.3390/s23042171

[24] KDD Cup 1999 Data. UCI Machine Learning Repository. (n.d.).

https://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data

[25] Stolfo, S., Fan, W., Lee, W., Prodromidis, A., & Chan, P. (1999). KDD Cup

1999 Data [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C51C7N.

[26] Ghulam Mohi-ud-din, December 29, 2018, "NSL-KDD", IEEE Dataport, doi:

https://dx.doi.org/10.21227/425a-3e55.

[27] Song, J., Takakura, H., Okabe, Y., Et o, M., Inoue, D. & Nakao, K.

2011.Statistical Analysis of Honeypot Data and Building of Kyoto 2006+ Dataset for NIDS

Evaluation. In: Proc. 1st Work-shop on Building Anal. Datasets and Gathering Experience

Returns for Security. Salzburg, pp.29-36. April 10-13.

[28] Source, E. D. (n.d.). IMPACT - Kyoto 2006+ Dataset.

https://www.impactcybertrust.org/dataset_view?idDataset=918

[29] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at theWIDE project,”

in USENIX 2000 Annual Technical Conference:FREENIX Track, June 2000, pp. 263–270.

[30] Mawi Working Group Traffic Archive. (n.d.). https://mawi.wide.ad.jp/mawi/

[31] Caida. CAIDA - The Center for Applied Internet Data Analysis. (2024, May 6).

https://www.caida.org/

[32] Defcon.org. The Defense Readiness Condition - (n.d.). https://defcon.org/

[33] Moustafa, Nour, and Jill Slay. "UNSW-NB15: a comprehensive data set for

network intrusion detection systems (UNSW-NB15 network data set)." Military

Communications and Information Systems Conference (MilCIS), 2015. IEEE, 2015.

118

[34] Moustafa, Nour, and Jill Slay. "The evaluation of Network Anomaly Detection

Systems: Statistical analysis of the UNSW-NB15 dataset and the comparison with the

KDD99 dataset." Information Security Journal: A Global Perspective (2016): 1-14.

[35] Moustafa, Nour, et al. "Novel geometric area analysis technique for anomaly

detection using trapezoidal area estimation on large-scale networks." IEEE Transactions on

Big Data (2017).

[36] Moustafa, Nour, et al. "Big data analytics for intrusion detection system:

statistical decision-making using finite dirichlet mixture models." Data Analytics and

Decision Support for Cybersecurity. Springer, Cham, 2017. 127-156.

[37] Sarhan, Mohanad, Siamak Layeghy, Nour Moustafa, and Marius Portmann.

NetFlow Datasets for Machine Learning-Based Network Intrusion Detection Systems. In

Big Data Technologies and Applications: 10th EAI International Conference, BDTA 2020,

and 13th EAI International Conference on Wireless Internet, WiCON 2020, Virtual Event,

December 11, 2020, Proceedings (p. 117). Springer Nature.

	ACKNOWLEDGMENTS
	DECLARATION OF AUTHENTICITY
	ABSTRACT
	ÖZET
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	3. RESULTS
	4. DISCUSSION
	5. CONCLUSION AND FUTURE WORK
	6. APPENDIX
	APPENDIX A: Explanation of Features in the CICIDS2017 Dataset (Original Dataset)

	7. REFERENCES

