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Abstract
Molecularly imprinted polymer (MIP) nanofilms for alpha-fetoprotein (AFP) and the receptor binding domain (RBD) of the 
spike protein of SARS-CoV-2 using either a peptide (epitope-MIP) or the whole protein (protein-MIP) as the template were 
prepared by electropolymerization of scopoletin. Conducting atomic force microscopy revealed after template removal and 
electrochemical deposition of gold a larger surface density of imprinted cavities for the epitope-imprinted polymers than 
when using the whole protein as template. However, comparable affinities towards the respective target protein (AFP and 
RBD) were obtained for both types of MIPs as expressed by the KD values in the lower nanomolar range. On the other hand, 
while the cross reactivity of both protein-MIPs towards human serum albumin (HSA) amounts to around 50% in the satura-
tion region, the nonspecific binding to the respective epitope-MIPs is as low as that for the non-imprinted polymer (NIP). 
This effect might be caused by the different sizes of the imprinted cavities. Thus, in addition to the lower costs the reduced 
nonspecific binding is an advantage of epitope-imprinted polymers for the recognition of proteins.

Keywords  Molecularly imprinted polymers · Alpha-fetoprotein (AFP) · Receptor binding domain (RBD) of SARS-CoV-2

Introduction

Templating is an ancient technology which was already 
applied by the Muiscas—the original population of South 
America—before the arrival of the Spanish conquistadores 
(1575) for the preparation of golden sculptures, e.g., the El 

Dorado Raft. Using the templating concept, the Russian sci-
entist Polyakov proposed the first polymer with molecular 
memory in 1931 [1]. The template, functional monomers, 
and crosslinkers are polymerized together in these processes. 
Removal of the template forms template-complementary 
binding sites resembling the “lock and key principle.” How-
ever, a real breakthrough has been only achieved ~ 50 years 
later [2, 3]. Initially, imprinted polymers have been devel-
oped exclusively for low-molecular weight substances and 
these synthetic sorbents coined the name of molecular 
imprinted polymers (MIPs). Imprinting of large biological 
molecules and particles (e.g., viruses and cells) faces chal-
lenges due to their complex nature, fragility, solvent compat-
ibility, high cost for pure templates, distribution of heteroge-
neous binding sites, and difficulties in highly reproducible 
mass production [4, 5].

Antibodies—the biological counterparts of MIPs—bind 
only to a small area of large antigens—the immunogenic 
determinant, so-called epitope. Mimicking this principle 
Rachkov and Minoura [6] applied the three amino acids on 
the N-terminal of the nonapeptide oxytocin as the template for 
a MIP which could subsequently bind the whole peptide. Later, 
this approach was successfully extended to proteins and cells 
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and termed as epitope imprinting to highlight the similarity 
between epitope-MIPs and antibodies [6]. Such epitope-MIPs 
can recognize the template fragment as well as the respective 
whole protein [6–12]. A generally claimed advantage of the 
epitope imprinting concept is the lower cost of the template 
in the MIP synthesis resulting a 10- to 50-fold lower cost per 
sensing spot (refer to SI1 in the supporting information).

On the other hand, the differences in terms of target 
binding characteristics of both types of MIPs are still not 
well understood. Only a few reports compare the analytical 
performance of MIPs, which use an epitope or the whole 
protein as the template. Our group developed MIPs either 
using cytochrome c adsorbed on a mercaptoundecanoic ace-
tic acid (MUA) layer or the cysteine extended C-terminal 
nonapeptide as the template [9, 13]. Sellergren’s and Pilet-
sky’s groups developed MIPs for the recognition of immu-
noglobulin G (IgG) using the whole antibody molecule, the 
Fc domain and the C-terminal 10-mer peptide, respectively 
[10]. All three MIPs recognized both human and goat IgGs.

In this paper, we compare the analytical performance in 
terms of measuring range, KD, and interference by HSA of 
MIPs generated by using a peptide epitope or the whole pro-
tein as the template for the recognition of alpha-fetoprotein 
(AFP) and the receptor binding domain (RBD) of SARS-
CoV-2. For mechanistic insights, the density of binding 
pockets for whole-protein MIPs and epitope-MIPs has been 
analyzed by conductive AFM (C-AFM).

Both targets are of high diagnostic relevance: AFP is the 
most frequently determined biomarker for the early detection 
of the neoplastic disease hepatocellular carcinoma (HCC) 
which is the 7th most common cancer [14, 15]. The 29.5-
kDa receptor binding domain is a globular structure protein 
which anchors the SARS-CoV-2 to the angiotensin-con-
verting enzyme (ACE2) of the host cell and it is frequently 
used as the target structure in SARS-CoV-2 immunoassays 
and lateral flow assays [16]. Mimicking the biological coun-
terpart, we have chosen “the non-terminal epitope” GFN-
CYFP derived from the exposed binding site of the RBD 
to the ACE. The heptapeptide contains a central cysteine 
(C488) which can bind the peptide to the gold surface [17]. 
In case of the MIPs targeting AFP beside the whole AFP 
glycoprotein (MW 69 kDa), the two peptides AALGVC and 
SKTRAALGVC of the exposed C-terminus containing an 
additional C-terminal cysteine for immobilization were used 
as template.

Materials and methods

Chemicals and reagents

Sulfuric acid (H2SO4) (96%), absolute ethanol (99.9%), 
sodium chloride (NaCl), potassium chloride (KCl), disodium 

hydrogen phosphate dihydrate (Na2HPO4•2H2O), potas-
sium dihydrogen phosphate (KH2PO4), potassium hydrox-
ide (KOH), potassium hexacyanoferrate (II) trihydrate 
(K4[Fe(CN)6]•3H2O), and potassium hexacyanoferrate (III) 
(K3[Fe(CN)6]) were from ROTH (Karlsruhe, Germany). 
One molar hydrochloric acid (HCl), phosphate-buffered 
saline (PBS), scopoletin (7-hydroxy-6-methoxycoumarin), 
the receptor binding domain from SARS-CoV-2 (RBD, 
25.9 kDa), and albumin from human serum (HSA, 66.5 kDa) 
were purchased from Sigma-Aldrich (Merck, Darmstadt, 
Germany). Human alpha-fetoprotein (AFP, 63 kDa) from 
Bio-Rad (Munich, Germany). HAuCl4•3H2O was obtained 
from Chinoin Zrt. (Budapest, Hungary). The solutions 
throughout this work were prepared using deionized and 
filtered water obtained from a water purification system 
Milli-Q from Sartorius (Göttingen, Germany).

All peptides listed in Table 1 were purchased from Bio-
syntan (Berlin, Germany) and possess an amide group at 
the C-terminus.

Apparatus and electrochemical experiments

All the electrochemical measurements were conducted at 
room temperature using a CHI 440 electrochemical worksta-
tion (CH Instruments, Austin, TX, USA) and a three-elec-
trode system. Gold wires (diameter: 0.5 mm; active surface: 
20 mm2) (Goodfellow, Germany), a platinum coil, and an 
Ag/AgCl system were utilized as the working, counter, and 
reference electrodes, respectively.

SWV measurements and electrochemical oxidation for 
template removal were carried out using a one-compart-
ment polymethylmethacrylate (PMMA) cell with a vol-
ume of 1 mL with Ag/AgCl (1 M KCl) as the reference 
electrode. SWV experiments were carried out in 5 mM 
ferri/ferrocyanide in phosphate-buffered saline (PBS) 
(137 mM NaCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, and 
2.7 mM KCl, pH 7.4) by scanning the potentials from − 0.2 

Table 1   Overview of the peptides utilized in this work

Peptide (abbreviation) Sequence Note

G-peptide GFNCYFP Receptor binding motif 
of RBD

Y-peptide YFPLQS Receptor binding motif 
of RBD

A-peptide AALGV C-terminus of AFP
AC-peptide AALGVC C-terminus of AFP with 

Cys
SK-peptide SKTRAALGVC C-terminus of AFP with 

Cys
TR-peptide TRAALGV C-terminus of AFP
BSA-peptide VVSTQ C-terminus of BSA
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to + 0.5 V, with a frequency of 10 Hz, amplitude of 50 mV, 
and a step height of 3 mV.

Electropolymerization of scopoletin was conducted in 
a one-compartment polychlorotrifluoroethylene (PCTFE) 
cell with a volume of 2 mL with Ag/AgCl (3 M KCl) (CH 
Instruments) as the reference electrode.

Cleaning of working electrodes

Gold wires were used as working electrodes for the prepa-
ration of MIPs. They were initially treated in 2.5 M KOH 
for 4 h and then stored overnight in 96% H2SO4. The purity 
of the electrodes was verified by cyclic voltammetry in 
0.5 M H2SO4. Finally, anodic oxidation was performed in 
PBS at 1.1 V for 30 s.

Electrosynthesis of MIP, template removal, 
and binding assays

Table 2 shows the preparation details of the different MIPs 
used in this study with either the whole protein or peptide 
templates. Generally (Scheme 1), to create a MIP, a gold wire 
electrode was initially incubated in template in PBS at room 
temperature. To follow the adsorption of the respective tem-
plate, the SWV signal of ferri/ferrocyanide was measured. 
The adsorption step was finished when the suppression of 
the SWV signal reached around 50%. Then, the polymer was 
synthesized around the adsorbed template by electropolymer-
izing 0.5 mM scopoletin in 10 mM NaCl containing 5% etha-
nol using between 20 and 40 pulse cycles, each starting with 
0 V for 5 s and followed by 0.7 V for 1 s. The synthesis of 
non-imprinted polymers (NIPs) was conducted following the 
same procedure, but without template. After polymerization, 

Table 2   Synthesis details of 
the MIPs prepared for the 
comparative study

MIP Template Target Preparation

Adsorption EP cycles Template removal

Template 
concentra-
tion

Incubation 
time (min)

G-MIP [17] G-peptide RBD 5 µM 1.5 20 900 mV, 30 s twice
RBD-MIP RBD RBD 450 nM 3 20 970 mV, 30 s once
AC-MIP AC-peptide A-peptide 1 µM 15 40 950 mV, 30 s once
SK-MIP SK-peptide TR-peptide, AFP 1 µM 15 40 950 mV, 30 s once
AFP-MIP AFP AFP 100 nM 5 40 950 mV, 30 s twice

Scheme 1   Workflow of MIP synthesis and application shown for the 
preparation of AFP-binding MIP by using peptide epitope imprinting: 
(1) the template peptide is immobilized on the gold surface via termi-

nal cysteine (blue dots), (2) the scopoletin monomer is electropolym-
erized, (3) the template is removed by anodic stripping, (4) binding 
of the whole AFP protein or the peptide by the liberated binding sites
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the electrodes were rinsed with ddH2O and dried using a gen-
tle nitrogen stream. The adsorbed template was then removed 
from the polymer by anodic oxidation in PBS (applied poten-
tial and length of the pulses are summarized in Table 2). Sub-
sequently, the electrodes were washed with deionized water 
and dried carefully with nitrogen. The electrodes were then 
immersed in 1 mL of stirred ferri/ferrocyanide solution. For 
the binding assays, 2 µL of the analyte stock solution at a spe-
cific concentration was introduced into the cell. Both template 
removal and binding were characterized by measuring the 
SWV signal of ferri/ferrocyanide every 2 min without stirring 
until steady-state was reached.

Conductive atomic force microscopy measurements

To ensure planar MIP nanofilm specimens for C-AFM meas-
urements gold slides were used instead of gold wires as work-
ing electrodes, which required slight changes in the surface pre-
treatment and MIP synthesis. Prior to use, the gold slides were 
rinsed successively with acetone and ethanol, dried under N2 
stream, and then subjected to 10 min UV/ozone treatment (PSD 
Pro Series Digital UV Ozone System, Novascan, USA). For 
MIP preparation, a conical electrochemical cell made of meth-
acrylate was used (CFLWCL-CONIC, Metrohm DropSens) 
connected to an Autolab PGSTAT12 Potentiostat/Galvanostat. 
A 3-electrode system was used with the gold slide, a platinum 
wire, and an Ag/AgCl (3 M KCl) (CH Instruments) as work-
ing, counter, and reference electrodes, respectively. For tem-
plate immobilization, the conical cell was filled with 5 µM 
GFNCYFP peptide or 450 nM RBD in PBS and it was incu-
bated at room temperature for 15 min by shaking at 350 rpm. 
After rinsing with deionized water, the electropolymerization 
was performed by cyclic voltammetry in a solution contain-
ing 0.5 mM scopoletin, 0.1 M NaCl, and 4 mM K4[Fe(CN)6]. 
Fifty cycles were made between 0.0 and 0.75 V at a scan rate 
of 50 mV s−1. Template removal was performed in PBS by 
chronoamperometry applying subsequently 0.9 V for 30 s, then 
0 V for 5 s and finally again 0.9 V for 30 s. Gold deposition was 
performed in 0.2 mM HAuCl4 solution containing 0.1 M HCl 
and 2 mM sodium citrate by chronoamperometry using − 0.9 V 
for 30 s. C-AFM measurements were performed with a Flex-
AFM instrument (Nanosurf, Switzerland) at a setpoint of 20 
nN and tip voltage of − 10 mV using an electrically conductive 
tip, PPP-ContPt (Nanosensors, Switzerland) with a tip radius 
of ca. 25 nm and a force constant of 0.2 N/m.

Results and discussion

MIPs for AFP using peptide epitope imprinting

Based on the prediction from modeling showing  that 
already tripeptides could serve as templates for MIPs with 

µM measuring range [18], we applied the hexapeptide 
AALGVC (AC-MIP) as the template. However, the bind-
ing experiments for the AC-MIP revealed only negligible 
affinity towards the target AALGV (Figure S1). Already, 
the interaction of the AC-MIP with the unrelated peptide 
YFPLQS (Y-peptide from SARS-CoV-2 Spike protein) 
resulted in a considerably larger (non-specific) bind-
ing as revealed by the larger current suppression (Fig-
ure S1). Obviously, the template peptide (AALGVC) was 
too short for efficient rebinding of the imprinted pep-
tide. To increase the binding strength of the MIP cavi-
ties, we applied a template which was extended at the 
N-terminus of the AC-peptide with four amino acids, 
resulting in SKTRAALGVC (SK-MIP). The elongation 
of the imprinted peptide template resulted in increased 
binding efficiency. The concentration dependence for the 
binding of the derived septa-peptide TRAALGV (TR-pep-
tide) to the SK-MIP (Fig. 1) gave an estimated KD value 
of 14 µM. Imprinting with the longer SK-peptide also 
improved the discrimination of non-related C-terminal 
peptides, i.e., the pentapeptide VVSTQ from BSA (BSA-
peptide), as shown by the significantly smaller relative 
current suppression as compared with the specific TR-
peptide (Fig. 1b).

The parent protein AFP binding to the SK-MIP 
resulted in an even larger current suppression than the 
TR-peptide. Evaluation of the concentration dependence 
(Figs. 1b and 2) gave a KD value of 13.2 nM (Table 3). 
Since the non-imprinted polymer (NIP) is electrically 
insulating, this detection method based on the target-
binding gated redox marker current is not applicable 
to measure the nonspecific AFP binding to the NIP. 
Still, it is a compulsory control experiment that indeed 
revealed insignificant signal change upon interacting the 
NIP with AFP as represented by a “formal” imprinting 
factor (IF) of 6.1 in the linear measuring range (Fig. 2). 
The selectivity of the SK-MIP was tested using HSA a 
protein of very similar size to AFP. An excellent dis-
crimination discrimination was observed, i.e. the signal 
level was close to  the background level measured on 
NIPs (Fig. 2).

MIPs for RBD using peptide epitope imprinting

We turned to confirm the conclusions of the AFP-MIP 
studies to another model system, i.e., RBD. Similar to 
the AFP case where, as shown in the “MIPs for AFP 
using peptide epitope imprinting” section (Figure S1), 
only a very weak binding of the pentapeptide AALGV 
to the AALGVC-based MIP was observed, the tetra-
peptide EGFN showed no measurable binding to the 
G-MIP.
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The MIP using the G-peptide as the template showed 
almost fourfold higher affinity towards the whole RBD (KD 
of 14.7 ± 0.9 nM) as compared with the G-peptide (58 nM) 
(Fig. 3b). The KD value for RBD is comparable with that 
determined by SPRi in a similar system, but with the 
epitope-imprinted nanofilms prepared on a planar chip by a 
combination of peptide microspotting and electrosynthesis, 
i.e., 2.2 ± 0.4 nM [19].

MIPs using the pre‑adsorbed (whole) proteins 
as template

A sufficiently strong adsorption of the proteins to the gold 
substrate to withhold them during the electrosynthesis of 
the polymer is the prerequisite for the MIP synthesis around 
the adsorbed protein template. We found that both AFP and 
RBD bound spontaneously to the gold electrode (Figure S2), 
but could be effectively desorbed after a 30-s duration anodic 
pulse of 950 mV for AFP and 970 mV for RBD.

The MIPs prepared by using the whole protein as the 
template had affinities in the lower nM range for the bind-
ing of the protein templates, i.e.,  the KD values for AFP and 
RBD were 14.5 nM and 16.8 nM, respectively (Table 3). As 
shown in the “MIPs for AFP using peptide epitope imprint-
ing” and “MIPs for RBD using peptide epitope imprinting” 
sections, the respective epitope-MIPs showed very similar 

Fig. 1   a SWVs curves characterizing the steps of MIP synthesis 
and the rebinding of the target TR-peptide (TRAALGV) to SK-MIP 
(SKTRAALGVC); b concentration dependent relative suppression of 

the SWV current signal for the SK-MIP upon binding the target pro-
tein AFP, the target TR-peptide (TRAALGV), and  the non-related 
BSA-peptide (VVSTQ)

Fig. 2   Concentration depend-
ence of the binding of AFP and 
HSA proteins to the SK-MIP, 
AFP-MIP, and NIP

Table 3   Dissociation constant KD and binding capacity Bmax for AFP 
and RBD to the respective epitope and protein templated MIPs

AFP RBD

Epitope-MIP Protein-MIP Epitope-MIP Protein-MIP

KD (nM) 13.2 ± 1.7 14.5 ± 3.0 14.7 ± 0.9 16.8 ± 1.1
Bmax (%) 87.0 ± 2.5 98.5 ± 4.6 57.9 ± 0.9 92.5 ± 1.3
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affinities towards the target proteins. On the other hand, the 
KD values reported earlier for MIPs either using cytochrome 
c adsorbed on a MUA layer (10 µM) or the cysteine extended 
C-terminal nonapeptide as the template (8.5 µM) are almost 
three orders of magnitude larger [9, 13].

For both proteins, the magnitude of the relative sup-
pression of the SWV signal at saturation was higher for the 
whole protein imprinted polymers than that of the epitope-
MIPs (Figs. 2b and 3). In case of AFP, the difference was 
less significant than for RBD.

C‑AFM investigation of the MIP nanofilms

To better understand and reveal contingent differences in 
the morphology of the MIP nanofilms prepared by using 
peptide or protein templates, we used AFM measurements. 
Molecular size cavities are difficult to be identified in poly-
mer films [20]; therefore, we attempted to reveal them by 
electroplating gold in the imprinted cavities. Since during 
gold deposition gold nanoparticles may also form nonspe-
cifically on the polymer film surface, we used C-AFM to 
discriminate between the gold grown through the imprinted 
cavities and nonspecific gold deposition. For this purpose, 
a small potential difference (− 10 mV) is applied between 
the gold substrate underneath the MIP and NIP nanofilm 
and the conducting AFM tip and as such the current map 
will reveal only the gold spots that are electrically connected 
to the gold electrode, i.e., the gold was grown through the 
imprinted cavities.

As shown by the current map in Fig. 4, without imprint-
ing the electrically insulating polyscopoletin film (NIP) 
proved to be largely pinhole-free after the gold electrodepo-
sition. In turn, both the peptide and the protein imprinted 
films revealed locations with elevated current indicative of 
the electrodeposited gold through the imprinted cavities. 
While at this stage we cannot claim revealing all imprinted 

cavities, the results clearly suggest a higher surface density 
of the imprinted cavities in case of the peptide imprinting. 
However, apparently this higher density of binding cavities 
in case of peptide epitope imprinting is not beneficial for the 
much larger size proteins when using the target gated redox 
mediator current for detection as revealed by the larger Bmax 
values for whole protein imprinting shown in Table 3.

Since the purpose of these MIPs is ultimately the detec-
tion of the proteins, their analytical performance towards 
proteins is most relevant. Such KD values in the lower 
nanomolar range can be considered rather competitive 
given that the KD values for protein-MIPs are generally in 
the µM to nM range [13, 21–46] including AFP and RBD 
(Table S1).

On the other hand, the KD values for binding the template 
(or truncated) peptides to the epitope-MIPs for the G-pep-
tide (58 nM) and TR-peptide (14 µM) are larger than for the 
respective parent protein. This suggests an apparently lower 
affinity for the peptide binding. However, considering only 
the binding to the imprinted cavity with 1:1 stoichiometry, 
the affinity of an epitope-MIP towards the parent protein 
should not exceed the affinity for the peptide. This rela-
tion was found earlier for the epitope-MIP templated with a 
cysteine extended C-terminal nonapeptide of Cyt c and direct 
readout by fluorescence, i.e., a lower affinity was found for 
the parent protein (KD of 8.54 µM) as compared with the 
target peptide (KD of 2.5 µM). On the other hand, when the 
“non-epitope” surface of the protein target nonspecifically 
interacts with the non-imprinted part of the MIP surface, 
an apparently stronger binding of the protein can be found. 
The MIP using the G-peptide as the template showed almost 
fourfold higher affinity towards the whole RBD as compared 
with the G-peptide and even higher towards the spike protein.

The higher (apparent) binding affinity of the MIPs deter-
mined by the indirect method of redox marker gating for 
both protein targets as compared with the respective template 

Fig. 3   a SWVs characterizing the synthetic steps of the RBD-MIP; b binding of RBD and HSA to the RBD-MIP and G-MIP
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peptides  might be caused by the lager “footprint”of the pro-
teins. Thus, upon binding to the cavities of the epitope-MIP, 
the larger surface covered by the protein will disturb the 
non-linear diffusion of the redox marker to the pores (micro-
electrode behavior) [21] and can block multiple adjacent 
binding pockets while the peptide occupies only one pocket. 
This effect could explain the decrease of the KD by one to 
two orders of magnitude for the binding of the parent protein 
as compared with that of the peptide.

However, the benefit of using peptide imprinting is remark-
able in terms of selectivity, i.e., both epitope-imprinted poly-
mers (G-MIP and SK-MIP) show an excellent discrimination 
of the unrelated HSA (Figs. 2 and 3). It seems that the presum-
ably smaller binding cavities generated by peptide imprint-
ing allow the binding of the target protein via the exposed 
epitope but restrain the binding of unrelated proteins. In spite 
of the smaller size of RBD (MW 25.9 kD), the RBD-MIP 
binds the larger HSA. We earlier found this behavior for a 
MIP using the pre-adsorbed globular protein transferrin as the 
template [22] and concluded that this effect might be caused 
by the larger cavities in the protein-MIPs formed by partially 
unfolded template molecules at the gold surface [47]. Obvi-
ously, these lager cavities can accommodate protein molecules 

of comparable and even larger size than the template, i.e., 
facilitating the nonspecific binding of HSA.

Conclusion

The affinities as expressed by KD of the peptide and whole 
protein imprinted polymers are very similar for both model 
proteins, RBD and AFP. For a cautious extrapolation of this 
conclusion, it should be noted that we used at least 7 amino 
acid long peptides and the extremely thin polymer layers 
(ca. 10 nm) provided by the self-regulated electrosynthesis 
of insulating polymer films. For both AFP- and RBD-MIPs, 
the epitope-imprinted films had an apparently lower affinity 
for the peptide than for the parent protein that is most likely 
an artifact of the detection method due to the larger footprint 
of the protein on the MIP surface. The main advantage of 
the epitope imprinting in terms of analytical performance 
is the significantly better discrimination of nonrelated pro-
teins as exemplified for HSA as compared to whole protein 
imprinted polymer films. Furthermore, for mass produc-
tion the lower reagent cost is a clear advantage, to which 
adds the high purity of peptides stemming from a controlled 

Fig. 4   Topographic images 
and current maps as revealed 
by C-AFM after electrodeposi-
tion of gold on NIP, G-peptide 
epitope (G-MIP), and RBD 
(RBD-MIP) imprinted polysco-
poletin nanofilms
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synthetic process undergoing purification and quality control 
by HPLC and mass spectrometry.
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