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Abstract: Sensitivity in the sub-nanomolar concentration region is required to determine important
protein biomarkers, e.g., ferritin. As a prerequisite for high sensitivity, in this paper, the affinity of the
functional monomer to the macromolecular target ferritin in solution was compared with the value
for the respective molecularly imprinted polymer (MIP)-based electrodes, and the influence of various
surface modifications of the electrode was investigated. The analytical performance of ferritin sensing
was investigated using three different carbon electrodes (screen-printed carbon electrodes, single-
walled-carbon-nanotube-modified screen-printed carbon electrodes, and glassy carbon electrodes)
covered with a scopoletin-based MIP layer. Regardless of the electrode type, the template molecule
ferritin was mixed with the functional monomer scopoletin, and electropolymerization was conducted
using multistep amperometry. All stages of MIP preparation were followed by evaluating the
diffusional permeability of the redox marker ferricyanide/ferrocyanide through the polymer layer by
differential pulse voltammetry. The best results were obtained with glassy carbon electrodes. The
MIP sensor responded up to 0.5 µM linearly with a Kd of 0.30 µM. Similar results were also obtained
in solution upon the interaction of scopoletin and ferritin using fluorescence spectroscopy, resulting
in the quenching of the scopoletin signal, with a calculated Kd of 0.81 µM. Moreover, the binding of
1 µM ferritin led to 49.6% suppression, whereas human serum albumin caused 8.6% suppression.

Keywords: ferritin; molecularly imprinted polymers; biomimetic sensors; screen-printed electrodes;
glassy carbon electrodes

1. Introduction

Nature needed millions of years for the evolution of proteins and nucleic acids, which
exhibit high affinity and selectivity in binding to or chemical conversion of different
partners. Nowadays, biomimetic binders and catalysts can be generated within several
days using “evolution in the test tube” of non-natural nucleotides or total chemical synthesis
of (molecularly imprinted) polymers [1]. According to the International Union of Pure
and Applied Chemistry (IUPAC), “biomimetic” refers to a laboratory method designed to
replicate a natural chemical process or a compound that mimics the structure or function of
a biological material. The lotus effect, observed in water-repellent surfaces, is a prominent
example of a biomimetic system.

In recent years, there has been a tremendous interest in substituting biochemical
reagents in bioanalysis and separation techniques with fully synthetic organic polymers,
specifically molecularly imprinted polymers (MIPs, the so-called artificial antibodies) [1].
In analogy to the binding of antigens and haptens in the antigen-binding sites, the paratope
of antibodies, recognition by MIPs is also based on the structural complementarity of the
binding pocket and target. MIPs, in particular, have gained attention for their versatile
applications in biotechnology. These include their successful use in solid-phase extraction
and chromatography, in replacing antibodies in ELISAs, and as sensors for low-molecular-
weight substances and biomacromolecules [2–21].
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The synthesis of MIPs, pioneered by Wulff and Mosbach, involves polymerizing
functional monomers (with or without cross-linkers) in the presence of a target analyte,
known as the template [22,23]. Removal of the template from the polymer results in the
formation of binding cavities with a molecular memory of the template’s size, shape, and
functionality (Scheme 1). Unlike enzymes and antibodies, which are built from 20 natural
amino acids, MIPs can be prepared using one to six functional monomers, even without a
cross-linker. Furthermore, MIPs exhibit higher stability under harsh conditions (e.g., pH,
temperature, organic solvents) and are easier to regenerate compared to their biological
counterparts [1,24].
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Scheme 1. Schematic representation of the preparation and characterization of the ferritin–MIP
sensor. GCE: glassy carbon electrode; SPE: screen-printed electrode (Blue curve: Without ferritin and
Red Curve: With ferritin).

A wide range of MIPs have been developed to recognize various targets, especially low-
molecular-weight ones, with some already commercially available. However, the development
of MIPs for biomacromolecules has been more limited, constituting only around 10% of
annually published papers on MIPs [7]. The scarcity of MIPs for high-molecular-weight
compounds is largely attributed to stability issues of biomacromolecular templates in the
polymerization media used in conventional bulk imprinting processes [7,25].

Another challenge of the traditional bulk imprinting process is the potential entrap-
ment of template molecules within the polymer matrix, hindering their removal and sub-
sequent rebinding. Surface imprinting techniques, including electropolymerization, have
partially addressed these limitations [7,26–30]. Electropolymerization enables polymer
synthesis under mild conditions with adjustable thickness. Moreover, polymer films can be
directly formed on the transducer, eliminating the need for additional immobilization steps.
Different types of metal and carbon electrodes have been applied in order to optimize the
analytical performance, especially sensitivity [1]. Commonly used electroactive monomers
include pyrrole, o-phenylenediamine (o-PD), aniline, scopoletin, p-aminophenylboronic
acid, phenol, and thiophene and their derivatives [2,7,14].

The scopoletin molecule offers effective aromatic π–π interactions and hydrogen
bonding for the “pre-polymerization complex” with different template molecules. The
aromatic system of scopoletin exhibits fluorescence behavior, and quenching resulting
from interaction with the respective target analyte has been applied to determine the
affinity expressed by the dissociation constant Kd in solution [31]. Polymerization of the
natural coumarin derivative scopoletin proceeds at moderate anodic potentials and does
not require deoxygenation of the monomer solution. It yields a non-conductive, conformal,
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hydrophilic film on different electrode materials [7]. These ultra-thin films, in the nanometer
range, only partially entrap the protein template, thus enabling the effective removal of
the template from the MIP and fast rebinding. For the electrochemical readout, either the
direct electron transfer of redox-active proteins, including ferritin, or the modulation of
permeability for redox markers by protein binding (“redox gating”) has been applied. The
spontaneous adsorption of the protein target at the electrode surface and changes in the
polymer structure on changing the background solution will overlay the signal of redox
gating for the binding of the target to the MIP [32]. After polymerization, electrostatic
interactions are involved in the interaction with the target because the poly(scopoletin) film
on Au electrodes has a negative zeta potential [33]. This polarization should suppress the
non-specific binding of negatively charged substances, including ferritin (IP 4.52).

This work investigates the analytical performance of ferritin sensing using three differ-
ent carbon electrodes (screen-printed carbon electrodes, single-walled-carbon-nanotube-
modified screen-printed carbon electrodes, and glassy carbon electrodes) covered with
a scopoletin-based MIP layer. Ferritin, the central iron storage protein in human iron
metabolism, is a biomarker for iron deficiency, cell damage, and inflammation [34]. It
has a globular structure with a molecular weight of 450 kDa and a diameter of 12 nm. It
also possesses an isoelectric point of 4.52. Various strategies, including immunoassays
(enzyme-linked immunosorbent assay [ELISA] and radioimmunoassay) and spectroscopic
methods (colorimetry, luminescence measurement, nephelometry, turbidimetry, etc.), have
been developed for its analysis [35]. In addition to its function as a biomarker, it is an
interesting target for MIP research because its diameter is close to that of colloids and
viruses. Thus, the achievements can be transferred to developing imprinted polymers for
these bio-particles [36].

Regardless of the electrode type, a simple electrode preparation method, namely ran-
dom imprinting, was used. As illustrated in the scheme, the template molecule ferritin was
mixed with the functional monomer scopoletin, and electropolymerization was conducted
using pulse amperometry (Scheme 1) to create films with good adhesion to the electrode
surface [7]. The application of pulsed potentials also supports the replenishment of the de-
pleted layer adjacent to the MIP surface by the low diffusion of the macromolecular protein
and enhances the incorporation of the template into the polymer. The film thickness can
be precisely adjusted by the charge consumed during electropolymerization [7]. Various
strategies were used to remove the template molecules from the polymer film. Electro-
chemistry, mainly differential pulse voltammetry, was used to characterize all stages of MIP
preparation. Furthermore, the affinity of the functional monomer to the macromolecular
target ferritin in solution was compared with the value for the respective MIP, and the
influence of various surface modifications of the electrode was investigated.

Achieving sensitivity in the sub-nanomolar concentration range is essential for the
accurate determination of critical protein biomarkers, such as ferritin. A ferritin concentra-
tion above 150 µg/L in menstruating women and 200 µg/L in men and non-menstruating
women who are otherwise healthy may suggest a risk of iron overload (conditional recom-
mendation based on prior WHO guidelines). In adults with underlying health conditions,
a ferritin level exceeding 500 µg/L may also indicate a potential risk of iron overload [37].

2. Materials and Methods
2.1. Chemicals and Reagents

Scopoletin (7-hydroxy-6-methoxycoumarin), ferritin from the equine spleen, hu-
man serum albumin (HSA), and HEPES were purchased from Sigma-Aldrich (Steinheim,
Germany). Ferricyanide, ferrocyanide, and sodium chloride were supplied by MERCK
KGaA (Darmstadt, Germany). All reagents were of analytical grade and used without
further purification.
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2.2. Preparation of Ferritin-Imprinted Sensors and Measurements

Glassy carbon disk electrodes (3 mm in diameter; CH Instruments, Austin, TX, USA),
screen-printed carbon electrodes (4 mm in diameter; SPC from DropSens, Oviedo, Spain),
and single-walled-carbon-nanotube-modified screen-printed carbon electrodes (4 mm in
diameter; SWSP from DropSens, Oviedo, Spain) were used for MIP synthesis and for
voltammetric measurements (PalmSens potentiostat, Utrecht, The Netherlands).

Before electropolymerization, the GCEs were cleaned with 30% nitric acid for 15 min.
Afterward, mechanical cleaning was performed with 1.0 µm, 0.3 µm, and 0.05 µm of
alumina slurry. The electrodes were rinsed with ethanol and Millipore water by ultrason-
ication. The screen-printed electrodes were activated in 0.1 M H2SO4 for 2 min at 3 mA
using chronopotentiometry.

Based on previous experiences and the suggestion in Malitesta’s recent paper, elec-
tropolymerization on the GCEs and screen-printed electrodes was performed in a mixture
of 0.5 mM scopoletin (10 mM stock solution in ethanol), 100 mM NaCl (1 M stock in water),
and 10 µM ferritin (100 µM stock solution in 10 mM HEPES buffer, pH 7.4) solutions [38,39].
End concentrations in the mixture were obtained by dilution with water. Multistep amper-
ometry was applied, involving 100 cycles, in which each GCE (or SPE) was polarized at
0 V for 1 s and at 0.9 V for 0.1 s. Various strategies, such as electrochemical removal and
incubation in alkaline, acidic, or salt solutions, were used to remove the template molecules
from the polymer film.

The rebinding and removal of ferritin were followed by changes in DPV responses of
5 mM [Fe(CN)6]3−/4– solution (in 100 mM KCl). This was achieved by applying a potential
range of −0.2 to 0.7 V, a potential step of 5 mV, a pulse amplitude of 25 mV, and a pulse
duration of 0.7 s. Moreover, cyclic voltammetry was applied to follow the fabrication steps.
The potential was swept between −0.2 and 0.7 V, with a scan rate of 50 mV/s (3 scans).

Fluorescence measurements were performed using the M-4/2003 Quanta Master
Steady State Spectrofluorometer (Photon Technology International, London, ON, Canada)
as follows: The concentration of ferritin (stock solution: 1 mM in 10 mM HEPES buffer,
pH 7.4) was varied in 0.5 mM scopoletin solution containing 100 mM NaCl. As ferritin was
incrementally added, from 0 to 25 µM, the fluorescence emission of scopoletin (with an
excitation wavelength of 430 nm and an emission wavelength of 460 nm) exhibited partial
quenching [31]. The spectral alterations corresponding to different ferritin concentrations
were analyzed using the One-Site-Specific Binding Model (y = Bmax × x/(Kd + x) to deter-
mine the dissociation constant governing the interaction between ferritin and scopoletin
(Bmax: maximum response; and Kd: dissociation constant).

3. Results and Discussion
3.1. Screen-Printed Electrodes
3.1.1. Screen-Printed Carbon Electrodes

Over time, sensor technology using screen-printed electrodes has found its potential
in various applications. It is known for its capacity to enable fast, accurate, and portable
analyses at low cost [40,41]. Figure 1 presents the formation of an MIP layer on an SPC
electrode by the electropolymerization of scopoletin in the presence of ferritin through
multistep amperometry, involving 100 cycles, in which the SPC electrode was polarized at
0 V for 1 s and at 0.9 V for 1 s.
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Figure 2. DPVs of SPC electrodes in 5 mM ferricyanide/ferrocyanide solution (in 100 mM KCl): bare 
electrode (black), after electropolymerization (red), and after electrochemical removal from HEPES 
buffer (2 × 120; blue). 

A pivotal stage in the fabrication of sensitive and selective MIP sensors is the removal 
step. Preferably, mild procedures are used to avoid the destruction of the polymeric film. 
Several approaches have been applied to remove the template ferritin from an MIP-
covered SPC electrode. An increase in ionic strength by incubation in 3 M KCl had no 

Figure 1. MIP film formation showing current–time curves for 0.5 mM scopoletin solution containing
10 µM ferritin (0 V for 1 s, 0.9 V for 0.1 s, 100 cycles).

The predominant method used for the characterization of electrochemical MIP sensors
evaluates the diffusional permeability of the polymer layer to a redox marker, such as
ferricyanide/ferrocyanide, using cyclic voltammetry, differential pulse voltammetry, square
wave voltammetry, or electrochemical impedance spectroscopy (as depicted in Figure 2) [1].
As demonstrated in Figure 2, a non-conducting film was formed after electropolymerization
(red curve).
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Figure 2. DPVs of SPC electrodes in 5 mM ferricyanide/ferrocyanide solution (in 100 mM KCl): bare
electrode (black), after electropolymerization (red), and after electrochemical removal from HEPES
buffer (2 × 120; blue).

A pivotal stage in the fabrication of sensitive and selective MIP sensors is the removal
step. Preferably, mild procedures are used to avoid the destruction of the polymeric
film. Several approaches have been applied to remove the template ferritin from an
MIP-covered SPC electrode. An increase in ionic strength by incubation in 3 M KCl had
no effect, while electrochemical treatment in HEPES buffer caused partial removal of
template molecules. Nevertheless, the rebinding of ferritin was not achieved. Milder acidic
conditions, such as incubation in 50 mM glycine–HCl buffer at pH 2.2, or harsher acidic
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conditions, such as incubation in 0.1 M H2SO4, also had a similar effect. In our previous
work involving an MIP-covered gold SPR chip, the template ferritin was successfully
removed from 1 mM NaOH solution, enabling the rebinding of ferritin [38]. However, the
use of three different concentrations of NaOH solution (0.5 mM, 1 mM, and 5 mM) failed to
achieve template removal.

3.1.2. Single-Walled-Carbon-Nanotube-Modified Screen-Printed Carbon Electrodes

Carbon nanotubes are frequently used in bio(mimetic) sensors due to their ability to in-
crease the electrochemical active surface area and improve electrochemical properties [42–44].
In this study, SWSP electrodes were used for MIP sensor preparation. The multistep amperom-
etry method described earlier was used. Following electropolymerization, a non-conducting
film was formed (Figure 3). Partial removal of template molecules was achieved in 50 mM
glycine–HCl buffer using cyclic voltammetry within the potential range of −0.2 V to 1.0 V
(50 scans), whereas incubation in the same buffer alone had no effect. Despite these efforts,
successful rebinding was not achieved. Additionally, various other template removal proce-
dures were attempted, with no favorable outcomes. Consequently, further investigation was
conducted using a glassy carbon electrode.
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Figure 3. DPVs of SWSP electrodes in 5 mM ferricyanide/ferrocyanide solution (in 100 mM KCl):
bare electrode (black), after electropolymerization (red), after overnight incubation in glycine–HCl
buffer (50 mM, pH 2.2) (blue), after electrochemical removal from glycine–HCl buffer (50 mM, pH 2.2)
using cyclic voltammetry within the potential range of −0.2 V to 1.0 V (50 scans) (green), and after
1 µM ferritin binding for 1 h (purple).

3.2. Glassy Carbon Electrodes

Glassy carbon electrodes have been widely used in electrochemical biosensing, in-
cluding MIP-based sensors, owing to their good chemical stability, electrical conductivity,
biocompatibility, and cost-effectiveness [45,46]. Furthermore, the integration of modifiers
and nanomaterials has been observed to enhance the performance of these sensors.

The multistep amperometry method described earlier was used. depicted in Figure 4,
the MIP preparation process can be monitored by observing the reduction in the signal
intensity of redox markers. In contrast to screen-printed electrodes, ferritin molecules can
be effectively removed using 5 mM NaOH solution (blue). Furthermore, ferritin molecules
can be rebound, reaching equilibration within an hour (green).
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Figure 4. CVs of GCEs in 5 mM ferricyanide/ferrocyanide solution (in 100 mM KCl): bare electrode
(black), after electropolymerization (red), after overnight incubation in 5 mM NaOH (blue), and after
0.25 µM ferritin binding for 1 h (green).

Rebinding studies were conducted in 10 mM HEPES buffer (pH 7.4) with varying
ferritin concentrations. The change in the signal of the redox marker was investigated using
differential pulse voltammetry. The ferritin–MIP electrode linearly suppressed the signal
of the redox marker up to 0.5 µM with an R2 of 0.97277 (Figure 5A,B), consistent with our
previous findings and those of several previously published results (Table 1) [38,47,48].
The limit of detection (LOD) was calculated using the equation 3.3 × SD/m (SD: standard
deviation of the blank and the slope of the calibration graph) as 0.097 µM.
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with ferritin (1 mM).
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Table 1. Examples of MIPs for ferritin sensing.

Materials Method Linearity Range Reference

Quantum dot/ferritin-imprinted
nanoparticle-modified test strips

Fluorescence
spectroscopy 1.0–6.0 µM [47]

Ferritin-imprinted poly(phenol) film
on CNT-array-modified
titanium-coated glass substrate

EIS 2 × 10−17–1 ×
10−12 M

[49]

Ferritin-imprinted poly(scopoletin)
film on an Au electrode CV 0.9–8 µM [48]

Ferritin-imprinted poly(scopoletin)
film on an Au chip SPR up to 0.5 µM [38]

Ferritin-imprinted poly(scopoletin)
film on a GCE DPV up to 0.5 µM This work

SPR: surface plasmon resonance; DPV: differential pulse voltammetry; GCE: glassy carbon electrode.

Using the One-Site-Specific Binding Model, the dissociation constant (Kd) was calcu-
lated to be 0.30 µM. Similar results were also obtained in solution upon the interaction of
scopoletin and ferritin using fluorescence spectroscopy (resulting in the quenching of the
scopoletin signal), with a calculated Kd of 0.81 µM.

Since the cutoff value of ferritin in the serum of healthy persons is at 3 × 10−11 M, the
sensitivity of the MIP sensor in this study is not sufficient for the lower ferritin range in
serum. The sensor presented by Cai et al. claims to have the required concentration [49]
However, the reported measuring range in the lower attomolar concentration range is
highly questionable. In contrast, the measuring range and Kd value in this study are in
accordance with other publications and compatible with thermodynamic data [24].

Electrosynthesized MIPs typically exhibit Kd values in the range of µM to nM, i.e., the
change in free enthalpy is between −30 and −60 KJoule. A few papers claim even lower
limits of detection, in the picomolar range, or even lower measuring ranges over more than
four decades of target concentration (Table 2). An explanation for the “ultra-sensitivity”
may be that the MIP acts as an ion channel sensor with a semi-logarithmic concentration
dependence over several orders of magnitude [50].

Table 2. Electrosynthesized MIPs for proteins with redox markers.

Template Monomer Electrode Linearity Range Kd Reference

Transferrin Scopoletin Au 0.1–1 µM 0.56 µM [32]
Hemoglobin NHMA SPE 0.1–1 nM 0.86 ± 0.11 nM [51]

Lysozyme Scopoletin Au 150 nM–20 µM
(MIP 2) - [15]

IgG Dopamine SAM-modified
QCM chip - 296 nM [52]

Cardiac
troponin I o-AP GCE 0.05–5.0 nM - [53]

p-Tau-441 AMP SPE 2.18 pM–2.18 nM - [54]
Annexin A3 Caffeic acid SPE 2.8 pM–5.5 nM - [55]
Troponin T Pyrrole SPE 0.26–2.6 pM 0.7 pM [56]

NHMA: N-hydroxymethylacrylamide; SPE: screen-printed electrode; QCM: quartz crystal microbalance; SAM:
self-assembled monolayer; MIP 2: molecularly imprinted polymer (two different methods have been applied
for MIP synthesis); GCE: glassy carbon electrode; o-PD: o-phenylenediamine; o-AP: o-aminophenol; AMP:
3-aminophenol.

In addition, the cross-reactivity of the MIP sensor was studied using human serum
albumin (HSA). The binding of 1 µM ferritin led to 49.6% suppression, whereas HSA
caused 8.6% suppression. This result demonstrates the low cross-reactivity of the MIP
toward a non-target protein and is in accordance with reports in the literature. MIPs
for macromolecular targets typically exhibit cross-reactivities above 2% versus the most
abundant proteins in serum (HSA, IgG, and hemoglobin). While “real samples,” like human
serum, contain the relevant protein biomarker, e.g., for cancer, in the sub-nanomolar range,
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these potentially interfering proteins are in the millimolar concentration range. Therefore,
the MIP should be saturated by an excess of the interfering proteins, and dilution should
not solve this problem. However, lateral-flow devices with many separation plates could
govern the separation effect of the MIP.

4. Conclusions

The general concept of increasing the active surface of electrochemical sensors by
using electrodes with high roughness or by integrating nanoparticles, nanotubes, and
graphene has been widely studied and transferred to MIP sensors. The comparison of
the three different MIP-covered carbon electrodes underlines the findings described in the
literature that despite identical MIP synthesis, each surface has a specific performance in
template removal. For poly(scopoletin)-based MIPs for the huge globular protein ferritin,
an increase in the electroactive surface prevents the preparation of effective MIP layers
either by blocking template removal or by rebinding. However, the MIP formed on a flat
glassy carbon electrode has an analytical performance, i.e., measuring range (up to 0.5 µM
and Kd 0.30 µM) comparable to that of the MIP on the gold surface of an SPR chip.
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