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ABSTRACT

PREDICTION OF PSYCHOLOGICAL DISORDER LEVELS WITH DEEP LEARNING
MODELS BASED ON ELECTROENCEPHALOGRAPHY (EEG) SIGNALS

Psychological disorders, diverse and complex, paint a spectrum of challenges
across the human experience. Depression is one of the life-threatening psychological
disorders that impacts millions of individuals worldwide. Traditional diagnosis depends
heavily on subjective reports, which inhibits objectivity and accuracy. This study
investigates the potential of deep neural networks (DNNs) in detecting and characterizing
depression severity using electroencephalography (EEG) data. In this study, an open-
source dataset is examined, which includes resting state and task-driven EEG recordings of
60 subjects to classify to predict severity of depression, based on self-rating depression
scale (SDS) score. Severity of subjects are labeled by the ranges of SDS score. Using the
significant feature extraction capabilities of DNNs, particularly convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), it is aimed to classify depression
severity level using EEG data itself and extracted features from EEG data proposed in the
literature. Accuracies of different input representations are obtained. It is observed that
using combinations of feature representations of EEG data shows promising results in the
above-mentioned networks.

Keywords: Deep Learning, Machine Learning; Depression;, EEG, Mental Disorders
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OZET

ELEKTROENSEFALOGRAFI (EEG) TABANLI SINYALLER UZERINDEN
PSIKOLOJIK BOZUKLUK DUZEYLERININ DERIN OGRENME MODELLERI iLE
TAHMINI

Cok cesitli ve karmasik olan psikolojik bozukluklar, insan deneyimi boyunca karsilasilan
zorluklarin bir spektrumunu ¢izer. Depresyon, diinya ¢apinda milyonlarca bireyi etkileyen
ve yasami tehdit eden psikolojik bozukluklardan biridir. Geleneksel teshis biiyiik dlgiide
0znel raporlara dayanir ve bu da nesnelligi ve dogrulugu engeller. Bu ¢alisma, derin sinir
aglarinin (DNN) elektroensefalografi (EEG) verilerini kullanarak depresyon siddetini tespit
etme ve karakterize etme potansiyelini aragtirmaktadir. Bu g¢alismada, kendi kendini
derecelendiren depresyon 6l¢egi (SDS) puanina dayali olarak depresyon siddetini tahmin
etmek i¢in siniflandirmak tizere 60 denegin dinlenme durumu ve gorev odakli EEG
kayitlarini igeren agik kaynakli bir veri kiimesi incelenmistir. Deneklerin ciddiyeti SDS
puan araliklarina gore etiketlenmistir. DNN'lerin, &zellikle de evrisimli sinir aglar
(CNN'ler) ve tekrarlayan sinir aglarinin (RNN'ler) o6zellik c¢ikarma kabiliyetleri
kullanilarak, EEG verilerinin kendisi ve literatiirde kullanilan, EEG verisinden ¢ikarilan
ozellikler kullanilarak depresyon siddet seviyesinin siniflandirilmasi amaglanmaktadir.
Farkli veri girdi sekillerine gore siniflandirma dogruluk oranlari elde edilmistir. EEG
verilerinden elde edilen bazi 6zelliklerin ve bu 6zelliklerin kombinasyonlarinin yukarida
bahsedilen aglarda iyi sonuglar verdigi gozlemlenmistir.

Anahtar Sozciikler: Derin Ogrenme; Makine Ogrenmesi; Depresyon;, EEG; Ruhsal
Bozukluklar
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1. INTRODUCTION

1.1 Mental Disorders

A mental disorder is a syndrome that manifests as a malfunction in the biological,
psychological, or developmental processes that underpin mental functioning and is defined
by a clinically significant disturbance in a person's behavior, emotion regulation, or
thought processes. Significant distress or impairment in social, professional, or other key
tasks is typically linked to mental disorders [1].

According to Global Burden of Disease Study 2019, in 2019 13.04% of global
population affected from mental disorders, in which 2.49% of global population affected
from major depressive disorder and 4.05% affected from anxiety [2].

Major depressive disorder is a prevalent mental disorder, which affects an estimated
5% of adults worldwide and can result in suicide [3].

The understanding and diagnosis of mental disorders have been advanced through

various technological approaches, including the analysis of neural activity on brain.
1.2 EEG

EEG is a record of neural activity from the brain [4]. It is recorded at scalp of
human brain (Figure 1.1). Records from the brain can be used for the classification of
emotions, mental workload, motor imaging, seizure detection, event-related potential
detection, and sleep scoring [5]. Moreover, mental disorders can be detected from EEG

signals via biomarkers from the brain [6].
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Figure 1.1: Example EEG signal representation

The use of EEG in mental health research allows for a non-invasive examination of
brain function, enabling the identification of patterns and abnormalities associated with
different mental disorders. Processing EEG signals by deep learning methods provides
valuable insights into the neural signatures of conditions such as major depressive disorder

and anxiety.
1.3 Deep Learning

Deep learning, a subfield of machine learning, has emerged as a powerful tool for
automatically learning complex representations from data. In the area of mental health,
deep learning techniques, particularly deep neural networks, have gained prominence for
their ability to extract complex patterns from neuroimaging data.

Researchers have applied deep learning to tasks such as the analysis of EEG signals
to detect and classify mental disorders [4]. By leveraging the hierarchical features learned
by deep neural networks, these approaches enhance the accuracy and the efficiency of
identifying subtle patterns associated with various mental health conditions.

The integration of deep learning methodologies with EEG analysis holds promise
for developing more precise and efficient diagnostic tools for mental disorders,

contributing to a deeper understanding of the underlying neural mechanisms.
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1.3.1 Deep Neural Networks

Neural networks are networks which consists of connected neurons conveying
information to one another, if an activation threshold is satisfied, mimicking neural
connections of brains [5]. One set of neurons that takes inputs from the previous set and
outputs to another set is called a layer of neural network. Multiple layers of neurons that
take input from previous layers and gives output to the next layers establishes a deep

neural network (Figure 1.2).

N *,
Zn:l Xy Wan

Input Layer Hidden Layer Output Layer

Figure 1.2: Deep neural network
Inputs taken from previous layer are multiplied by weights in every connection
between current neuron and previous neurons and summarized to get the input value of
current neuron. Output value is calculated by an activation function. Some of the most
commonly used activation functions include ReLU, Leaky ReLU, Tanh, and softmax

(Figure 1.3).
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Figure 1.3: Activation Functions

Neural networks can learn to classify data by adjusting weight parameters
multiplied by outputs and inputs of neurons. By adjusting weight parameters, predicted
outputs of networks are compared to the actual value expected by loss functions such as
cross entropy and mean squared error. Calculated loss values of input data are then
backpropagated into the network by using derivatives of weights, determining how much
the connection between two neurons are contributing to the output of the last neuron. Each
layer is backpropagated step by step by feeding the training dataset to the network multiple

times.
1.3.2 Convolutional Neural Networks

CNNs combines the convolution operation on images or timeseries data and
varying values of convolution masks that enables tuning filter weights rather than using
fixed numbers to convey static feature maps extracted from original data (Figure 1.4).

CNN s also includes pooling, flatten and fully connected layers.

16
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Figure 1.4: Convolution operation

Pooling layers extract most significant values according to the selected property

such as minimum, maximum, or average value inside a selected kernel. The deep learning

model used in this study uses maximum pooling. Maximum pooling layers extract the

biggest value in each kernel size, moving along the axes by stride size (Figure 1.5).
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In CNN, the last 2D pooling or convolutional layer is flattened into 1D vector to
convey information into fully connected layers, in which the learning of classification

occurs (Figure 1.6).

54

JBEn B BpEoED B B

Figure 1.6: Reshaping into 1D

1.3.3 Recurrent Neural Networks and Long Short-Term Memory

Recurrent neural networks are a type of neural network that transmits its output
back into itself, as many times as the size of its input vector. RNNs can output the values in

each recurrence iteratively or deliver the final calculated value (Figure 1.7).

Y ory, [ y
A
1
1
1
1
i
1

X(n): [xq, X ., %]

Figure 1.7: Recurrent layer with one neuron
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Long short-term memory is a type of RNN network that aims to convey
information from previous inputs in a series of data to overcome vanishing gradient
descent problem [6].

Vanishing gradient problem occurs when multiple derivatives of neuron weights are
calculated. The more the derivatives are calculated over the same weights, the less the
calculated derivatives become smaller and therefore the learning in networks nearly stops.

One LSTM neuron consists of one input and one output, two hidden state inputs
and outputs, and activation functions which control the amount of inputs transmitted to the

recurrent input into the same neuron (Figure 1.8).

hy
4
CO —@ :m é > C1
e
Candidate @
memory
Forget Input Output °
gate gate gate
Sigmoid Sigmoid tanh Sigmoid
F 3 r 3 - -~ :
ho : h,
X1

Figure 1.8: Inner structure of LSTM Cell

Activation gates control the amount of information passed through one cell to the
next instance of hidden inputs and next input in series of data. ho denotes the short-term
hidden state, which controls how much of the long-term hidden state co is going to

forwarded into the next recurrence.
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1.4 Related Work

Classification of mental disorders like major depressive disorder, bipolar disorder
and anxiety disorder has been conducted by machine learning and deep learning
approaches on EEG data or extracted features.

Different input formulations, EEG data from different tasks and different deep
neural networks have been used to classify depressive disorder patients.

In [7], the use of machine learning techniques to predict vulnerability to depression
based on EEG data is explored, where an accuracy of 91.42% in predicting vulnerability to
depression using task-based EEG is achieved using a long short-term memory model. In
this study, the accuracy achieved by a 1D convolutional neural network amounts 98.06%
using raw resting state EEG data. Accordingly, machine learning models can effectively
predict vulnerability to depression using EEG data from both resting state and task-based
measurements.

In [8], extracted features from DWT of EEG signals and SVM are used to classify
depressed subjects. EEG data of 30 recorded at 256 Hz over a duration of 5 minutes from
left hemisphere of the brain were used. An accuracy of 88.92% is achieved by training
SVM RBF model with ten-fold cross validation strategy.

Authors in [9] have used logistic regression with leave-one-out cross validation on
three linear and three nonlinear features extracted from 5 minutes records of 30-channel
EEG data. In this study, 13 depression patients and a control group of 13 healthy subjects
participated. They reached an accuracy of 92% by using all features and argued that no
single feature is sufficient to detect depression.

In [10], the statistical features extracted from 30 resting state EEG signals from left
and right hemisphere of the brain over a duration of 5 minutes are used to train a LSTM
model. Authors compared the proposed model with CNN-LSTM and ConvLSTM models
to predict mean datapoints from EEG channels. Among other models, the proposed model
has the least RMSE value.

In [11], authors used a combined network consisting of brain network and CNN to
classify anxiety and depression. Adjacency matrices of PLI feature from five frequency
bands of 31-channel EEG data are used as input to a combined network. A classification
accuracy of 92% has been reached by the proposed network.

In [12], authors used imaging asymmetry matrices calculated from 19 EEG

20



channels to obtain recordings for both eyes-closed and eyes-open states of 30 normal and
34 depressed subjects to classify depression with a 2D CNN model. Here, a classification
accuracy of 98.85% has been achieved. It is mentioned that to increase the reliability of
deep learning models, correlation of classification results to various depression scoring
inventories can be used in further research.

In [13], authors extracted relative wavelet energy values of different frequency
bands and entropy from EEG signals to train an ANN model. The model consists of 20
individual input neurons for 20 features and two output neurons for classification. A
classification accuracy of 98.11% has been reached. It is concluded that depression is
essentially limited to the low frequency range of 0 — 4 Hz.

In [14], a combined model of CNN with GRU is proposed to predict depression
from a public dataset (MODMA dataset [15]) by using brain maps containing frequency
and temporal data as input. A prediction accuracy of 89.63% has been achieved on the
open-source dataset. It has been concluded that a greater number of patients and other
types of data rather than EEG are required to achieve higher accuracy rates.

In [16], authors introduced a graph convolutional network for classification of
depressed patients from resting state EEG data. Hjorth parameters and power spectral
density features are extracted from EEG signals to be used as input to the network. An
accuracy rate of 96.50% has been achieved with the proposed model with a 10-fold cross
validation strategy.

In [17], a CNN network with two separate convolution lines connected at the end of
convolution layers is proposed to classify three categories of medicated patients,
unmedicated patients and normal subjects. An accuracy of 79.08% has been achieved with

a 10-fold cross validation.
1.5 Original Contributions

The severity level of major depressive disorder can be classified as mild, moderate
and severe [1]. Identifying severity level of depression at early stages can provide more
specialized treatment to patients and prevent deaths related to major depressive disorder.
Therefore, this study investigates the performance of CNN and RNN for classifying the
severity level of depression. To achieve this goal, preprocessed EEG data and optimal

features identified from literature are used to train deep neural network models and
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compared with different data formulations.
1.6 Organization of the Thesis

In Section 2, dataset, preprocessing steps, and input representation of dataset fed
into a classification model based on CNN and RNN are explained.

In Section 3, results obtained from different input representations fed into the
proposed CNN model are presented.

In Section 4, the results are discussed, and further research objectives are

addressed.
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2. MATERIALS AND METHODS

In this study a test-retest dataset which includes resting state and cognitive state
EEG recordings has been used to classify subjects having mild depression and no

depression [18]. A flowchart of the procedures conducted in this study has been shown in

Figure 2.1.

EEG Data

PLI and CO Complexity

Classification
Deep Learning Model

~
Preprocessing
v
’
Preprocessed
—
EEG Data
e
v
Classification
Deep Learning Model
v ‘ v
Normal Mild Normal

Mild

Figure 2.1: Procedures in this study

2.1 Dataset

Participants selected for the data acquisition have no psychological or neurological
disorder diagnosis and no psychiatric drugs taken within 3 months prior to the recording.
EEG data has been recorded from 60 participants in 3 sessions. First two sessions

are conducted 90 minutes apart from each other in their first visit and last session is
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conducted after one month of their first visit.
2.1.1 Test Procedure

In each session two resting state (eyes open and eyes closed) tasks and three
cognitive (memory, music and subtraction) tasks have been requested from participants to
accomplish. Before EEG recordings, participants were informed of procedures they are
going to take and filled SDS, SAS and ESS. Then, participants were directed to EEG

recording room to attend resting state and cognitive tasks (Figure 2.2).

First lab visit Second lab visit
F 1 I —
time1(N=60) time2(N=60) time3(N=60)

90 minutes One month

v

Resting state EEG (Eyes-open, Eyes-closed) Resting state EEG (Eyes-open, Eyes-closed) Resting state EEG (Eyes-open, Eyes-closed)
Cognitive state EEG (Subtraction, Music, Memory) Cogpnitive state EEG (Subtraction, Music, Memory) Cognitive state EEG (Subtraction, Music, Memory)
Behavioral testing (questionnaires) Behavioral testing (questionnaires) Behavioral testing (questionnaires)

Figure 2.2: Procedure of experiment [18]

In resting state tasks, participants are asked to sit quietly in the recording room for
five minutes both in eyes closed and eyes open states.

In memory task, participants were instructed to subtract repeatedly by 7 beginning
from 5000. Then, they are asked to sing their favorite song in their heads. Lastly, they were
requested to recall their day until they arrive at the laboratory. Between each cognitive

task, participants filled mini NYC-Q.

2.1.2 EEG Acquisition

For acquisition of EEG data, an elastic cap with 64 electrodes according to the

international 10-20 placement system is being used. Two channels were used to record
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EOC to detect and filter eye movements affecting other channels and one channel as
reference. The recordings were sampled at 500 Hz. 61-channel of EEG data for each task

and subject per session is collected (Figure 2.3).

Channel locations
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Figure 2.3: Channel locations of EEG data
2.2 Data Selection

Table 2.1: SDS Score Ranges
Severity of Depression = SDS Score Range

Normal 25-43
Mild 50-59
Moderate 60-69
Severe 70 and over

According to [19], for classifying severity of depression, SDS scores of subjects are
divided into 4 groups (Table 2.1).
Due to the insufficient number of moderate and severe subjects, only normal and

mild subjects were selected for classification (Figure 2.4).
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Figure 2.4: Histogram of all eyes closed sessions grouped by severity of depression

2.3 Data Preparation

Before classification step, EEG data has been preprocessed and two types of input

data are prepared for the deep learning model (Figure 2.5).

Feature
Extraction
| !
Features Preprocessed
PLI and CO Complexity EEG Data

Figure 2.5: Flowchart of preprocessing steps

2.3.1 Preprocessing

At the beginning, the first 30 seconds of EEG data of all participants has been cut
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from original data to have more stable EEG signals. The remaining data has been filtered at
cutoff frequencies between 0.15 Hz and 45 Hz and thus 50 Hz power line and high
frequency noise have been removed. Then, the data is resampled to 256 Hz. Finally, the
EEG signals have been split into fixed length of epochs. Different epoch lengths are
considered to examine the effect of epoch lengths and overlapping ratios on the prediction

rate of the models (Figure 2.6).
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Figure 2.6: Fixed length epoch extraction with overlapping ratios

Authors in [20] specified PLI and CO-complexity as optimal features to detect
depression from resting state EEG data by using feature selection methods. Therefore, PLI
and CO-complexity are used separately and combined to form the input of the deep
learning model. The features are extracted from fixed length epochs of EEG data and

resampled EEG data.
2.3.2 CO0-Complexity

CO-complexity is an indicator to the randomness of a time series signal [21]. It is
the proportion of random activity to total complex activity. It can be applied both to short
and long sequences of individual signals. The following steps are conducted to extract CO-
complexity from each EEG signal of recordings.

The FFT of the EEG signal x(n) is extracted as follows
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N-1

X(k) = %Z x(n)e_j(ZIle).

n=0

Then, the mean square value of each datapoint in FFT is calculated:
N-1
1 2
Gy =5 X,
k=0

Mean square value of datapoints is then used as a threshold to filter out datapoints.

The output of the filter is given by

_(X(k) IX(K)*> Gy
Y(k)_{ 0 |X(B?P<Gy '

Finally, filtered FFT datapoints are then transformed to time domain y(n) and CO-
complexity can be calculated as follows:

_ B ) —y ()P

co .
n=o x|

Calculated CO-complexity values are used as an input vector for the deep learning

model.
2.3.3 PLI

PLI is a functional connectivity feature that values between 0 and 1 to indicate
difference in phases of two signals [22]. PLI is calculated in each fixed length epochs
without overlapping according to its proposed equation and mean value of PLI calculated

for each channel pair is used to construct 2D connectivity matrix:

PLI = |(sign [A¢ (&) D)
Ag denotes the phase difference between two signals at a frequency.

Extracted 2D connectivity matrix is reshaped into input vector for the deep learning

model.
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2.4 Deep Learning Models

Deep learning models used to train preprocessed EEG data and feature vectors are
based on a CNN named DeprNet [23] and a RNN with LSTM layers.

DeprNet consists of 5 convolutional and max pooling layer pairs and 2 hidden
dense layers are used to classify depressed patients and normal control subjects (Figure
2.7). Convolution kernel sizes are adjusted to convolve only individual channels and at the
end of convolutional layers and max pooling layers, only the size of the data point axis is
reduced. After convolutional and max pooling layers, all extracted 2D maps are reshaped
into 1D and used as input to the fully connected layers to classify normal and depressed
subjects.

The input shape of the model is changed with varying fixed epoch sizes of the
preprocessed EEG data and 1D feature vectors. In output layer, 2 neurons are used to
classify mild and normal subjects using softmax as activation and categorical-cross entropy

as loss function related to softmax activation function.

2 Fully
Flatten Connected
Layers

Input matrix size;

- for EEG signals
num_channel x num_datapoints
61 x datapoints (Hz * seconds)

Convolution Convolution Convolution Convolution  Convolution
+

- for Feature matrices + & Y +
Max Pooling Max Pooling Max Pooling Max Pooling Max Pooling \_

1 x feature points

Classification
- normal
- mild

Figure 2.7: Overview of the CNN model

RNN used by preprocessed EEG data and feature vectors consists of 2-layer LSTM.
The output of LSTM layers is reshaped into 1D vector and fed into 3 fully connected
layers. The output of the network has 2 neurons, in which softmax activation is applied to

classify data as normal or mild depressed.
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2.5 Training

Training a deep learning model requires to feed training data multiple times to
adjust weight parameters inside the model. One pass of the whole training set through the
model is defined as epoch, differing from epoching an EEG data to have multiple data
from a long sequence recording. Update of the model weights are done in batches, feeding
a limited amount of data from training dataset to calculating an average of loss values and
then updating weights of the model. Trainings with preprocessed EEG data are used a
batch size of 32 and 100 epochs. Trainings with extracted features are used a batch size of

4 to maintain multiple learning steps in one pass of selected dataset.

— _/
Y

Validation Set Training Set
Training Set Validation Set Training Set
Training Set Validation Set Training Set
Training Set Validation Set Training Set
Training Set Validation Set

Figure 2.8: K-fold cross validation

5-fold cross validation is being used to train the deep learning model. Subjects in
one session are split into training and validation sets, where each fold consists of a
different validation set (Figure 2.8). Accuracy rates calculated in validation step are
averaged and compared with different input formulations and networks.

In all networks, Adam optimizer is used, and all networks have 2 output neurons
and softmax activation functions to classify subjects as normal or mild. Categorical cross-

entropy is selected as the loss function of networks.
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3. RESULTS

In this study, the efficiency of the proposed deep learning models with different

inputs formulations are investigated and compared. Here, different adjustments such as

overlapping ratio, EEG epoching length are considered. The model and the input form

delivered the best performance are obtained.

3.1 Classification with Preprocessed EEG Data

In the last step of preprocessing, EEG data is split into fixed length epochs with

different overlapping ratios. The split EEG data increases the amount of data to train and

validate the deep learning model. The length of epochs and the resampling frequency affect

the number of datapoints fed into neural networks. For each epoch length and resampling

frequency, the number of datapoints of the combinations at 256 Hz are given in Table 3.1.

Table 3.1: Epoch lengths and corresponding data points

Epoch Length (seconds) ' Data Points
2 512

4 1024

6 1536

8 2048

The combinations of epoch lengths and overlapping ratios are used to train and

validate DeprNet (Table 3.1). It is observed that epoch duration of 4 and overlapping ratio

of 0.0 provides the best accuracy value of 76.9% (Figure 3.1).
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Figure 3.1: Accuracy heatmap of epoch and overlapping combinations

3.1.1 CNN with min-max Normalization

Using min-max normalization, data points epoch-overlapping combinations are
scaled between values -1 and 1. All channels are used together to perform the
normalization of each datapoint. Minimum and maximum values are chosen to represent
negative and positive voltage values of datapoints.

DeprNet is used as the CNN to predict normal and mild depressed subjects (Table

3.2).
Table 3.2: DeprNet architecture for 4 seconds, 256 Hz input data
# | Layer Output # Maps | Kernel Stride Activation
Shape Size Size
1  Input 61 x 1024 | 128 - - -
2  Convolution 2D 61 x 1020 128 I1x5 Ix1 Leaky ReLU
3 Batch Normalization 61 x 1020 128 - -
4 Max Pooling 2D 61x510 128 1x2 1x2 -
5 | Convolution 2D 61 x506 | 64 1x5 Ix1 Leaky ReLU
6  Batch Normalization | 61 x 506 @ 64 - - -
7 | Max Pooling 2D 61x253 |64 1x2 1x2 -
8 Convolution 2D 61x249 64 I1x5 Ix1 Leaky ReLU
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11
12
13
14
15
16
17
18
19
20

Batch Normalization
Max Pooling 2D
Convolution 2D
Batch Normalization
Max Pooling 2D
Convolution 2D
Batch Normalization
Max Pooling 2D
Flatten

Dense

Dense

Output

61 x 249
61 x 124
61 x 122
61 x 122
61 x61
61 x 60
61 x 60
61 x 30
58560
16

8

2

64
64
32
32
32
32
32
32

1x2 Ix2 -

1x3 Ix1 Leaky ReLU
1x2 Ix2 -

1x2 Ix1 Leaky ReLU
1x2 Ix2 -

- - Leaky ReLU
- - Leaky ReLU
- - Softmax

Preprocessed EEG data of epoch and overlapping variations are fed into CNN. The

accuracy heatmap is obtained and presented in Figure 3.2.
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Figure 3.2: Accuracy heatmap with min-max normalization for DeprNet

3.1.2 LSTM with min-max Normalization

In literature, LSTMs are used to predict depression from EEG data. In this study, 2-

layered LSTM network with fully connected layers are used to examine the effect of
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various epoch and overlapping combinations (Table 3.3).

Table 3.3: LSTM network layers

Layer Output Shape Activation
Input 61 x # Data Points -

LSTM 61x8 Tanh

LSTM 61x1 Tanh
Flatten 61 -

Dense 32 Leaky ReLU
Dense 16 Leaky ReLU
Dense 8 Leaky ReLLU
Output 2 Softmax

Preprocessed EEG data with different epoch and overlapping values are fed into the
LSTM network. Outputs of LSTM layers are reshaped into 1D and transmitted into fully
connected layers. The accuracy heatmap of different epoch lengths and overlapping ratios

are shown in Figure 3.3.
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Figure 3.3: Accuracy heatmap for the 2-layer LSTM

It is observed that with increasing epoch duration and decreasing overlapping ratio,

the accuracy increases.
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3.2 Classification with Features

Features are extracted per subject. Therefore, there is a smaller amount of data in
training and validation dataset.
PLI and CO-complexity features are used individually and combined to test

classification performances of DeprNet and DeprNet with LSTM networks.

3.2.1 PLI Frequency Variation

PLI is extracted from combinations of EEG channel pairs to create a connectivity
matrix (Figure 3.4). The lower half triangle of PLI connectivity matrix is reshaped to be

used as 1D vector input for the deep neural networks (Figure 3.4).

10
20
30
40

50

60

Figure 3.4: 2D RGB representation of PLI feature of 61-channel EEG data

PLI features extracted at different frequencies from 2 to 32 Hz are trained with

DeprNet to investigate the impact of frequency (Figure 3.5).
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Figure 3.5: Accuracy of DeprNet using PLI features at different frequencies

It is observed that PLI features extracted from 16Hz and 22Hz are good candidates

to use with CO-complexity features.
3.2.2 C0-Complexity Variations

CO-complexity is extracted from fixed length epochs of 2s, 4s, 8s and 40s for each
EEG channel. Extracted CO-complexities are reshaped into 1D vector and used to train
DeprNet and to compare accuracies with different epoch lengths of EEG channels.
Accuracy rates obtained with different epoch lengths are shown in Table 3.4.
Table 3.4: Accuracies using CO-complexity at different epoch lengths
Epoch Length (s) = Accuracy

2 0.7168
4 0.7862
8 0.8334
40 0.7612

According to accuracy results, combinations of CO-complexity features from all

tested ranges and PLI features at 16Hz and 22Hz are used to train deep neural networks.
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3.2.3 PLI and C0-Complexity with CNN

PLI and CO0-Complexity features are concatenated and fed into DeprNet.
Accuracies are shown in a heatmap of PLI frequencies and CO-complexity epoch lengths
(Figure 3.6).
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Figure 3.6: Accuracy heatmap of DeprNet using PLI and CO-complexity

It is observed that an accuracy of 83.3% is achieved by 16Hz of PLI and 8s epoch

duration of CO-complexity.
3.2.4 PLI and C0-Complexity with CNN-LSTM

Further examination of PLI and CO-complexity is achieved by adding 1 LSTM

layer between convolution layers and fully connected layers of DeprNet (Table 3.5).
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Table 3.5: CO-complexity calculated for LSTM layer of 4s epoch

Layer Output Shape Activation
After convolution and max pool layers

Flatten 5856 -

Reshape 5856 x 1 -

LSTM 5856x 2 ReLU

Flatten 11712 -

Dense 16 Leaky ReLLU

Dense 8 Leaky ReLU

Output 2 Softmax

Combined features are fed into the network as 1D vector and accuracy rates
obtained for different frequency values of PLI and epoch lengths of CO-complexity are

given in Figure 3.7.
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Figure 3.7: Accuracy heatmap of Deprnet with LSTM using combined features

It is observed that 16Hz and 22Hz of PLI with epoch length of 4s achieved the best

3 accuracy rates.
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4. DISCUSSION AND CONCLUSION

In this study, the promising potential of DNNs in addressing the limitations of
traditional depression diagnosis by leveraging electroencephalography (EEG) data with
different input representations are examined.

Using a combination of extracted features from preprocessed EEG data, CO-
complexity, combined input representation of CO-complexity and PLI yield the highest
accuracy in identifying normal and mild depressed subjects. This suggests that capturing
different aspects of brain activity provides a more comprehensive picture of the disorder.
Furthermore, building different DNN structures trained to extract specific features, which
has adjustable parameters, such as frequency of PLI, can lead to improved results. This
approach can lead to more accurate and objective diagnosis of depression, enabling earlier
intervention and improved treatment outcomes.

Calculated features are used as a 1D vector to train DNN models. Therefore,
locations of features are not included in this study. Adding positional information of
collected features from the brain can be examined.

Almost all areas of the cortex are affected by major depression disorder [24].
Therefore, in this study all channels of EEG data are used to classify subjects. Reducing
number of channels by using channels associated with specific areas of the brain can be
performed to observe the classification performance of DNNs.

Further research is needed to improve the classification performance of DNN
models by examining different DNN structures. Additionally, exploring the interpretability
of DNN models would provide valuable insights into the EEG signal patterns related to
depression severity.

In this study, training of DNN models is based on self-rating scores of subjects.
Using datasets with both self-rating score inventories and professional diagnosis of
severity level of depression can provide more accurate results. Moreover, in this dataset,
the number of subjects in each severity level of depression is not evenly distributed. An
evenly distributed dataset of severity level of depression can enable a multi-class

classification.

39



The classification of subjects is accomplished by only EEG data. Additional inputs
from different sources such as facial expressions of subject during the EEG recording can

be used for the classification.
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