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ABSTRACT 

PREDICTION OF PSYCHOLOGICAL DISORDER LEVELS WITH DEEP LEARNING 

MODELS BASED ON ELECTROENCEPHALOGRAPHY (EEG) SIGNALS 

 

  

Psychological disorders, diverse and complex, paint a spectrum of challenges 

across the human experience. Depression is one of the life-threatening psychological 

disorders that impacts millions of individuals worldwide. Traditional diagnosis depends 

heavily on subjective reports, which inhibits objectivity and accuracy. This study 

investigates the potential of deep neural networks (DNNs) in detecting and characterizing 

depression severity using electroencephalography (EEG) data. In this study, an open-

source dataset is examined, which includes resting state and task-driven EEG recordings of 

60 subjects to classify to predict severity of depression, based on self-rating depression 

scale (SDS) score. Severity of subjects are labeled by the ranges of SDS score. Using the 

significant feature extraction capabilities of DNNs, particularly convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs), it is aimed to classify depression 

severity level using EEG data itself and extracted features from EEG data proposed in the 

literature. Accuracies of different input representations are obtained. It is observed that 

using combinations of feature representations of EEG data shows promising results in the 

above-mentioned networks. 

 

 

Keywords: Deep Learning; Machine Learning; Depression; EEG; Mental Disorders 
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ÖZET 

ELEKTROENSEFALOGRAFİ (EEG) TABANLI SİNYALLER ÜZERİNDEN 

PSİKOLOJİK BOZUKLUK DÜZEYLERİNİN DERİN ÖĞRENME MODELLERİ İLE 

TAHMİNİ 

 

 

Çok çeşitli ve karmaşık olan psikolojik bozukluklar, insan deneyimi boyunca karşılaşılan 

zorlukların bir spektrumunu çizer. Depresyon, dünya çapında milyonlarca bireyi etkileyen 

ve yaşamı tehdit eden psikolojik bozukluklardan biridir. Geleneksel teşhis büyük ölçüde 

öznel raporlara dayanır ve bu da nesnelliği ve doğruluğu engeller. Bu çalışma, derin sinir 

ağlarının (DNN) elektroensefalografi (EEG) verilerini kullanarak depresyon şiddetini tespit 

etme ve karakterize etme potansiyelini araştırmaktadır. Bu çalışmada, kendi kendini 

derecelendiren depresyon ölçeği (SDS) puanına dayalı olarak depresyon şiddetini tahmin 

etmek için sınıflandırmak üzere 60 deneğin dinlenme durumu ve görev odaklı EEG 

kayıtlarını içeren açık kaynaklı bir veri kümesi incelenmiştir. Deneklerin ciddiyeti SDS 

puan aralıklarına göre etiketlenmiştir. DNN'lerin, özellikle de evrişimli sinir ağları 

(CNN'ler) ve tekrarlayan sinir ağlarının (RNN'ler) özellik çıkarma kabiliyetleri 

kullanılarak, EEG verilerinin kendisi ve literatürde kullanılan, EEG verisinden çıkarılan 

özellikler kullanılarak depresyon şiddet seviyesinin sınıflandırılması amaçlanmaktadır. 

Farklı veri girdi şekillerine göre sınıflandırma doğruluk oranları elde edilmiştir. EEG 

verilerinden elde edilen bazı özelliklerin ve bu özelliklerin kombinasyonlarının yukarıda 

bahsedilen ağlarda iyi sonuçlar verdiği gözlemlenmiştir. 

 

 

Anahtar Sözcükler: Derin Öğrenme; Makine Öğrenmesi; Depresyon; EEG; Ruhsal 

Bozukluklar 
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1. INTRODUCTION 

1.1 Mental Disorders 

A mental disorder is a syndrome that manifests as a malfunction in the biological, 

psychological, or developmental processes that underpin mental functioning and is defined 

by a clinically significant disturbance in a person's behavior, emotion regulation, or 

thought processes. Significant distress or impairment in social, professional, or other key 

tasks is typically linked to mental disorders [1]. 

According to Global Burden of Disease Study 2019, in 2019 13.04% of global 

population affected from mental disorders, in which 2.49% of global population affected 

from major depressive disorder and 4.05% affected from anxiety [2]. 

Major depressive disorder is a prevalent mental disorder, which affects an estimated 

5% of adults worldwide and can result in suicide [3]. 

The understanding and diagnosis of mental disorders have been advanced through 

various technological approaches, including the analysis of neural activity on brain. 

1.2 EEG 

EEG is a record of neural activity from the brain [4]. It is recorded at scalp of 

human brain (Figure 1.1). Records from the brain can be used for the classification of 

emotions, mental workload, motor imaging, seizure detection, event-related potential 

detection, and sleep scoring [5]. Moreover, mental disorders can be detected from EEG 

signals via biomarkers from the brain [6]. 
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Figure 1.1: Example EEG signal representation 

 

The use of EEG in mental health research allows for a non-invasive examination of 

brain function, enabling the identification of patterns and abnormalities associated with 

different mental disorders. Processing EEG signals by deep learning methods provides 

valuable insights into the neural signatures of conditions such as major depressive disorder 

and anxiety. 

1.3 Deep Learning 

Deep learning, a subfield of machine learning, has emerged as a powerful tool for 

automatically learning complex representations from data. In the area of mental health, 

deep learning techniques, particularly deep neural networks, have gained prominence for 

their ability to extract complex patterns from neuroimaging data. 

Researchers have applied deep learning to tasks such as the analysis of EEG signals 

to detect and classify mental disorders [4]. By leveraging the hierarchical features learned 

by deep neural networks, these approaches enhance the accuracy and the efficiency of 

identifying subtle patterns associated with various mental health conditions. 

The integration of deep learning methodologies with EEG analysis holds promise 

for developing more precise and efficient diagnostic tools for mental disorders, 

contributing to a deeper understanding of the underlying neural mechanisms. 
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1.3.1 Deep Neural Networks 

Neural networks are networks which consists of connected neurons conveying 

information to one another, if an activation threshold is satisfied, mimicking neural 

connections of brains [5]. One set of neurons that takes inputs from the previous set and 

outputs to another set is called a layer of neural network. Multiple layers of neurons that 

take input from previous layers and gives output to the next layers establishes a deep 

neural network (Figure 1.2). 

 

 

Figure 1.2: Deep neural network 

Inputs taken from previous layer are multiplied by weights in every connection 

between current neuron and previous neurons and summarized to get the input value of 

current neuron. Output value is calculated by an activation function. Some of the most 

commonly used activation functions include ReLU, Leaky ReLU, Tanh, and softmax 

(Figure 1.3). 
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Figure 1.3: Activation Functions 

Neural networks can learn to classify data by adjusting weight parameters 

multiplied by outputs and inputs of neurons. By adjusting weight parameters, predicted 

outputs of networks are compared to the actual value expected by loss functions such as 

cross entropy and mean squared error. Calculated loss values of input data are then 

backpropagated into the network by using derivatives of weights, determining how much 

the connection between two neurons are contributing to the output of the last neuron. Each 

layer is backpropagated step by step by feeding the training dataset to the network multiple 

times. 

1.3.2 Convolutional Neural Networks 

CNNs combines the convolution operation on images or timeseries data and 

varying values of convolution masks that enables tuning filter weights rather than using 

fixed numbers to convey static feature maps extracted from original data (Figure 1.4). 

CNNs also includes pooling, flatten and fully connected layers. 
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Figure 1.4: Convolution operation 

 

Pooling layers extract most significant values according to the selected property 

such as minimum, maximum, or average value inside a selected kernel. The deep learning 

model used in this study uses maximum pooling. Maximum pooling layers extract the 

biggest value in each kernel size, moving along the axes by stride size (Figure 1.5). 

 

 

Figure 1.5: Max pooling operation 
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In CNN, the last 2D pooling or convolutional layer is flattened into 1D vector to 

convey information into fully connected layers, in which the learning of classification 

occurs (Figure 1.6). 

 

Figure 1.6: Reshaping into 1D  

 

1.3.3 Recurrent Neural Networks and Long Short-Term Memory 

Recurrent neural networks are a type of neural network that transmits its output 

back into itself, as many times as the size of its input vector. RNNs can output the values in 

each recurrence iteratively or deliver the final calculated value (Figure 1.7). 

 

 

Figure 1.7: Recurrent layer with one neuron 
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Long short-term memory is a type of RNN network that aims to convey 

information from previous inputs in a series of data to overcome vanishing gradient 

descent problem [6].  

Vanishing gradient problem occurs when multiple derivatives of neuron weights are 

calculated. The more the derivatives are calculated over the same weights, the less the 

calculated derivatives become smaller and therefore the learning in networks nearly stops. 

One LSTM neuron consists of one input and one output, two hidden state inputs 

and outputs, and activation functions which control the amount of inputs transmitted to the 

recurrent input into the same neuron (Figure 1.8).  

 

Figure 1.8: Inner structure of LSTM Cell 

 

Activation gates control the amount of information passed through one cell to the 

next instance of hidden inputs and next input in series of data. h0 denotes the short-term 

hidden state, which controls how much of the long-term hidden state c0 is going to 

forwarded into the next recurrence. 
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1.4 Related Work 

Classification of mental disorders like major depressive disorder, bipolar disorder 

and anxiety disorder has been conducted by machine learning and deep learning 

approaches on EEG data or extracted features.  

Different input formulations, EEG data from different tasks and different deep 

neural networks have been used to classify depressive disorder patients. 

In [7], the use of machine learning techniques to predict vulnerability to depression 

based on EEG data is explored, where an accuracy of 91.42% in predicting vulnerability to 

depression using task-based EEG is achieved using a long short-term memory model. In 

this study, the accuracy achieved by a 1D convolutional neural network amounts 98.06% 

using raw resting state EEG data. Accordingly, machine learning models can effectively 

predict vulnerability to depression using EEG data from both resting state and task-based 

measurements. 

In [8], extracted features from DWT of EEG signals and SVM are used to classify 

depressed subjects. EEG data of 30 recorded at 256 Hz over a duration of 5 minutes from 

left hemisphere of the brain were used. An accuracy of 88.92% is achieved by training 

SVM RBF model with ten-fold cross validation strategy. 

Authors in [9] have used logistic regression with leave-one-out cross validation on 

three linear and three nonlinear features extracted from 5 minutes records of 30-channel 

EEG data. In this study, 13 depression patients and a control group of 13 healthy subjects 

participated. They reached an accuracy of 92% by using all features and argued that no 

single feature is sufficient to detect depression. 

In [10], the statistical features extracted from 30 resting state EEG signals from left 

and right hemisphere of the brain over a duration of 5 minutes are used to train a LSTM 

model. Authors compared the proposed model with CNN-LSTM and ConvLSTM models 

to predict mean datapoints from EEG channels. Among other models, the proposed model 

has the least RMSE value. 

In [11], authors used a combined network consisting of brain network and CNN to 

classify anxiety and depression. Adjacency matrices of PLI feature from five frequency 

bands of 31-channel EEG data are used as input to a combined network. A classification 

accuracy of 92% has been reached by the proposed network. 

In [12], authors used imaging asymmetry matrices calculated from 19 EEG 
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channels to obtain recordings for both eyes-closed and eyes-open states of 30 normal and 

34 depressed subjects to classify depression with a 2D CNN model. Here, a classification 

accuracy of 98.85% has been achieved. It is mentioned that to increase the reliability of 

deep learning models, correlation of classification results to various depression scoring 

inventories can be used in further research. 

In [13], authors extracted relative wavelet energy values of different frequency 

bands and entropy from EEG signals to train an ANN model. The model consists of 20 

individual input neurons for 20 features and two output neurons for classification. A 

classification accuracy of 98.11% has been reached. It is concluded that depression is 

essentially limited to the low frequency range of 0 – 4 Hz. 

In [14], a combined model of CNN with GRU is proposed to predict depression 

from a public dataset (MODMA dataset [15]) by using brain maps containing frequency 

and temporal data as input. A prediction accuracy of 89.63% has been achieved on the 

open-source dataset. It has been concluded that a greater number of patients and other 

types of data rather than EEG are required to achieve higher accuracy rates. 

In [16], authors introduced a graph convolutional network for classification of 

depressed patients from resting state EEG data. Hjorth parameters and power spectral 

density features are extracted from EEG signals to be used as input to the network. An 

accuracy rate of 96.50% has been achieved with the proposed model with a 10-fold cross 

validation strategy. 

In [17], a CNN network with two separate convolution lines connected at the end of 

convolution layers is proposed to classify three categories of medicated patients, 

unmedicated patients and normal subjects. An accuracy of 79.08% has been achieved with 

a 10-fold cross validation. 

1.5 Original Contributions 

The severity level of major depressive disorder can be classified as mild, moderate 

and severe [1]. Identifying severity level of depression at early stages can provide more 

specialized treatment to patients and prevent deaths related to major depressive disorder. 

Therefore, this study investigates the performance of CNN and RNN for classifying the 

severity level of depression. To achieve this goal, preprocessed EEG data and optimal 

features identified from literature are used to train deep neural network models and 
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compared with different data formulations. 

1.6 Organization of the Thesis 

In Section 2, dataset, preprocessing steps, and input representation of dataset fed 

into a classification model based on CNN and RNN are explained. 

In Section 3, results obtained from different input representations fed into the 

proposed CNN model are presented. 

In Section 4, the results are discussed, and further research objectives are 

addressed. 
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2. MATERIALS AND METHODS 

In this study a test-retest dataset which includes resting state and cognitive state 

EEG recordings has been used to classify subjects having mild depression and no 

depression [18]. A flowchart of the procedures conducted in this study has been shown in 

Figure 2.1. 

 

 

Figure 2.1: Procedures in this study 

 

2.1 Dataset 

Participants selected for the data acquisition have no psychological or neurological 

disorder diagnosis and no psychiatric drugs taken within 3 months prior to the recording. 

EEG data has been recorded from 60 participants in 3 sessions. First two sessions 

are conducted 90 minutes apart from each other in their first visit and last session is 
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conducted after one month of their first visit. 

2.1.1 Test Procedure 

In each session two resting state (eyes open and eyes closed) tasks and three 

cognitive (memory, music and subtraction) tasks have been requested from participants to 

accomplish. Before EEG recordings, participants were informed of procedures they are 

going to take and filled SDS, SAS and ESS. Then, participants were directed to EEG 

recording room to attend resting state and cognitive tasks (Figure 2.2). 

 

 

Figure 2.2: Procedure of experiment [18] 

 

In resting state tasks, participants are asked to sit quietly in the recording room for 

five minutes both in eyes closed and eyes open states. 

In memory task, participants were instructed to subtract repeatedly by 7 beginning 

from 5000. Then, they are asked to sing their favorite song in their heads. Lastly, they were 

requested to recall their day until they arrive at the laboratory. Between each cognitive 

task, participants filled mini NYC-Q. 

 

2.1.2 EEG Acquisition 

For acquisition of EEG data, an elastic cap with 64 electrodes according to the 

international 10-20 placement system is being used. Two channels were used to record 



 

25 

EOC to detect and filter eye movements affecting other channels and one channel as 

reference. The recordings were sampled at 500 Hz. 61-channel of EEG data for each task 

and subject per session is collected (Figure 2.3). 

 

 

Figure 2.3: Channel locations of EEG data 

2.2 Data Selection 

Table 2.1: SDS Score Ranges 

Severity of Depression SDS Score Range 

Normal 25-43 

Mild 50-59 

Moderate 60-69 

Severe 70 and over 

 

According to [19], for classifying severity of depression, SDS scores of subjects are 

divided into 4 groups (Table 2.1). 

Due to the insufficient number of moderate and severe subjects, only normal and 

mild subjects were selected for classification (Figure 2.4). 
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Figure 2.4: Histogram of all eyes closed sessions grouped by severity of depression 

 

2.3 Data Preparation 

Before classification step, EEG data has been preprocessed and two types of input 

data are prepared for the deep learning model (Figure 2.5). 

 

 

Figure 2.5: Flowchart of preprocessing steps 

 

2.3.1 Preprocessing 

At the beginning, the first 30 seconds of EEG data of all participants has been cut 
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from original data to have more stable EEG signals. The remaining data has been filtered at 

cutoff frequencies between 0.15 Hz and 45 Hz and thus 50 Hz power line and high 

frequency noise have been removed. Then, the data is resampled to 256 Hz. Finally, the 

EEG signals have been split into fixed length of epochs. Different epoch lengths are 

considered to examine the effect of epoch lengths and overlapping ratios on the prediction 

rate of the models (Figure 2.6). 

 

Figure 2.6: Fixed length epoch extraction with overlapping ratios 

 

Authors in [20] specified PLI and C0-complexity as optimal features to detect 

depression from resting state EEG data by using feature selection methods. Therefore, PLI 

and C0-complexity are used separately and combined to form the input of the deep 

learning model. The features are extracted from fixed length epochs of EEG data and 

resampled EEG data. 

2.3.2 C0-Complexity 

C0-complexity is an indicator to the randomness of a time series signal [21]. It is 

the proportion of random activity to total complex activity. It can be applied both to short 

and long sequences of individual signals. The following steps are conducted to extract C0-

complexity from each EEG signal of recordings.  

The FFT of the EEG signal 𝑥(𝑛) is extracted as follows 
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𝑋(𝑘) =
1

𝑁
∑  

𝑁−1

𝑛=0

𝑥(𝑛)𝑒−𝑗(
2𝑘𝜋𝑛

𝑁
)
 . 

 

Then, the mean square value of each datapoint in FFT is calculated: 

𝐺𝑁 =
1

𝑁
∑  

𝑁−1

𝑘=0

|𝑋(𝑘)|2 . 

Mean square value of datapoints is then used as a threshold to filter out datapoints. 

The output of the filter is given by 

𝑌(𝑘) = {
𝑋(𝑘) |𝑋(𝑘)|2 > 𝐺𝑁

0 |𝑋(𝑘)|2 ≤ 𝐺𝑁

   . 

Finally, filtered FFT datapoints are then transformed to time domain 𝑦(𝑛) and C0-

complexity can be calculated as follows: 

𝐶0 =
∑  𝑁−1

𝑛=0   |𝑥(𝑛) − 𝑦(𝑛)|2

∑  𝑁−1
𝑛=0   |𝑥(𝑛)|2

   . 

Calculated C0-complexity values are used as an input vector for the deep learning 

model. 

2.3.3 PLI 

PLI is a functional connectivity feature that values between 0 and 1 to indicate 

difference in phases of two signals [22]. PLI is calculated in each fixed length epochs 

without overlapping according to its proposed equation and mean value of PLI calculated 

for each channel pair is used to construct 2D connectivity matrix: 

𝑃𝐿𝐼 = |⟨sign [Δ𝜙(𝑡𝑘)]⟩| 

Δ𝜙 denotes the phase difference between two signals at a frequency. 

Extracted 2D connectivity matrix is reshaped into input vector for the deep learning 

model. 
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2.4 Deep Learning Models 

Deep learning models used to train preprocessed EEG data and feature vectors are 

based on a CNN named DeprNet [23] and a RNN with LSTM layers. 

DeprNet consists of 5 convolutional and max pooling layer pairs and 2 hidden 

dense layers are used to classify depressed patients and normal control subjects (Figure 

2.7). Convolution kernel sizes are adjusted to convolve only individual channels and at the 

end of convolutional layers and max pooling layers, only the size of the data point axis is 

reduced. After convolutional and max pooling layers, all extracted 2D maps are reshaped 

into 1D and used as input to the fully connected layers to classify normal and depressed 

subjects. 

The input shape of the model is changed with varying fixed epoch sizes of the 

preprocessed EEG data and 1D feature vectors. In output layer, 2 neurons are used to 

classify mild and normal subjects using softmax as activation and categorical-cross entropy 

as loss function related to softmax activation function. 

 

 

Figure 2.7: Overview of the CNN model 

 

RNN used by preprocessed EEG data and feature vectors consists of 2-layer LSTM. 

The output of LSTM layers is reshaped into 1D vector and fed into 3 fully connected 

layers. The output of the network has 2 neurons, in which softmax activation is applied to 

classify data as normal or mild depressed. 
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2.5 Training 

Training a deep learning model requires to feed training data multiple times to 

adjust weight parameters inside the model. One pass of the whole training set through the 

model is defined as epoch, differing from epoching an EEG data to have multiple data 

from a long sequence recording. Update of the model weights are done in batches, feeding 

a limited amount of data from training dataset to calculating an average of loss values and 

then updating weights of the model. Trainings with preprocessed EEG data are used a 

batch size of 32 and 100 epochs. Trainings with extracted features are used a batch size of 

4 to maintain multiple learning steps in one pass of selected dataset. 

 

 

Figure 2.8: K-fold cross validation 

 

5-fold cross validation is being used to train the deep learning model. Subjects in 

one session are split into training and validation sets, where each fold consists of a 

different validation set (Figure 2.8). Accuracy rates calculated in validation step are 

averaged and compared with different input formulations and networks. 

In all networks, Adam optimizer is used, and all networks have 2 output neurons 

and softmax activation functions to classify subjects as normal or mild. Categorical cross-

entropy is selected as the loss function of networks.   
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3. RESULTS 

In this study, the efficiency of the proposed deep learning models with different 

inputs formulations are investigated and compared. Here, different adjustments such as 

overlapping ratio, EEG epoching length are considered. The model and the input form 

delivered the best performance are obtained. 

 

3.1 Classification with Preprocessed EEG Data 

In the last step of preprocessing, EEG data is split into fixed length epochs with 

different overlapping ratios. The split EEG data increases the amount of data to train and 

validate the deep learning model. The length of epochs and the resampling frequency affect 

the number of datapoints fed into neural networks. For each epoch length and resampling 

frequency, the number of datapoints of the combinations at 256 Hz are given in Table 3.1. 

 

Table 3.1: Epoch lengths and corresponding data points 

Epoch Length (seconds) Data Points 

2 512 

4 1024 

6 1536 

8 2048 

 

The combinations of epoch lengths and overlapping ratios are used to train and 

validate DeprNet (Table 3.1). It is observed that epoch duration of 4 and overlapping ratio 

of 0.0 provides the best accuracy value of 76.9% (Figure 3.1). 
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Figure 3.1: Accuracy heatmap of epoch and overlapping combinations 

 

3.1.1 CNN with min-max Normalization 

Using min-max normalization, data points epoch-overlapping combinations are 

scaled between values -1 and 1. All channels are used together to perform the 

normalization of each datapoint. Minimum and maximum values are chosen to represent 

negative and positive voltage values of datapoints. 

DeprNet is used as the CNN to predict normal and mild depressed subjects (Table 

3.2).  

 

Table 3.2: DeprNet architecture for 4 seconds, 256 Hz input data 

# Layer Output 

Shape 

# Maps Kernel 

Size 

Stride 

Size 

Activation 

1 Input 61 x 1024 128 - - - 

2 Convolution 2D 61 x 1020 128 1 x 5 1 x 1 Leaky ReLU 

3 Batch Normalization 61 x 1020 128 -  - 

4 Max Pooling 2D 61 x 510 128 1 x 2 1 x 2 - 

5 Convolution 2D 61 x 506 64 1 x 5 1 x 1 Leaky ReLU 

6 Batch Normalization 61 x 506 64 - - - 

7 Max Pooling 2D 61 x 253 64 1 x 2 1 x 2 - 

8 Convolution 2D 61 x 249 64 1 x 5 1 x 1 Leaky ReLU 
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9 Batch Normalization 61 x 249 64 - - - 

10 Max Pooling 2D 61 x 124 64 1 x 2 1 x 2 - 

11 Convolution 2D 61 x 122 32 1 x 3 1 x 1 Leaky ReLU 

12 Batch Normalization 61 x 122 32 - - - 

13 Max Pooling 2D 61 x 61 32 1 x 2 1 x 2 - 

14 Convolution 2D 61 x 60 32 1 x 2 1 x 1 Leaky ReLU 

15 Batch Normalization 61 x 60 32 - - - 

16 Max Pooling 2D 61 x 30 32 1 x 2 1 x 2 - 

17 Flatten 58560 - - - - 

18 Dense 16 - - - Leaky ReLU 

19 Dense 8 - - - Leaky ReLU 

20 Output 2 - - - Softmax 

 

Preprocessed EEG data of epoch and overlapping variations are fed into CNN. The 

accuracy heatmap is obtained and presented in Figure 3.2. 

 

Figure 3.2: Accuracy heatmap with min-max normalization for DeprNet 

 

3.1.2 LSTM with min-max Normalization 

In literature, LSTMs are used to predict depression from EEG data. In this study, 2-

layered LSTM network with fully connected layers are used to examine the effect of 
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various epoch and overlapping combinations (Table 3.3). 

 

Table 3.3: LSTM network layers 

Layer Output Shape Activation 

Input 61 x # Data Points - 

LSTM 61 x 8 Tanh 

LSTM 61 x 1 Tanh 

Flatten 61 - 

Dense 32 Leaky ReLU 

Dense 16 Leaky ReLU 

Dense 8 Leaky ReLU 

Output 2 Softmax 

 

Preprocessed EEG data with different epoch and overlapping values are fed into the 

LSTM network. Outputs of LSTM layers are reshaped into 1D and transmitted into fully 

connected layers. The accuracy heatmap of different epoch lengths and overlapping ratios 

are shown in Figure 3.3.  

 

 

Figure 3.3: Accuracy heatmap for the 2-layer LSTM 

 

It is observed that with increasing epoch duration and decreasing overlapping ratio, 

the accuracy increases. 
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3.2 Classification with Features 

Features are extracted per subject. Therefore, there is a smaller amount of data in 

training and validation dataset.  

PLI and C0-complexity features are used individually and combined to test 

classification performances of DeprNet and DeprNet with LSTM networks.  

 

3.2.1 PLI Frequency Variation 

PLI is extracted from combinations of EEG channel pairs to create a connectivity 

matrix (Figure 3.4). The lower half triangle of PLI connectivity matrix is reshaped to be 

used as 1D vector input for the deep neural networks (Figure 3.4). 

 

 

Figure 3.4: 2D RGB representation of PLI feature of 61-channel EEG data 

 

PLI features extracted at different frequencies from 2 to 32 Hz are trained with 

DeprNet to investigate the impact of frequency (Figure 3.5). 
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Figure 3.5: Accuracy of DeprNet using PLI features at different frequencies 

 

It is observed that PLI features extracted from 16Hz and 22Hz are good candidates 

to use with C0-complexity features. 

3.2.2 C0-Complexity Variations 

C0-complexity is extracted from fixed length epochs of 2s, 4s, 8s and 40s for each 

EEG channel. Extracted C0-complexities are reshaped into 1D vector and used to train 

DeprNet and to compare accuracies with different epoch lengths of EEG channels. 

Accuracy rates obtained with different epoch lengths are shown in Table 3.4. 

Table 3.4: Accuracies using C0-complexity at different epoch lengths 

Epoch Length (s) Accuracy 

2 0.7168 

4 0.7862 

8 0.8334 

40 0.7612 

 

According to accuracy results, combinations of C0-complexity features from all 

tested ranges and PLI features at 16Hz and 22Hz are used to train deep neural networks. 
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3.2.3 PLI and C0-Complexity with CNN 

PLI and C0-Complexity features are concatenated and fed into DeprNet. 

Accuracies are shown in a heatmap of PLI frequencies and C0-complexity epoch lengths 

(Figure 3.6). 

 

Figure 3.6: Accuracy heatmap of DeprNet using PLI and C0-complexity 

 

It is observed that an accuracy of 83.3% is achieved by 16Hz of PLI and 8s epoch 

duration of C0-complexity. 

3.2.4 PLI and C0-Complexity with CNN-LSTM 

Further examination of PLI and C0-complexity is achieved by adding 1 LSTM 

layer between convolution layers and fully connected layers of DeprNet (Table 3.5).  
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Table 3.5: C0-complexity calculated for LSTM layer of 4s epoch 

Layer Output Shape Activation 

After convolution and max pool layers 

Flatten 5856 - 

Reshape 5856 x 1 - 

LSTM 5856x 2 ReLU 

Flatten 11712 - 

Dense 16 Leaky ReLU 

Dense 8 Leaky ReLU 

Output 2 Softmax 

 

Combined features are fed into the network as 1D vector and accuracy rates 

obtained for different frequency values of PLI and epoch lengths of C0-complexity are 

given in Figure 3.7. 

 

 

Figure 3.7: Accuracy heatmap of Deprnet with LSTM using combined features 

 

It is observed that 16Hz and 22Hz of PLI with epoch length of 4s achieved the best 

3 accuracy rates.  
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4. DISCUSSION AND CONCLUSION 

In this study, the promising potential of DNNs in addressing the limitations of 

traditional depression diagnosis by leveraging electroencephalography (EEG) data with 

different input representations are examined. 

Using a combination of extracted features from preprocessed EEG data, C0-

complexity, combined input representation of C0-complexity and PLI yield the highest 

accuracy in identifying normal and mild depressed subjects. This suggests that capturing 

different aspects of brain activity provides a more comprehensive picture of the disorder. 

Furthermore, building different DNN structures trained to extract specific features, which 

has adjustable parameters, such as frequency of PLI, can lead to improved results. This 

approach can lead to more accurate and objective diagnosis of depression, enabling earlier 

intervention and improved treatment outcomes. 

Calculated features are used as a 1D vector to train DNN models. Therefore, 

locations of features are not included in this study. Adding positional information of 

collected features from the brain can be examined. 

Almost all areas of the cortex are affected by major depression disorder [24]. 

Therefore, in this study all channels of EEG data are used to classify subjects. Reducing 

number of channels by using channels associated with specific areas of the brain can be 

performed to observe the classification performance of DNNs. 

Further research is needed to improve the classification performance of DNN 

models by examining different DNN structures. Additionally, exploring the interpretability 

of DNN models would provide valuable insights into the EEG signal patterns related to 

depression severity. 

In this study, training of DNN models is based on self-rating scores of subjects. 

Using datasets with both self-rating score inventories and professional diagnosis of 

severity level of depression can provide more accurate results. Moreover, in this dataset, 

the number of subjects in each severity level of depression is not evenly distributed. An 

evenly distributed dataset of severity level of depression can enable a multi-class 

classification. 
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The classification of subjects is accomplished by only EEG data. Additional inputs 

from different sources such as facial expressions of subject during the EEG recording can 

be used for the classification. 
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