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Breast cancer is one of the most common invading cancers in women. Analyzing breast cancer is nontrivial and may lead to
disagreements among experts. Although deep learning methods achieved an excellent performance in classification tasks in-
cluding breast cancer histopathological images, the existing state-of-the-art methods are computationally expensive and may
overfit due to extracting features from in-distribution images. In this paper, our contribution is mainly twofold. First, we perform
a short survey on deep-learning-based models for classifying histopathological images to investigate the most popular and
optimized training-testing ratios. Our findings reveal that the most popular training-testing ratio for histopathological image
classification is 70%: 30%, whereas the best performance (e.g., accuracy) is achieved by using the training-testing ratio of 80%: 20%
on an identical dataset. Second, we propose a method named DenTnet to classify breast cancer histopathological images chiefly.
DenTnet utilizes the principle of transfer learning to solve the problem of extracting features from the same distribution using
DenseNet as a backbone model. The proposed DenTnet method is shown to be superior in comparison to a number of leading
deep learning methods in terms of detection accuracy (up to 99.28% on BreaKHis dataset deeming training-testing ratio of 80%:
20%) with good generalization ability and computational speed. The limitation of existing methods including the requirement of
high computation and utilization of the same feature distribution is mitigated by dint of the DenTnet.

1. Introduction

Breast cancer is one of the most familiar invasive cancers in
women worldwide. Nowadays, it is overtaking lung cancer as
the world’s chiefly regularly diagnosed cancer [1]. The di-
agnosis of breast cancer in the early stages significantly
decreases the mortality rate by allowing the choice of ade-
quate treatment. With the onset of pattern recognition and
machine learning, a good deal of handcrafted or engineered

features-based studies have been proposed for classifying
breast cancer histology images. In image classification,
feature extraction is a cardinal process used to maximize the
classification accuracy by minimizing the number of selected
teatures [2-5]. Deep learning models have the power to
automatically extract features, retrieve information, and take
in the latest intellectual depictions of data. Thus, they can
solve the problems of common feature extraction methods.
The automated classification of breast cancer
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histopathological images is one of the important tasks in
CAD (Computer-Aided Detection/Diagnosis) systems, and
deep learning models play a remarkable role by detecting,
classifying, and segmenting prime breast cancer histo-
pathological images. Many researchers worldwide have
invested appreciable efforts in developing robust computer-
aided tools for the classification of breast cancer histo-
pathological images using deep learning. At present, in this
research arena, the most popular deep learning models
proposed in the literature are based on CNNs [6-66].

A pretrained CNN model, for example, DenseNet [67],
utilizes dense connection between layers, reduces the
number of parameters, strengthens propagation, and en-
courages feature reutilization. This improved parameter
efficiency makes the network faster and easier to train.
Nevertheless, a DenseNet [67] has an excessive connection,
as all its layers have a direct connection to each other. Those
lavish connections have been shown to decrease the com-
putational and parameter efficiency of the network. In ad-
dition, features extracted by a neural network model stay in
the same distribution. Therefore, the model might overfit as
the features cannot be guaranteed to be sufficient enough.
Besides, a CNN-training task demands a large number of
training samples; otherwise, it leads to overfitting and re-
duces generalization ability. However, it is arduous to secure
labeled breast cancer histopathological images, which se-
verely limits the classification ability of CNN [27].

On the other hand, the use of transfer learning can
expand prior knowledge about data by including informa-
tion from a different domain to target future data [68].
Consequently, it is a good idea to extract data from a related
domain and then transfer those extracted data to the target
domain. This way, resources can be saved and the efficiency
of the model can be improved during training. A great
number of breast cancer diagnosis methods based on
transfer learning have been proposed and implemented by
distinct researchers (e.g., [57-66]) to achieve state-of-the-art
performance (e.g., ACC, AUC, PRS, RES, and FIS) on
different datasets. Yet, the limitations of such performance
indices, algorithmic assumptions, and computational
complexities are indicating a further development of smart
algorithms.

In this paper, we aim to propose a novel neural-network-
based approach called DenTnet (see Figure 1) for classifying
breast cancer histopathological images by taking the benefits
of both DenseNet [67] and transfer learning [68]. To address
the cross-domain learning problems, we employ the prin-
ciple of transfer learning for transferring information from a
related domain to the target domain. Our proposed DenTnet
is anticipated to increase the accuracy of breast cancer
histopathological images classification and accelerate the
learning process. The DenTnet demonstrates better per-
formance over its alternative CNN and/or transfer-learning-
based methods (e.g., see Table 1) on the same dataset as well
as training-testing ratio.

To find the best performance scores of deep learning
models for classifying histopathological images, contrasting
training-testing ratios were applied for divergent models on
the same dataset. What would be the most popular and/or
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optimized training-testing ratios to classify histopathological
images considering existing state-of-the-art deep learning
models? There exist many surveys enriched to sufficient
contemporary methods and materials with systematic deep
discussion of automatic classification of breast cancer his-
topathological images [68-72]. Nevertheless, to the best of
our knowledge, the direct or indirect indication of this
question was not reported in any of the previous studies.
Henceforth, we perform a succinct survey to investigate this
question. Our findings include that the most popular
training-testing ratio for histopathological image classifi-
cation is 70%: 30%, whereas the best performance (accuracy)
is achieved by using the training-testing ratio of 80%: 20% on
the identical dataset.

In summary, the main contributions of this context are
as follows:

(i) Determine the most popular and/or optimized
training-testing ratios for classifying histopatho-
logical images using the existing state-of-the-art
deep learning models.

(ii) Propose a novel approach named DenTnet that
amalgamates both DenseNet [67] and transfer
learning technique to classify breast cancer histo-
pathological images. DenTnet is anticipated to
achieve high accuracy and fasten the learning
process due to its utilization of dense connections
from its backbone architecture (i.e., DenseNet [67]).

(iii) Determine the generalization ability of DenTnet and
the superiority measure considering nonparametric
statistical tests.

The rest of the paper is organized as follows: Section 2
hints some preliminaries; Section 3 surveys briefly the
existing deep models for histopathological image classifi-
cation and reports our findings; Section 4 depicts the ar-
chitecture of our proposed DenTnet and its implementation
details; Section 5 demonstrates the experimental results and
comparison on BreaKHis dataset [33]; Section 6 evaluates
the generalization ability of DenTnet; Section 7 discusses
nonparametric statistical tests, their reported results, and
reasons for superiority along with few hints of further study;
and Section 8 concludes the paper.

2. Preliminaries

Breast cancer is one of the oldest known kinds of cancer first
found in Egypt [73]. It is caused by the uncontrolled growth
and division of cells in the breast, whereby a mass of tissue
called a tumor is created. Nowadays, it is one of the most
terrifying cancers in women worldwide. For example, in
2020, there were 2.3 million women diagnosed with breast
cancer and 685000 deaths globally [74]. Early detection of
breast cancer can save many lives. Breast cancer can be
diagnosed in view of histology and radiology images. The
radiology images analysis can help to identify the areas,
where the abnormality is located. However, they cannot be
used to determine whether the area is cancerous [75]. On the
other hand, a biopsy is an examination of tissue removed
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FIGURE 1: Architecture of the proposed DenTnet.

TaBLE 1: Comparison of results of various methods using training-testing ratio of 80%: 20% on BreaKHis [33]. The best result is shown in
bold.

Year Method PRS RES F1S AUC ACC (%)
Togacar et al. [26] — — — — 97.56
2020 Parvin et al. [31] — — — — 91.25
Man et al. [36] — — — — 91.44
2021 Boumaraf et al. [63] — — — — 92.15
Soumik et al. [60] — — — — 98.97
Liu et al. [172] — — — — 96.97
2022 Zerouaoui and Idri [56] — — — — 93.85
Chattopadhyay et al. [174] — — — — 96.10

DenTnet [ours] 0.9700 0.9896 0.9948 0.99 99.28




from a living body to discover the presence, cause, or extent
of a disease (e.g., cancer). Biopsy is the only reliable way to
make sure if an area is cancerous [76]. Upon completion of
the biopsy, the diagnosis will be based on the qualification of
the histopathologists who determine cancerous regions and
malignancy degree [7, 75]. If the histopathologists are not
well trained, the histopathology or biopsy report can lead to
an incorrect diagnosis. Besides, there might be a lack of
specialists, which may cause keeping the tissue samples for
up to a few months. In addition, diagnoses made by un-
specialized histopathologists are sometimes difficult to
replicate. As if that were not enough of a problem, at times,
even expert histopathologists tend to disagree with each
other. Despite notable progress being reached by diagnostic
imaging technologies, the final breast cancer grading and
staging are still done by pathologists using visual inspection
of histological samples under microscopes.

As analyzing breast cancer is nontrivial and would get
down to disagreements among experts, computerized and
interdisciplinary systems can improve the accuracy of di-
agnostic results by reducing the processing time. The CAD
can help to assist doctors in reading and interpreting medical
images by locating and identifying possible abnormalities in
the image [69]. It is proclaimed that the utilization of CAD to
automatically classify histopathological images does not only
improve the diagnostic efficiency with low cost but also
provide doctors with more objective and accurate diagnosis
results [77]. Consequently, there is an adamant demand for
the CAD [78]. There exist several comprehensive surveys for
CAD based methods in the literature. For example, Zebari
et al. [71] provided a common description and analysis of
existing CAD systems that are utilized in both machine
learning and deep learning methods as well as their current
state based on mammogram image modalities and classi-
fication methods. However, the existing breast cancer di-
agnosis models take issue with complexity, cost, human-
dependency, and inaccuracy [73]. Furthermore, the limi-
tation of datasets is another practical problem in this arena
of research. In addition, every deep learning model demands
a metric to judge its performance. Explicitly, performance
evaluation metrics are the part and parcel of every deep
learning model as they indicate progress indices.

In the two following subsections, we discuss the com-
monly used datasets for classifying histopathological images
and the performance evaluation metrics of various deep
learning models.

2.1. Brief Description of Datasets. Accessing relevant images
and datasets is one of the key challenges for image analysis
researchers. Datasets and benchmarks enable validating and
comparing methods for developing smarter algorithms.
Recently, several datasets of breast cancer histopathology
images have been released for this purpose. Figure 2 shows a
sample breast cancer histopathological image from BreaK-
His [33] dataset of a patient who suffered from papillary
carcinoma (malignant) with four magnification levels: (a)
40x, (b) 100x (c) 200x, and (d) 400x [79]. The following list of
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FI1GURE 2: A sample breast cancer histopathological image [79] with
four magnification levels of (a) 40x, (b) 100x, (c) 200x, and (d) 400x.

datasets has been used in the literature as incorporated in
Table 2:

(i) BreaKHis [33] = It is considered as the most
popular and clinical valued public breast cancer
histopathological dataset. It consists of 7909
breast cancer histopathology images, 2480 benign
and 5429 malignant samples, from 82 patients
with different magnification factors (e.g., 40x,
100x, 200x, and 400x) [33].

(ii) Bioimaging2015 [122] = The Bioimaging2015
[122] dataset contained 249 microscopy training
images and 36 microscopy testing images in total,
equally distributed among the four classes.

(iii) ICIAR2018 [78] = This dataset, available as part
of the BACH grand challenge [78], was an ex-
tended version of the Bioimaging2015 dataset
[8, 122]. It contained 100 images in each of four
categories (i.e., normal, benign, in situ carcinoma,
and invasive carcinoma) [8].

(iv) BACH [78] = The database of BACH holds
images obtained from ICIAR2018 Grand Chal-
lenge [78]. It consists of 400 images with equal
distribution of normal (100), benign (100), in situ
carcinoma (100), and invasive carcinoma (100).
The high-resolution images are digitized with the
same conditions and magnification factor of 200x.
In this dataset, images have a fixed size of 2048 x
1536 pixels [175].

(v) TMA [99] = The TMA (Tissue MicroArray)
database from Stanford University is a public
resource with an access to 205161 images. All the
whole-slide images have been scanned by a 20x
magnification factor for the tissue and 40x for the
cells [176].

(vi) Camelyon [97] = The Camelyon (cancer me-
tastases in lymph nodes) was established based on
a research challenge dataset competition in 2016.
The Camelyon organizers trained CNNs on
smaller datasets for classifying breast cancer in
lymph nodes and prostate cancer biopsies. The
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training dataset consists of 270 whole-slide im-
ages; among them 160 are normal slides and 110
slides contain metastases [97].

(vii) PCam [121] = It is a modified version of the
Patch Camelyon (PCam) dataset, which consists
of 327680 microscopy images with 96 x 96-pixel
sized patches extracted from the whole-slide
images with a binary label hinting the presence of
metastatic tissue [8].

(viii) HASHI [129] = Each image in the dataset of
HASHI (high-throughput adaptive sampling for
whole-slide histopathology image analysis) [129]
has the size of 3002 x 2384 [161].

(ix) MIAS [85] = The Mammographic Image Anal-
ysis Society (MIAS) database of digital mam-
mograms [85] contains 322 mammogram images,
each of which has a size of 1024 x 1024 pixels with
PGM format [59].

(x) INbreast [92] = The INbreast database has a total
of 410 images collected from 115 cases (i.e., pa-
tients) indicating benign, malignant, and normal
cases having sizes of 2560 x 3328 or 3328 x 4084
pixels. It contains 36 benign and 76 malignant
masses [92].

(xi) DDSM [84] = The DDSM [84] dataset was col-
lected by the expert team at the University of South
Florida [84]. It contains 2620 scanned film mam-
mography studies. Explicitly, it involves 2620 breast
cases (i.e., patients) categorized in 43 different vol-
umes with average size of 3000 x 4800 pixels [48].

(xii) CBIS-DDSM [128] = The CBIS-DDSM [128] is
an updated version of the DDSM providing easily
accessible data and improved region-of-interest
segmentation [128, 146]. The CBIS-DDSM
dataset comprises 2781 mammograms in the
PNG format [49].

(xiii) CMTHis [37] = The CMTHis (Canine Mam-
mary Tumor Histopathological Image) [37]
dataset comprises 352 images acquired from 44
clinical cases of canine mammary tumors.

(xiv) FABCD [133] = The FABCD (Fully Annotated
Breast Cancer Database) [133] consists of 21
annotated images of carcinomas and 19 images of
benign tissue taken from 21 patients [130].

(xv) IICBU2008 [87] = The IICBU2008 (Image In-
formatics and Computational Biology Unit)
malignant lymphoma dataset contains 374 H&E
stained microscopy images captured using bright
field microscopy [21].

(xvi) VLAD [136] = The VLAD (Vector of Locally
Aggregated Descriptors) dataset [136] consists of
300 annotated images with resolution of 1280 x
960 [29].

(xvii) LSC [137] = The LSC (Lymphoma Subtype
Classification) [137] dataset has been prepared by
pathologists from different laboratories to create a
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real-world type cohort which contains a larger
degree of stain and scanning variances [137]. It
consists of 374 images with resolution of 1388 x
1040 [29].

(xviii) KimiaPath24 [126] = The official KimiaPath24
[126] dataset consists of a total of 23916 images
for training and 1325 images for testing. It is
publicly available. It shows various body parts
with texture patterns [41].

2.2. Performance Evaluation Metrics. Performance evaluation
of any deep learning model is an important task. An algorithm
may give very pleasing results when evaluated using a metric
(e.g., ACC), but it may give poor results when evaluated against
other metrics (e.g., F1S) [177]. Usually, we use classification
accuracy to measure the performance of deep learning algo-
rithms. But it is not enough to determine the model perfectly.
For truly judge any deep learning algorithm, we can use
nonidentical types of evaluation metrics including classifica-
tion ACC, AUC, PRS, RES, FIS, RTM, and GMN.

(i) ACC = It is normally defined in terms of error or
inaccuracy [178]. It can be calculated using the
following equation:

oo (100)(t, +1,) ’ 1)
tp+tn+fp+fn

where ¢, is true negative, t, is true positive, f, is
false positive, and f,, is false negative. Sometimes,
ACC and the percent correct classification (PCC)
can be used interchangeably.

(ii) PRS = Its best value is 100 and the worst value is
just 0. It can be formulated using the following
equation:

100)(¢t
s = 1) X P). (2)
tp+ fp
(iii) RES = It should ideally be 100 (the highest) for a
good classifier. It can be calculated using the fol-
lowing equation:

ES = (IL)(tp). (3)
t,+ fu
(iv) AUC = It is one of the most widely used metrics
for evaluation [177-179]. The AUC of a classifier
equals the probability that the classifier ranks a
randomly chosen positive sample higher than a
randomly chosen negative sample. The AUC varies
in value from 0 to 1. If the predictions of a model
are 100% wrong, then its AUC = 0.00; but if its
predictions are 100% correct, then its AUC = 1.00.

(v) F1S = It is the harmonic mean between precision
and recall. It is also called the F-score or F-mea-
sure. It is used in deep learning [177]. It conveys
the balance between the precision and the recall. It
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also tells us how many instances it classifies cor-
rectly. Its highest possible value is 1, which indi-
cates perfect precision and recall. Its lowest
possible value is 0, when either the precision or the
recall is zero. It can be formulated as

1/PRS+1/RES  t,+ f,+ f./2°

F1S = (4)

where PRS is the number of correct positive results
divided by the number of positive results predicted
with the classifier and RES is the number of correct
positive results divided by the number of all rel-
evant samples.

(vi) RTM = Estimating the RTM complexity of al-
gorithms is mandatory for many applications (e.g.,
embedded real-time systems [180]). The optimi-
zation of the RTM complexity of algorithms in
applications is highly expected. The total RTM can
prove to be one of the most important determi-
native performance factors in many software-in-
tensive systems.

(vii) GMN = It indicates the central tendency or typical
value of a set of numbers by considering the
product of their values instead of using their sum.
It can be used to attain a more accurate measure of
returns than the mean or arithmetic mean or
average. The GMN for any set of numbers
X1, X5, X3, .. .» X, can be defined as

1/m
GMN = (]‘[x,) = VImlx %% %, (5)

=1

(viii) MCC = The Matthews correlation coefficient
(MCQ) is used as a measure of the quality of binary
classifications, introduced by biochemist Brian
W. Matthews in 1975.

(ix) x= The metric of Cohen’s kappa (x) can be used to
evaluate binary classifications.

3. A Succinct Survey of State of the Art

This section deals with a summary of existing studies
apposite for the classification of breast cancer histo-
pathological images followed by a short discussion and
our findings.

3.1. Summary of Previous Studies. Table 2 provides a short
summary of previous studies carried out to classify breast
cancer from images. Experimental results of miscella-
neous deep models in the literature on publicly available
datasets demonstrated various degrees of accurate cancer
prediction scores. However, as AUC and ACC are the
most important metrics for breast cancer histopatho-
logical images classification [49], the experimental results
in Table 2 take them into account as the performance
indices.

Computational Intelligence and Neuroscience

3.2. Key Techniques and Challenges. The CNNs can be
regarded as a variant of the standard neural networks. In-
stead of using fully connected hidden layers, the CNNs
introduce the structure of a special network, which com-
prises so-called alternating convolution and pooling layers.
They were first introduced for overcoming known problems
of fully connected deep neural networks when handling high
dimensionality structured inputs, such as images or speech.
From Table 2, it is noticeable that CNN's have become state-
of-the-art solutions for breast cancer histology images
classification. However, there are still challenges even when
using the CNN-based approaches to classify pathological
breast cancer images [16], as given below:

(i) Risk of overfitting = The number of parameters of
CNN increases rapidly depending on how large the
network is, which may lead to poor learning.

(ii) Being cost-intensive = To get a huge number of
labeled breast cancer images is very expensive.

(iii) Huge training data = CNNs need to be trained
using a lot of images, which might not be easy to
find considering that collecting real-world data is a
tedious and expensive process.

(iv) Performance degradation = Various hyper-
parameters have a significant influence on the per-
formance of the CNN model. The model’s
parameters need to be tuned properly to achieve a
desirable result [75], which usually is not an easy task.

(v) Employment difficulty = In the process of training
CNN model, it is usually inevitable to rearrange the
learning rate parameters to get a better performance.
This makes it arduous for the algorithm to use in real-
life applications by nonexpert users [181].

Many methods had been proposed in the literature
considering the aforementioned challenges. In 2012, Alex-
Net [81] architecture was introduced for ImageNet Chal-
lenge having error rate of 16%. Later various variations of
AlexNet [81] with denser network were introduced. Both
AlexNet [81] and VGGNet [98] were the pioneering works
that demonstrated the potential of deep neural networks
[182]. AlexNet was designed by Alex Krizhevsky [81]. It
contained 8 layers; the first 5 were convolutional layers,
some of them followed by max-pooling layers, and the last 3
were fully connected layers [81]. It was the first large-scale
CNN architecture that did well on ImageNet [183] classi-
fication. AlexNet [81] was the winner of the ILSVRC [183]
classification, the benchmark in 2012. Nevertheless, it was
not very deep. SqueezeNet [184] was proposed to create a
smaller neural network with fewer parameters that could be
easily fit into computer memory and transmitted over a
computer network. It achieved AlexNet [81] level accuracy
on ImageNet with 50x fewer parameters. It was compressed
to less than 0.5 MB (510x smaller than AlexNet [81]) with
model compression techniques. The VGG [98] is a deep
CNN used to classify images. The VGGI9 is a variant of
VGG which consists of 19 layers (i.e., 16 convolution layers
and 3 fully connected layers, in addition to 5 max-pooling
layers and 1 SoftMax layer) [98]. There exist many variants of
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VGG [98] (e.g., VGG11, VGG16, VGG1Y, etc.). VGG19 has
19.6 billion FLOPs (floating point operations per second).
VGG [98] is easy to implement but slow to train. Nowadays,
many deep-learning-based methods are implemented on
influential backbone networks; among them, both DenseNet
[67] and ResNet [75] are very popular. Due to the longer
path between the input layer and the output layer, the in-
formation vanishes before reaching its destination. Dense-
Net [67] was developed to minimize this effect. The key base
element of ResNet [75] is the residual block. DenseNet [67]
concentrates on making the deep learning networks move
even deeper as well as simultaneously making them well
organized to train by applying shorter connections among
layers. In short, ResNet [75] adopts summation, whereas
DenseNet [67] deals with concatenation. Yet, the dense
concatenation of DenseNet [67] creates a challenge of de-
manding high GPU (Graphics Processing Unit) memory
and more training time [182]. On the other hand, the
identity shortcut that balances training in ResNet [75] curbs
its representation dimensions [182]. Compendiously, there
is a dilemma in the alternative between ResNet [75] and
DenseNet [67] for many applications in terms of perfor-
mance and GPU resources [182].

3.3. Our Findings. Although various deep learning models in
Table 2 often achieved pretty good scores of AUC and ACC,
the models demand a large amount of data but breast cancer
diagnosis always suffers from a lack of data. To adopt

(Totalnumbero f papersuse da training — testingratio) (100)

13

artificial data is a tentative solution of this issue, but the
determination of the best hyperparameters is extremely
difficult. Besides efficient deep learning models, the datasets
themselves have some limitations, for example, overinter-
pretation, which cannot be diagnosed using typical evalu-
ation methods based on the ACC of the model. Deep
learning models trained on popular datasets (e.g., BreaKHis
[33]) may suffer from overinterpretation. In overinterpre-
tation, deep learning models make confident predictions
based on details that do not make any sense to humans (e.g.,
promiscuous patterns and image borders). When deep
learning models are trained on datasets, they can make
apparently authentic predictions based on both meaningful
and meaningless subtle signals. This effect, eventually, can
reduce the overall classification performance of deep models.
Most probably, this is one of the reasons why any state-of-
the-art deep learning model in the literature for classifying
breast cancer histopathological images (see Table 2) could
not show an ACC of 100%.

In addition, the training-testing ratio can regulate the
performance of a deep model for image classification. We
wish to determine the most popular and/or optimized
training-testing ratios for classifying histopathological im-
ages using Table 2. To this end, we have calculated the usage
frequency of the training-testing ratio (i.e., percentage of the
number of papers that used the same ratio) by considering
data in Table 2 and the following equation:

Usage frequency (%) =

Figure 3 demonstrates the frequency of usage of
training-testing ratio considering data in Table 2. From
Figure 3, it is noticeable that the most popular training-
testing ratio for histopathological image classification is
70%: 30%. The second-best used training-testing ratio is
80%: 20%, followed by 90%: 10%, 75%: 25%, 50%: 50%,
and so on. Figure 4 presents the GMN of ACC for the
most frequently used training-testing ratios considering
data in Table 2. It shows a different history; in terms of
ACC, the rate of 80%: 20% became the best option for the
training-testing ratio to classify histopathological im-
ages. Explicitly, the GMN of ACC formed like a Gaussian
shaped curve and the ratio of 80%: 20% owned its highest
peak. To cut a long story short, by considering ACC, the
training-testing ratio of 80%: 20% became the finest and
the optimal choice for classifying histopathological
images.

4. Methods and Materials

This section explains in detail our proposed DenTnet model
and its implementation. Figure 5 demonstrates a general
flowchart of our methodology to classify breast cancer
histopathological images automatically.

Sumo f papersbothuse da ndu nuse dt hesametraining — testingratio”

(6)

4.1. Architecture of Our Proposed DenTnet. The architecture
of our proposed DenTnet is shown in Figure 1, which
consists of four different blocks, namely, the input volume,
training from scratch, transfer learning, and fusion and
recognition.

4.1.1. Input Volume. The input is a 3D RGB (three-di-
mensional red, green, and blue) image with a size of
224 x 224, that is, 224 x 224 x 3.

4.1.2. Training from Scratch. Initially, features are extracted
from the input images by feeding the input to the con-
volutional layer. The convolution (conv) layers contain a set
of filters (or kernels) parameters, which are learned
throughout the training. The size of the filters is usually
smaller than the actual image, where each filter convolves
with the image and creates an activation map. Thereafter, the
pooling layer progressively decreases the spatial size of the
representation for reducing the number of parameters in the
network. Instead of differentiable functions such as sigmoid
and tanh, the network utilizes the ReLU as an activation
function. Finally, the extracted features or the output of the
last layer from the training from scratch block is then
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FIGURE 3: Determination of the most popular training-testing
ratios using data from Table 2.
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FIGURe 4: GMN of ACC for the most popular training-testing
ratios deeming data from Table 2.

amalgamated with the features extracted from the transfer
learning approach. Figure 1 includes the design of the
DenseNet [67] architecture used to extract the feature using
the learning-from-scratch approach.

4.1.3. Transfer Learning. In transfer learning, given that a
domain & consists of feature space 2 and a marginal
probability distribution P (X), where X = x,, x,, ..., x,€€X,
and a task I consists of a label space % and an objective
predictive function f &' — %, the corresponding label
f (x) of a new instance x is predicted by function f, where
the new tasks denoted by 7 = %, f (x) are learned from the
training data consisting of pairs x; and y;, where x; € X and
y; € %¥. When utilizing the learning-from-scratch approach,
the extracted features stay in the same distribution. To solve
this problem, we amalgamated both learning-from-scratch
and the transfer learning approach. The learned parameters
are further fine-tuned by retraining the extracted features.
This is anticipated to expand the prior knowledge of the
network about the data, which might improve the efficiency
of the model during training, thereby accelerating the
learning speed and also increasing the accuracy of the model.
As shown in Figure 1, there is a connection between the
blocks of the input volume and transfer learning. The
transfer learning approach extracted features from the
ImageNet [168] weights. The weight is the parameters (in-
cluding trainable and nontrainable) learned from the
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FiGure 5: Flowchart of our methodology to classify breast cancer
histopathological images.

ImageNet [168] dataset. Since transfer learning involves
transferring knowledge from one domain to another, we
have utilized the ImageNet weight as the models developed
in the ImageNet [168] classification competition are mea-
sured against each other for performance. Henceforth, the
ImageNet weight provides a measure of how good a model is
for classification. Besides, the ImageNet weight has already
showed a markedly high accuracy [185]. The extracted
features are then used by the network before being passed to
the fusion and recognition block, where the features are
amalgamated with the extracted features from the learning-
from-scratch block for recognition.

4.1.4. Fusion and Recognition. The extracted features based
on the ImageNet weights are then amalgamated with the
features extracted by the block of training from scratch. A
global average pooling is performed. Dropout technique
helps to prevent a model from overfitting. It is used with
dense fully connected layers. The fully connected layer
compiles the data extracted by previous layers to form the
final output. The last step passes the features through the
fully connected layer, which then uses SoftMax to classify the
class of the input images.

4.2. Implementation Details

4.2.1. Data Preparation. We have adopted data augmen-
tation, stain normalization, and image normalization
strategies to optimize the training process. Hereby, we have
explained each of them briefly.

4.2.2. Data Augmentation. Due to the limited size of the
input samples, the training of our DenTnet was prone to
overfitting, which caused low detection rate. One solution to
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alleviate this issue was the data augmentation, which gen-
erated more training data from the existing training set.
Dissimilar data augmentation techniques (e.g., horizontal
flipping, rotating, and zooming) were applied to datasets for
creating more training samples.

4.2.3. Stain Normalization. The breast cancer tissue slices
are stained by H&E to differentiate between nuclei stained
with purple color and other tissue structures stained with
pink and red color to help pathologists analyze the shape of
nuclei, density, variability, and overall tissue structure [186].
The H&E staining variability between acquired images exists
due to the different staining protocols, scanners, and raw
materials. This is a common problem with histological image
analysis. Therefore, stain normalization of H&E-stained
histology slides was a key step for reducing the color var-
iation and obtaining a better color consistency prior to
feeding input images into the DenTnet architecture. Dif-
ferent techniques are available for stain normalization in
histological images. We have considered Macenko technique
[187] due to its promising performance in many studies to
standardize the color intensity of the tissue. This technique
was based on a singular value decomposition. A logarithmic
function was used to adaptively transform color concen-
tration of the original histopathological image into its optical
density (OD) image as OD = —log (I/I;), where OD hints
the matrix of optical density values, I belongs to the image
intensity in red-green-blue space, and I, addresses the il-
luminating intensity incident on the histological sample.

4.2.4. Intensity Normalization. Intensity normalization was
another important preprocessing step. Its primary aim was
to get the same range of values for each input image before
feeding to the DenThet. It also speeded up the convergence
of DenTnet. Input images were normalized to the standard
normal distribution by min-max normalization (i.e., using
one of the most popular ways to normalize data) to the
intensity range of [0, 1], which can be computed as
x ) _ X ~ Xmin ,

normalized Xax — Xomin (7)
where x, x.;,, and x,,, indicate pixel, minimum, and
maximum intensity values of the input image, respectively.

4.2.5. Hardware and Software Requirements. DenTnet was
implemented using the TensorFlow and Keras framework
[188, 189] and coded in Python using Jupyter Notebook on a
Kaggle Private Kernel. The experiment was performed on a
machine with the following configuration: Intel® Xeon®
CPU @ 2.30 GHz with 16 CPU Cores, 16 GB RAM, and
NVIDIA Tesla P100 GPU. We implemented and trained
everything on the cloud using Kaggle GPU hours.

4.2.6. Training and Testing Setup. The dataset was divided in
a 80%: 20% ratio, where 80% was used for training and the
remaining 20% was used for testing. The data used for testing
were kept isolated from the training set and never seen by the
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model during training. To evaluate the images classification,
we have computed the recognition rate at the image level
over the two different classes: (i) correctly classified images
and (i) the total number of images in the test set.

4.2.7. Training Procedure. In the training of a neural net-
work, a measure of error is required to compute the error
between the targeted output and the computed output of
training data known as the loss function. An optimization
algorithm is needed to minimize this function. We have
considered Adam optimizer [190] with numerical stability
constant epsilon = None, decay = 0.0, and AMSGrad = True.
Table 3 presents the hyperparameter values of the proposed
deep learning model. Learning rate (also referred to as step
size) signifies the proportion to which weights are updated.
A smaller value (e.g., 0.000001) slows down the learning
process during training, whereas a larger value (e.g., 0.400)
results in faster learning. We have considered a learning
rate of 0.001. The exponential decay rates of the first and
second moments were estimated to be 0.60 and 0.90, re-
spectively. To update the weights, the number of epochs
was set to 50 with 3222 steps per epoch and a batch size of
32. For the BreaKHis [33] dataset, we had a training sample
of 103104 images, with 12288 validation samples and 697
testing samples. The training process used 10-fold cross-
validation, where one of the samples was used to validate
the data and the remaining 9 samples were used to train the
DenTnet model. The fully connected layer used 1024 filters
with a dropout rate of 0.50. Finally, the last layer used two
filters with a SoftMax layer to classify the image into two
classes (e.g., benign and malignant). We have used cate-
gorical cross-entropy as the objective function to quantify
the difference between two probability distributions. The
whole training process took more than 4hours for the
breast cancer tissue images.

5. Experimental Results and Comparison on
BreaKHis Dataset

This section demonstrates the experimental results achieved
from classifying the breast cancer histopathology (i.e.,
BreaKHis [33]) images using our proposed DenTnet model.

Figure 6 shows the performance curves obtained during
the training of DenTnet using BreaKHis [33] dataset. A
normalized confusion matrix for the classification of breast
cancer test set images is illustrated in Figure 7(a). The main
reason for confusion between benign and malignant breast
tissues is their similar textures or expression. Henceforth,
careful description of texture is required to remove the
confusion between the two classes. For binary classification,
5 images only were misclassified, indicating that DenTnet
achieved the highest and best ACC of 99.28%. Figures 7(b)
and 7(c) demonstrate the ROC curve and precision-recall
curve for classification of benign and malignant images from
BreaKHis [33] dataset, respectively. AUC of 0.99, sensitivity
of 97.73%, and specificity 100% have been reported. Table 4
lists the complete classification report of DenTnet. It
achieved an ACC of 99.28%.
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TaBLE 3: List of hyperparameter values for the proposed deep learning model.

Model Hyperparameters
ode
Beta_1 Beta_2 Learning rate Epoch Batch size Epsilon Decay AMSGrad
DenTnet 0.60 0.90 0.001 50 32 None 0.0 True
ACC of Den Tnet Loss of Den Tnet
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FIGURE 6: (a) hints ACC and (b) shows loss charts of DenTnet during training.
Confusion Matrix Lo ROC
400 '
0.8
_ Benign Y
3 300 E
= 2 06
v B
g Z
[_4
200 s* 0.4
iz
Malignant 0.2
100
0.0
Benign Malignant 0.0 0.2 0.4 0.6 0.8 1.0
0 False positive rate
Predicte(.i label —— Roc curve (AUC=0.99)
ACC = 0.9928: Misclass = 0.0072
(a) (b)
1.0
0.9 T
S os
2 07
[=%}
0.6
0.5
0.0 0.2 0.4 0.6 0.8 1.0

Recall
(0)

FIGURE 7: () hints confusion matrix for benign and malignant classification, (b) shows ROC curve, and (c) demonstrates precision-recall
curve.
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TaBLE 4: Classification results by counting all evaluation criteria.
Type PRS RES F1S Support
Benign 0.98 1.00 0.99 216
Malignant 1.00 0.99 0.99 481
Micro mean 0.99 0.99 0.99 697
Macro mean 0.99 0.99 0.99 697
Weighted mean 0.99 0.99 0.99 697

Table 1 compares the results obtained by several
methods. The methods of Togacar et al. [26], Parvin et al.
[31], Man et al. [36], Soumik et al. [60], Liu et al. [172],
Zerouaoui and Idri [56], and Chattopadhyay et al. [174] were
centered on mainly CNN models, but they were tested
against the same training-testing ratio of 80%: 20% on the
BreaKHis dataset [33]. However, Boumaraf et al. [63]
suggested a transfer-learning-based method deeming the
residual CNN ResNet-18 as a backbone model with block-
wise fine-tuning strategy and obtained a mean ACC of
92.15% applying a training-testing ratio of 80%: 20% on
BreaKHis dataset [33]. From Table 1, it is notable that
DenThet [ours] achieved the best ACC on the same ground.

6. Generalization Ability Evaluation of
Proposed DenTnet

What would be the performance of the proposed DenTnet
compared with other types of cancer or disease datasets? To
evaluate the generalization ability of DenTnet, this section
presents the experimental result obtained not only from the
dataset of BreaKHis [33] but also from additional datasets of
Malaria [191], CovidXray [192], and SkinCancer [193].

6.1. Datasets Irrelevant to Breast Cancer. The three following
datasets are not related to breast cancer. Herewith, their
primary aim is to evaluate the generalization ability of our
proposed method DenTnet:

(i) Malaria [191] = This dataset contains a total of
27558 infected and uninfected images for malaria.

(ii) SkinCancer [193] = This dataset contains balanced
images from benign skin moles and malignant skin
moles. The data consist of two folders, each con-
taining 1800 pictures (224 x 244) from the two
types of mole.

(iii) CovidXray [192] = Corona (COVID-19) virus af-
fects the respiratory system of healthy individual.
The chest X-ray is one of the key imaging methods
to identify the coronavirus. This dataset contains
chest X-ray of healthy versus pneumonia (Corona)
infected patients along with few other categories
including SARS (Severe Acute Respiratory Syn-
drome), Streptococcus, and ARDS (Acute Respira-
tory Distress Syndrome) with a goal of predicting
and understanding the infection.

Figure 8 specifies some sample images from Malaria
[191], SkinCancer [193], and CovidXray [192] datasets.

6.2. Experimental Results Comparison. Using four datasets in
the experiment, DenTnet has been compared with six widely
used and well-known deep learning models, namely,
AlexNet [81], ResNet [75], VGG16 [98], VGG19 [98], In-
ception V3 [88], and SqueezeNet [184]. To evaluate and
analyze the performance of DenThet, four different cases are
considered. The first case is the evaluation of different deep
learning methods, which are trained and tested on BreaKHis
[33] dataset. The second case studies the performance of the
deep-learning-based classification methods that are trained
and tested on Malaria [191] dataset. The third case is to train
and test the deep learning models on SkinCancer [193]
dataset. The final one is to understand and analyze the
performance of the deep learning models on CovidXray
[192] dataset. The overall results are tabulated in Tables 5-9.
Besides, the RTM in seconds of various datasets using the
deep learning models is shown in Table 10.

According to the results in terms of GMN of ACC, RES,
F1S, and AUC as shown in Tables 5-9, respectively, the
proposed DenTnet architecture provides the best scores as
compared to AlexNet [81], ResNet [75], VGG16 [98],
VGG19 [98], Inception V3 [88], and SqueezeNet [184]. On
the other hand, DenTnet gets the third best result.
Moreover, in most of the cases, AlexNet [81] obtains the
lowest results.

6.3. Performance Evaluation. The deepening of deep models
makes their parameters rise rapidly, which may lead to
overfitting of the model. To take the edge off the overfitting
problem, predominantly a large number of dataset images
are required as the training set. Considering a small dataset,
it is possible to reduce the risk of overfitting of the model by
reducing the parameters and augmenting the dataset. Ac-
cordingly, DenTnet used fewer parameters along with the
dense connections in the construction of the model, instead
of the direct connections among the hidden layers of the
network. As DenTnet used fewer parameters, it attenuated
the vanishing gradient descent and strengthened the feature
propagation. Consequently, the proposed DenTnet out-
performed its alternative state-of-the-art methods. Yet, its
runtime was a bit longer in Malaria [191] and SkinCancer
[193] datasets as compared to ResNet [75]. The main reason
why the DenTnet model may require more time is that it uses
many small convolutions in the network, which can run
slower on GPU than compact large convolutions with the
same number of GFLOPS. Still, DenTnet includes fewer
parameters compatibility when compared to ResNet [75].
Henceforth, it is more efficient in solving the problem of
overfitting. In general, all of the used algorithms suffered
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FIGURE 8: (a), (b), and (c) specify images of Malaria [191], SkinCancer [193], and CovidXray [192] datasets, respectively.
TaBLE 5: ACC of various methods deeming four different datasets.
Model ACC of various datasets GMN of ACC
odels
BreaKHis [33] Malaria [191] SkinCancer [193] CovidXray [192] Success Failure
AlexNet [81] 0.9268 0.9738 0.8714 0.8526 0.9049 0.0951
ResNet [75] 0.9857 0.9832 0.9045 0.8990 0.9422 0.0578
VGG16 [98] 0.9785 0.9806 0.8501 0.8576 0.9145 0.0855
VGG19 [98] 0.9785 0.9811 0.8512 0.9279 0.9328 0.0672
Inception V3 [88] 0.9784 0.9879 0.8587 0.8998 0.9296 0.0704
SqueezeNet [184] 0.9756 0.9498 0.8288 0.8016 0.8858 0.1142
DenTnet [ours] 0.9928 0.9865 0.9157 0.8942 0.9463 0.0537
TaBLE 6: PRS of various methods deeming four different datasets.
Model PRS of various datasets GMN of PRS
odels
BreaKHis [33] Malaria [191] SkinCancer [193] CovidXray [192] Success Failure
AlexNet [81] 0.9317 0.9656 0.8417 0.8744 0.9021 0.0979
ResNet [75] 0.9937 0.9793 0.9167 0.8667 0.9377 0.0623
VGGI6 [98] 0.9936 0.9888 0.9055 0.8533 0.9334 0.0666
VGG19 [98] 0.9814 0.9753 0.8083 0.9872 0.9348 0.0652
Inception V3 [88] 0.9829 0.9713 0.8512 0.9796 0.9446 0.0554
SqueezeNet [184] 0.9854 0.9778 0.8871 0.7799 0.9036 0.0964
DenTnet [ours] 0.9700 0.9848 0.9258 0.8641 0.9350 0.0650
TaBLE 7: RES of various methods deeming four different datasets.
Model RES of various datasets GMN of RES
odels
BreaKHis [33] Malaria [191] SkinCancer [193] CovidXray [192] Success Failure
AlexNet [81] 0.9647 0.9812 0.9154 0.8880 0.9366 0.0634
ResNet [75] 0.9854 0.9867 0.9010 0.9685 0.9597 0.0403
VGG16 [98] 0.9751 0.9718 0.8250 0.9846 0.9367 0.0633
VGG19 [98] 0.9875 0.9865 0.9065 0.9059 0.9457 0.0543
Inception V3 [88] 0.9854 0.9819 0.8874 0.9491 0.9501 0.0499
SqueezeNet [184] 0.9792 0.9197 0.7861 0.9514 0.9059 0.0941
DenTnet [ours] 0.9896 0.9879 0.9208 0.9629 0.9649 0.0351
TaBLE 8: F1S of various methods deeming four different datasets.
Model F1S of various datasets GMN of F1S
odels
BreaKHis [33] Malaria [191] SkinCancer [193] CovidXray [192] Success Failure
AlexNet [81] 0.9479 0.9734 0.8770 0.8811 0.9189 0.0811
ResNet [75] 0.9896 0.9830 0.9129 0.9147 0.9494 0.0506
VGG16 [98] 0.9843 0.9803 0.8634 0.9143 0.9342 0.0658
VGG19 [98] 0.9845 0.9809 0.8546 0.9448 0.9397 0.0603
Inception V3 [88] 0.9844 0.9724 0.8693 0.9077 0.9322 0.0678
SqueezeNet [184] 0.9823 0.9479 0.8336 0.8571 0.9031 0.0969
DenTnet [ours] 0.9948 0.9864 0.9233 0.9108 0.9531 0.0469




Computational Intelligence and Neuroscience 19
TaBLE 9: AUC of various methods deeming four different datasets.
Model AUC of various datasets GMN of AUC
odels

BreaKHis [33] Malaria [191] SkinCancer [193] CovidXray [192] Success Failure
AlexNet [81] 0.90 0.97 0.87 0.85 0.8964 0.1036
ResNet [75] 0.99 0.98 0.90 0.91 0.9441 0.0559
VGG16 [98] 0.98 0.98 0.86 0.85 0.9154 0.0846
VGG19 [98] 0.97 0.98 0.85 0.91 0.9260 0.0740
Inception V3 [88] 0.97 0.97 0.89 0.87 0.9239 0.0761
SqueezeNet [184] 0.97 0.95 0.83 0.75 0.8703 0.1297
DenTnet [ours] 0.99 0.99 0.91 0.90 0.9465 0.0535

TaBLE 10: RTM of various methods deeming four different datasets.
RTM in seconds of various datasets
Models . ) ) . GMN of RTM
BreaKHis [33] Malaria [191] SkinCancer [193] CovidXray [192]

AlexNet [81] 07573 4100 1413 1328 2762.8
ResNet [75] 16889 3556 0799 2683 3368.5
VGG16 [98] 13419 7698 1450 1081 3567.2
VGG19 [98] 23502 7115 1255 1294 4059.4
Inception V3 [88] 14404 7357 1329 1189 3597.3
SqueezeNet [184] 20080 4140 1339 1864 3795.3
DenTnet [ours] 11083 7102 0873 1519 3196.3

from some degree of overfitting problem on all datasets. We
minimized such problems by reducing the batch size and
adjusting the learning rate and the dropout rate. In some
cases, the proposed DenTnet predicted fewer positive
samples as compared to ResNet [75]. This is due to the lack
of its conservative designation of the positive class. Thus, the
GMN PRS of the proposed DenTnet was about 2% lower
than that of ResNet [75].

As VGG16 [98] is easier to implement, many deep
learning image classification problems benefit from the
technique by using the network either as a sole model or as a
backbone architecture to classify images. While VGG19 [98]
is better than the VGG16 [98] model, they are both very slow
to train—for example, a ResNet with 34 layers only requires
18% of operations as a VGG with 19 layers (around half the
layers of the ResNet) will require [194]. Regarding AlexNet
[81], the model struggled to scan all features as it is not very
deep, resulting in poor performance. The SqueezeNet [184]
model achieved approximately the same performance as the
AlexNet [81] model. VGGI19 [98] and Inception V3 [88]
showed almost the same level of effectiveness. Although the
ResNet [75] model has proven to be a powerful tool for
image classification and is usually fast, it has been shown to
take a long time to train. Concisely, using all benefits of
DenseNet [67] with optimization, DenTnet obtained the
highest GMN ACC of 0.9463, RES of 0.9649, F1S of 0.9531,
and AUC of 0.9465 from all four datasets. This implies that
DenThnet has the best generalization ability compared to its
alternative methods.

Often, it is important to measure that certain deep
learning models are more efficient and practical as compared
to their alternatives. Seemingly, it is difficult to measure such
superiority from the obtained experimental results in
Tables 5-10. Nonetheless, nonparametric statistical test can
make a clear picture of this issue.

7. Nonparametric Statistical Analysis

Figure 9 depicts performance evaluation of various algo-
rithms deeming the numerical values of the ineffectualness
metrics and RTM from Table 11. It is noted that, for a better
visualization purpose, the RTM scores in Figure 9 use log-
normal distribution [195] with a mean of 10 and standard
deviation of 1. However, from this graph, it is extremely hard
to rank each algorithm. However, statistically, it is possible
to show that one algorithm is better than its alternatives.
Friedman test [196] and its derivatives (e.g., Iman-Daven-
port test [197]) are normally referred to as examples of the
most well-known nonparametric tests for multiple com-
parisons. The mathematical equations of Friedman [196],
Friedman’s aligned rank [198], and Quade [199] tests can be
found in the works of Quade [199] and Westfall and Young
[200]. Friedman test [196] takes measures in preparation for
ranking of a set of algorithms with performance in
descending order. But it can solely inform us about the
appearance of differences among all samples of results under
comparison. Henceforth, its alternatives (e.g., Friedman’s
aligned rank test [198] and Quade test [199]) can give us
further information. Consequently, we have performed the
tests of Friedman [196], Friedman’s aligned rank [198], and
Quade [199] for average rankings based on the features of
our experimental study. On rejecting null-hypotheses, we
have continued to use post hoc procedures to find the special
pairs of algorithms that give idiosyncrasies. In the case of
1 x N comparisons, the post hoc procedures make up for
Bonferroni-Dunn’s [201], Holm’s [202], Hochberg’s [203],
Hommel’s [204, 205], Holland and Copenhaver’s [206],
Rom’s [207], Finner’s [208], and David Li’s [209] proce-
dures, whereas the post hoc procedures of Nemenyi [210],
Shaffer [211], and Bergmann-Hommel [212] are involved in
N x N comparisons. The details can be found in the works of
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Bergmann and Hommel [212], Garcia and Herrera [213],
and Hommel and Bernhard [205].

7.1. Average Ranking of Algorithms. To get the nonpara-
metric statistical test results, Friedman [196], Friedman’s
aligned rank [198], and Quade [199] tests have been applied
to the results of seven models in Table 11. Explicitly, sta-
tistical tests have been applied to a matrix with dimension of
7 x 6, where 7 is the number of models and 6 is the number
of parameters (as 6 datasets while applied to the statistical
software environment [214]) in each model. Table 12 shows
the average ranking computed by using Friedman [196],
Friedman’s aligned rank [198], and Quade [199] nonpara-
metric statistical tests. The nonparametric Friedman [196],
Friedman’s aligned rank [198], and Quade [199] tests de-
termine whether there were significant differences among
various models taking data from Table 11. These tests
provide the average ranking of all algorithms; that is, the best
performing algorithm gets the highest rank of 1, the second-
best algorithm gets the rank of 2, and so on.

Figure 10 makes a visualization of the average rankings
using the data in Table 12. From Figure 10, it is noticeable
that the algorithm of DenTnet [ours] became the best
performing one, with the longest bars of 0.6667, 0.1395, and
0.7242 for Friedman test [196], Friedman’s aligned rank test
[198], and Quade test [199], respectively. This indicates that
the algorithm of DenThet [ours] gives great performance for
the solution of underlaying problems of classifying breast
cancer histopathological images from four different datasets.
Friedman [196] statistic considered reduction performance
(distributed according to chi-square with 6 degrees of
freedom) of 24.500000. Friedman’s aligned [198] statistic
considered reduction performance (distributed according to
chi-square with 6 degrees of freedom) of 23.102557. Iman-
Davenport [197] statistic considered reduction performance
(distributed according to F-distribution with 6 and 30 de-
grees of freedom) of 10.652174. Quade [199] statistic con-
sidered reduction performance (distributed according to
F-distribution with 6 and 30 degrees of freedom) of
5.274194. The p values computed through Friedman
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statistic, Friedman’s aligned statistic, Iman-Davenport sta-
tistic, and Quade statistic are 0.000422, 0.000762847204,
0.000002458229, and 0.000820133186, respectively.

Table 13 demonstrates the results obtained on post hoc
comparisons of adjusted p values; a = 0.05 and « = 0.10.
Using level of significance « = 0.05, (i) Bonferroni-Dunn’s
[201] procedure rejects those hypotheses that have an un-
adjusted p value <0.008333; (ii) Holm’s [202] procedure
rejects those hypotheses that have an unadjusted p value
<0.016667; (iii) Hochberg’s [203] procedure rejects those
hypotheses that have an unadjusted p value <0.0125; (iv)
Hommel’s [204] procedure rejects those hypotheses that
have an unadjusted p value <0.016667; (v) Holland’s [206]
procedure rejects those hypotheses that have an unadjusted
p value <£0.016952; (vi) Rom’s [207] procedure rejects those
hypotheses that have an unadjusted p value <0.013109; (vii)
Finner’s [208] procedure rejects those hypotheses that have
an unadjusted p value <0.033617; and (viii) Li’s [209]
procedure rejects those hypotheses that have an unadjusted
p value <0.021422.

7.2. Post Hoc Procedures: 1 x N Comparisons. In the case of
1 x N comparisons, the post hoc procedures consist of
Bonferroni-Dunn’s [201], Holm’s [202], Hochberg’s [203],
Hommel’s [204, 205], Holland and Copenhaver’s [206],
Rom’s [207], Finner’s [208], and David Li’s [209] proce-
dures. In these tests, multiple comparison post hoc proce-
dures have been considered for comparing the control
algorithm of DenTnet [ours] with others. The results have
been shown by computing p values for each comparison.
Table 14 depicts the obtained p values using the ranks
computed by nonparametric Friedman [196], Friedman’s
aligned rank [198], and Quade [199] tests. All tests have
demonstrated significant improvements of DenTnet [ours]
over AlexNet [81], ResNet [75], VGG16 [98], VGG19 [98],
Inception V3 [88], and SqueezeNet [184] counting each and
every post hoc procedure. Besides, David Li’s [209] proce-
dure had the greatest performance, reaching the lowest p
value in the comparisons.

7.3. Post Hoc Procedures: N x N Comparisons. In the case of
N X N comparisons, the post hoc procedures consist of
Nemenyi’s [210], Shaffer’s [211], and Bergmann-Hommel’s
[212] procedures. Table 15 presents 21 hypotheses of equality
among 7 different algorithms and p values achieved. Using
level of significance a = 0.05, (i) Nemenyi’s [210] procedure
rejects those hypotheses that have an unadjusted p value
<0.002381; (ii) Holm’s [202] procedure rejects those hy-
potheses that have an unadjusted p value <0.002778; (iii)
Shaffer’s [211] procedure rejects those hypotheses that have
an unadjusted p value <0.002381; and (iv) Bergmann’s
[212] procedure rejects those hypotheses of AlexNet [81]
versus DenTnet [ours], ResNet [75] versus SqueezeNet [184],
and SqueezeNet [184] versus DenTnet [ours]. On the other
hand, considering & = 0.10, (i) Nemenyi’s [210] procedure
rejects those hypotheses that have an unadjusted p value
<0.004762; (ii) Holm’s [202] procedure rejects those hy-
potheses that have an unadjusted p value <0.005556; (iii)
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TaBLE 11: Summary of performance failure and RTM scores of miscellaneous deep learning algorithms.
GMN scores of performance failure
Models GMN of RTM
ACC PRS RES F1S AUC
AlexNet [81] 0.0951 0.0979 0.0634 0.0811 0.1036 2762.8
ResNet [75] 0.0578 0.0623 0.0403 0.0506 0.0559 3368.5
VGG16 [98] 0.0855 0.0666 0.0633 0.0658 0.0846 3567.2
VGG19 [98] 0.0672 0.0652 0.0543 0.0603 0.0740 4059.4
Inception V3 [88] 0.0704 0.0554 0.0499 0.0678 0.0761 3597.3
SqueezeNet [184] 0.1142 0.0964 0.0941 0.0969 0.1297 3795.3
DenTnet [ours] 0.0537 0.0650 0.0351 0.0469 0.0535 3196.3

TaBLE 12: Average ranking of each algorithm using nonparametric statistical tests. The best results are shown in bold.

Multiple comparison tests

Algorithms
8 Friedman ranking [196] Friedman’s aligned ranking [198] Quade ranking [199]
AlexNet [81] 5.3333 26.0000 4.6189
ResNet [75] 2.1667 09.0000 2.2857
VGG16 [98] 4.6667 27.8333 4.6191
VGGI19 [98] 4.0000 21.6667 4.3333
Inception V3 [88] 3.6667 22.1667 4.0952
SqueezeNet [184] 6.6667 36.6667 6.6667
DenTnet [ours] 1.5000 07.1667 1.3809
Various statistics 24.500000 23.102557 5.274194
p value 0.000422 0.000763 0.000820
Average rankings : The tallest bar indicates the best model F%gure 11 . depicts the Nem.en.yi [210] post . hO.C critical
08 distance diagrams at three distinct levels of significance «
0'7_ values. If the distance between algorithms is less than the
" 0'6 critical distance, then there is no statistically significant
% ] difference between them. The diagrams in Figures 11(a) and
> 051 11(b) associated with & = 0.10 with the critical distance of
< p . . cps .
g 04 3.3588 and with «a =0.05 with the critical distance of
% 031 3.6768, respectively, are identical, whereas the diagram in
Zz 0.24 Figure 11(c) related to a = 0.01 with the critical distance of
0.1 4.3054 is different. Any two algorithms are considered as
0- significantly different if their performance variation is

Friedman [196] Fal.rank [198]

Nonparametric Tests

Quade [199]

I DenTnet [ours] 1 VGGI6 [98]
I ResNet [75] I AlexNet [81]
[ Inception V3 [88] [ SqueezeNet [184]
B VGG19 [98]

F1GURrE 10: Plotting of average rankings data from Table 12, where
each value x is plotted as 1/x to visualize the highest ranking with
the tallest bar.

Shaffer’s [211] procedure rejects those hypotheses that have
an unadjusted p value <0.004762; and (iv) Bergmann’s
[212] procedure rejects those hypotheses of AlexNet [81]
versus DenTnet [ours], ResNet [75] versus SqueezeNet [184],
and SqueezeNet [184] versus DenTnet [ours].

7.4. Critical Distance Diagram from Nemenyi [210] Test.
Nemenyi [210] test is very conservative with a low power,
and hence it is not a recommended choice in practice [215].
Nevertheless, it has a unique advantage of having an as-
sociated plot to demonstrate the results of fair comparison.

greater than the critical distance. To this end, from Fig-
ure 11, it is noticeable that, at a« = 0.01, both SqueezeNet
[184] versus DenTnet [ours] and SqueezeNet [184] versus
ResNet [75] are remarkably different, while other pairs are
not remarkably divergent as their performance differences
are less than 4.3054. As compared to ResNet [75], DenTnet
[ours] differs from SqueezeNet [184] by a greater distance.
On the other hand, SqueezeNet [184] versus DenTnet
[ours] and AlexNet [81] versus DenTnet [ours] are sig-
nificantly different at both « = 0.10 and a = 0.05, whereas
SqueezeNet [184] versus ResNet [75] is significantly dis-
similar at those a values. Straightforwardly, DenTnet [ours]
is outstandingly unalike both SqueezeNet [184] and
AlexNet [81], but ResNet [75] is not outstandingly unalike
AlexNet [81]. This implies that the method of DenTnet
[ours] outperforms that of ResNet [75], which also agrees
with the finding in Figure 10.

7.5. Reasons of Superiority. In this study, DenseNet [67] was
a great choice as it was very compact and deep. It used less
training parameters and reduced the risk of model
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TaBLE 13: Results achieved on post hoc comparisons for adjusted p values, with « = 0.05 and « = 0.10.
. a=0.05 a=0.10
Index Algorithms p values
Holm [202] Shaffer [211] Holm [202] Shaffer [211]
1 VGG19 [98] versus Inception V3 [88] 0.789268 0.050000 0.050000 0.100000 0.100000
2 ResNet [75] versus DenTnet [ours] 0.592980 0.025000 0.025000 0.050000 0.050000
3 VGG16 [98] versus VGGI19 [98] 0.592980 0.016667 0.016667 0.033333 0.033333
4 AlexNet [81] versus VGG16 [98] 0.592980 0.012500 0.016667 0.025000 0.033333
5 VGG16 [98] versus Inception V3 [88] 0.422678 0.010000 0.016667 0.020000 0.033333
6 AlexNet [81] versus SqueezeNet [184] 0.285049 0.008333 0.008333 0.016667 0.016667
7 AlexNet [81] versus VGG19 [98] 0.285049 0.007143 0.007143 0.014286 0.014286
8 ResNet [75] versus Inception V3 [88] 0.229102 0.006250 0.006250 0.012500 0.012500
9 AlexNet [81] versus Inception V3 [88] 0.181449 0.005556 0.005556 0.011111 0.011111
10 ResNet [75] versus VGG19 [98] 0.141579 0.005000 0.005000 0.010000 0.010000
11 VGG16 [98] versus SqueezeNet [184] 0.108809 0.004545 0.004545 0.009091 0.009091
12 Inception V3 [88] versus DenTnet [ours] 0.082352 0.004167 0.004167 0.008333 0.008333
13 VGG19 [98] versus DenTnet [ours] 0.045021 0.003846 0.003846 0.007692 0.007692
14 ResNet [75] versus VGG16 [98] 0.045021 0.003571 0.003571 0.007143 0.007143
15 VGG19 [98] versus SqueezeNet [184] 0.032509 0.003333 0.003333 0.006667 0.006667
16 Inception V3 [88] versus SqueezeNet [184] 0.016157 0.003125 0.003333 0.006250 0.006667
17 VGG16 [98] versus DenTnet [ours] 0.011118 0.002941 0.003333 0.005882 0.006667
18 AlexNet [81] versus ResNet [75] 0.011118 0.002778 0.003333 0.005556 0.006667
19 AlexNet [81] versus DenTnet [ours] 0.002116 0.002632 0.003333 0.005263 0.006667
20 ResNet [75] versus SqueezeNet [184] 0.000309 0.002500 0.003333 0.005000 0.006667
21 SqueezeNet [184] versus DenTnet [ours] 0.000034 0.002381 0.002381 0.004762 0.004762
TaBLE 14: Adjusted p values for various tests considering DenTnet [ours] as control method.
Not 1 x N post hoc procedures and p values
Tests Algorithms adjusted  1-2 step-procedure Step-down procedures Step-up procedures
pBonf X PHolm PHol PFinn PHoch Prom Prom
pvalues ooy Pu 09T o) os]  [208]  [203]  [204]  [207]
Sq“[eIZie]Net 0.000034 0.000206 0.000084 0.000206 0.000206 0.000206 0.000206 0.000206  0.000196
AlexNet [81] 0.002116 0.012694 0.005171 0.010578 0.010533 0.006333 0.010578 0.010578  0.010060
Friedman VGG16 [98] 0.011118 0.066705 0.026588 0.044470 0.043734 0.022112  0.044470  0.044470 0.042403
[196] VGGI19 [98] 0.045021 0.270125 0.099595 0.135063 0.129073 0.066765 0.135063  0.123528 0.135063
I““‘Eg&“ V3 0082352 0494113 0168281 0.164704 0157923 0.097990 0164704 0164704 0.164704
ResNet [75] 0.592980 3.557881 0.592980 0.592980 0.592980 0.592980 0.592980 0.59298  0.592980
Squﬁe;f]Net 0.000031 0.000187 0.000152 0.000187 0.000187 0.000187 0.000187  0.000187 0.000178
VGG16 [98] 0.003525 0.021147 0.016964 0.017623 0.017499 0.010536 0.017623  0.017623  0.016759
F. al. rank AlexNet [81] 0.007837 0.047023 0.036954 0.031348 0.030982 0.015613 0.031348  0.031348 0.029891
[198] Incel?gg]n V3 0034193 0205155 0143404 0102578 0099110 0050848 0.081277 0.068385 0.081277
VGG19 [98] 0.040638 0.243830 0.165952 0.102578 0.099110 0.050848 0.081277  0.081277 0.081277
ResNet [75] 0.795758 4.774545 0.795758 0.795758 0.795758 0.795758 0.795758 0.795758 0.795758
Sq‘lﬁzae]Net 0.027879 0167272 0.086779 0.167272 0156038 0.156038 0167272 0167272  0.159049
AlexNet [81] 0.177939 1.067632 0.377531 0.889693 0.624577 0.444463 0.517618 0.388213 0.517618
Quade [199] VGG16 [98] 0.177939 1.067632 0.377531 0.889693 0.624577 0.444463 0.517618 0.388213 0.517618

VGGI19 [98] 0.219348 1.316086 0.427803
Inception V3
(88]
ResNet [75]  0.706617 4.239701 0.706617

0.258809 1.552853 0.468693

0.889693  0.624577 0.444463 0.517618  0.438695 0.517618
0.889693  0.624577 0.444463 0.517618 0.517618 0.517618
0.889693  0.706617 0.706617  0.706617  0.706617  0.706617

overfitting and improved the learning rate. In the dense
block of DenThet, the outputs from the previous layers were
concatenated instead of using the summation. This type of
concatenation helped to markedly speed up the processing

of data for large number of columns. The dense block of
DenTnet contained convolution and nonlinear layers, which
applied several optimization techniques (e.g., dropout and
BN). DenTnet scaled to hundreds of layers, while exhibiting
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TaBLE 15: Adjusted p values of tests for multiple comparisons among all methods.

N x N post hoc procedures and p values

Index Hypothesis ) i
Unadjusted Nemenyi [210] Holm [202] Shaffer [211] Bergmann [212]

1 SqueezeNet [184] versus DenTnet [ours] 0.000034 0.000721 0.000721 0.000721 0.000721
2 ResNet [75] versus SqueezeNet [184] 0.000309 0.006479 0.006171 0.004628 0.004628
3 AlexNet [81] versus DenTnet [ours] 0.002116 0.044428 0.040197 0.031734 0.031734
4 AlexNet [81] versus ResNet [75] 0.011118 0.233469 0.200116 0.166763 0.111176
5 VGG16 [98] versus DenTnet [ours] 0.011118 0.233469 0.200116 0.166763 0.122293
6 Inception V3 [88] versus SqueezeNet [184] 0.016157 0.339296 0.258511 0.242354 0.177726
7 VGG19 [98] versus SqueezeNet [184] 0.032509 0.682698 0.487642 0.487642 0.292585
8 ResNet [75] versus VGG16 [98] 0.045021 0.945439 0.630292 0.495230 0.315146
9 VGGI19 [98] versus DenTnet [ours] 0.045021 0.945439 0.630292 0.495230 0.405188
10 Inception V3 [88] versus DenTnet [ours] 0.082352 1.729397 0.988227 0.905874 0.494113
11 VGG16 [98] versus SqueezeNet [184] 0.108809 2.284998 1.196904 1.196904 0.652857
12 ResNet [75] versus VGG19 [98] 0.141579 2.973156 1.415789 1.415789 0.652857
13 AlexNet [81] versus Inception V3 [88] 0.181449 3.810433 1.633043 1.633043 1.270144
14 ResNet [75] versus Inception V3 [88] 0.229102 4.811140 1.832815 1.633043 1.270144
15 AlexNet [81] versus VGG19 [98] 0.285049 5.986038 1.995346 1.995346 1.270144
16 AlexNet [81] versus SqueezeNet [184] 0.285049 5.986038 1.995346 1.995346 1.425247
17 VGG16 [98] versus Inception V3 [88] 0.422678 8.876240 2.113390 2.113390 1.690712
18 AlexNet [81] versus VGG16 [98] 0.592980 12.452582 2.371920 2.371920 1.778940
19 VGG16 [98] versus VGGI19 [98] 0.592980 12.452582 2.371920 2.371920 1.778940
20 ResNet [75] versus DenTnet [ours] 0.592980 12.452582 2.371920 2.371920 1.778940
21 VGG19 [98] versus Inception V3 [88] 0.789268 16.574629 2.371920 2.371920 1.778940

Critical Distance = 3.3588 deeming a=0.10

7 6 5

4 3 2 1 Average ranking

SqueezeNet [184] 0.6667 |
AlexNet [81] 53333 |

L 1.5000 DenTnet [Ours]
L 2.1667 ResNet [75]

VGG16 [98] 4:6667

3.6667 Inception V3 [88]
4.0000 vGG19 [98]

()

Critical Distance = 3.6768 deeming a=0.05

7 6 5

4 3 2 1 Average ranking

SqueezeNet [184] 6.6667 |
AlexNet [81] 53333 |
VGG16 [98] 4:6667

L 1.5000 DenTnet [Ours]
L 2.1667 ResNet [75]
3.6667 Inception V3 [88]

4.0000 vGG19 [98]

(b)

Critical Distance = 4.3054 deeming a=0.01

7 6 5

4 3 2 1 Average ranking

SqueezeNet [184] 0.6667 |
AlexNet [81] 23333 |

L 1.5000 DenTnet [Ours]
L 2.1667 ResNet [75]

VGG16 [185] 4:6667

3.6667 Inception V3 [88]
4.0000 vGG19 [98]

(c)

FIGURe 11: Nemenyi [210] post hoc critical distance diagrams for three « values using data in Table 11.

no optimization difficulties. Overall, this model was applied
to a very large number of preprocessed augmented images
from BreaKHis [33], Malaria [191], SkinCancer [193], and
CovidXray [192] datasets. To the best of our knowledge, no
other studies in the literature had such an edge. Additionally,
the use of data augmentation approach in this study

positively affected the performance of the model due to
expansion in the size of training data, which is the foremost
requirement of a deep network for its proper working. Our
DenTnet was well trained through various parameters’
tuning. For example, in the case of BreaKHis [33], unlike
other existing models, our model was trained on all the
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magnifications combined (40x, 100x, 200x, and 400x) to
avoid any loss of generality.

In sum and substance, based on the aforementioned
experimental and nonparametric statistical test results, it is,
therefore, possible to conclude that the proposed DenTnet
[ours] outperformed AlexNet [81], ResNet [75], VGG16
[98], VGG19 [98], Inception V3 [88], and SqueezeNet [184]
in terms of computational speed. Significantly, the accuracy
achieved by the proposed DenTnet [ours] surpassed those of
existing state-of-the-art models in classifying images of the
BreaKHis [33], Malaria [191], SkinCancer [193], and the
CovidXray [192] dataset.

7.6. Limitation of Proposed Model and Methodology.
Despite these promising results, questions remain as to
whether the proposed DenTnet model could be utilized to
classify categorical images. Moreover, DenTnet was tested
with one breast cancer dataset (i.e., BreaKHis [33]) only.
Although the generalization ability of DenTnet with three
non-breast-cancer-related datasets was studied in Section 6,
it is unknown whether DenTnet can generalize to other
state-of-the-art breast cancer datasets. Future work should,
therefore, investigate the efficacy and generalizability of
DenThet with datasets along with multiclass labels, as well as
other publicly available breast cancer datasets (e.g., the most
recently introduced MITNET dataset [216]).

The classification effect of breast cancer histopatholog-
ical images of any deep learning methodology is related to
the features and many studies predominantly focused on
how to develop good feature descriptors and better extract
features. Different from traditional handcrafted feature-
based models, DenTnet can automatically extract more
abstract features. Nevertheless, it is worth noting that al-
though the proposed DenTnet has addressed the cross-
domain problem by utilizing the transfer learning approach,
features extracted in the methodology are solely deep-net-
work-based features, which are extracted by feeding images
directly to the model. However, feeding deep models directly
with images would not generalize as the models consider
color distribution of an image. It is understood that local
information can be captured from color images using Local
Binary Pattern (LBP) [217]. Therefore, future work can use
multiple types of features by combining the features
extracted by the proposed method with LBP features to
address this issue.

8. Conclusion

We presented that, for classifying breast cancer histopath-
ological images, the most popular training-testing ratio was
70%: 30%, while the best performance was indicated by the
training-testing ratio of 80%: 20%. We proposed a novel
approach named DenThnet to classify histopathology images
using training-testing ratio of 80%: 20%. DenTnet achieved a
very high classification accuracy on the BreaKHis dataset.
Several impediments of existing state-of-the-art methods
including the requirement of high computation and the
utilization of the identical feature distribution were
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attenuated. To test the generalizability of DenTnet, we
conducted experiments on three additional datasets
(Malaria, SkinCancer, and CovidXray) with varying diffi-
culties. Experimental results on all four datasets demon-
strated that DenTnet achieved a better performance in terms
of accuracy and computational speed than a large number of
effective state-of-the-art classification methods (AlexNet,
ResNet, VGG16, VGG19, InceptionV3, and SqueezeNet).
These findings contributed to our understanding of how a
lightweight model could be used to improve the accuracy
and accelerate the learning process of images, including
histopathology image classification on using the wild state-
of-the-art datasets. Future work shall investigate the efficacy
of DenTnet on datasets with multiclass labels.
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BN: Batch normalization

RelU: Rectifie d linear unit

ROC: Receiver operating characteristic
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