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Although food consumption is one of the most basic human behaviors, the factors underlying nutritional preferences are not yet
clear. The use of classification algorithms can clarify the understanding of these factors. This study was aimed at measuring
electrophysiological responses to food/nonfood stimuli and applying classification techniques to discriminate the responses
using a single-sweep dataset. Twenty-one right-handed male athletes with body mass index (BMI) levels between 18.5% and
25% (mean age: 21:05 ± 2:5) participated in this study voluntarily. The participants were asked to focus on the food and
nonfood images that were randomly presented on the monitor without performing any motor task, and EEG data have been
collected using a 16-channel amplifier with a sampling rate of 1024Hz. The SensoMotoric Instruments (SMI) iView XTM RED
eye tracking technology was used simultaneously with the EEG to measure the participants’ attention to the presented stimuli.
Three datasets were generated using the amplitude, time-frequency decomposition, and time-frequency connectivity metrics of
P300 and LPP components to separate food and nonfood stimuli. We have implemented k-nearest neighbor (kNN), support
vector machine (SVM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Bayesian classifier, decision tree (DT),
and Multilayer Perceptron (MLP) classifiers on these datasets. Finally, the response to food-related stimuli in the hunger state
is discriminated from nonfood with an accuracy value close to 78% for each dataset. The results obtained in this study
motivate us to employ classifier algorithms using the features obtained from single-trial measurements in amplitude and time-
frequency space instead of applying more complex ones like connectivity metrics.

1. Introduction

Although food consumption is one of the most basic human
behaviors, the factors underlying nutritional preferences are
not yet apparent. Many factors, such as taste, texture,
appearance, food deprivation, and smell of a meal, play an
essential role in the attention to food [1–3]. Several studies
point out increased attention given to food-related stimuli,
mainly due to food deprivation [4, 5]. It is significant to
identify both the activated brain regions and the temporal
microstructure of the information flow between these
regions to understand the neural foundations of a cognitive
process such as the attention given to these types of stimuli
[6]. Even though the methods of imaging (Magnetic Reso-
nance Imaging (MRI), Functional Magnetic Resonance

Imaging (fMRI), and Positron Emission Tomography
(PET)) are very useful for showing changes in cerebral blood
flow that occurred during cognitive processing, hemody-
namic responses are insufficient to explain the temporal
dynamics of fast electrophysiological activity in the neural
network [6, 7]. Electroencephalogram (EEG) has a high
temporal resolution that allows measurement of the brain’s
electrical activity [8–10] and varies concerning the presence
of visual, somatosensory, and auditory stimuli [1, 11]. Event-
Related Potential (ERP) recordings consist of sudden voltage
fluctuations as a response to the stimulus [12, 13].
Researchers observed several ERP components according
to the time delay after the occurrence of a stimulus. For
instance, the P300 component, which is measured as a pos-
itive waveform approximately 300ms after the stimulus, has
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been extensively studied in the literature due to its potential
to reveal the dynamics of cognitive processes [14–19]. More-
over, Late Positive Potentials (LPP) are observed 550-700ms
after the stimulus that might be the projection of the focused
attention or detailed stimulus analysis. Moreover, it reflects
the conscious stimulus recognition phase. Wavelet trans-
form (WT) is one of the methods that are capable of estimat-
ing the ERP components. WT has a more significant
advantage than classical spectral analysis because it is
suitable for the analysis of nonstationary signals in the
time-frequency domain. WT can be used to analyze various
transient events in biological signals with the structure of
representation and feature extraction [20]. Each ERP com-
ponent derived by WT can be associated with different
situations and tasks [21–24]. In several studies, ERP compo-
nents have been elucidated in response to food stimuli. For
instance, Hachl et al. [25] conducted a study with a group
of subjects who ate their last meal 3 hours or 6 hours before
the ERP measurements where they used food images as
stimuli. In another study, the effects of attention to food-
related word stimuli in the absence of food were investigated
[26]. Similarly, Channon and Hayward [27] investigated
P300 and LPP responses to food and flower images in the
hunger state. Furthermore, many researchers have con-
ducted various Stroop studies in which the naming of the
color of food words is used as stimuli [28–31]. Moreover,
Kitamura et al. [32] observed the effect of hypoglycemic glu-
cose drink intake on a P300 response. As a result, the P300
component varied as a response to food and nonfood stimuli
in the hunger state. This variation motivated us to investi-
gate the differences that occurred in the ERP components
extracted from single-epoch electrical recordings.

In recent decades, the detection of the mental status
via EEG measurements had been performed via the imple-
mentation of machine learning algorithms [33, 34]. In
most of the studies, researchers computed the features
from ongoing EEG time series, and those features were
subjected to classifiers to detect whether the subject is nor-
mal or not [35, 36]. This procedure necessitated the use of
known features while the modern approach, the deep
learning mechanism, enables us to figure out the filters
which can be used to classify the labelled measured data.
A gross review has been given in [37] where the brain sig-
nals were used as inputs in various problems, including the
seizure, emotion detection, motor imagery identification,
and evoked potentials.

In addition, eye tracking technology is used in atten-
tion studies to understand whether the participant pays
attention to the stimulus presented. Eye tracking technol-
ogy is the name given to a set of methods and techniques
used to detect and record the activity of eye movements
[38]. Studies have shown that eye tracking data provide
reliable measures of attention to the stimulus in complex
situations [39, 40].

There are a few studies in the literature that classify
food-related stimuli [32, 41]. Unfortunately, none of the pre-
vious studies have examined electrophysiological responses
to food-related stimuli using classification techniques. This
study is aimed at measuring electrophysiological responses

to food/nonfood stimuli and applying classification tech-
niques to discriminate the responses using a single-sweep
time series.

2. Materials and Methods

2.1. Participants. Twenty-one right-handed male athletes
with BMI levels between 18.5% and 25% (mean age: 21:05
± 2:5) participated in this study voluntarily. All participants
had a minimum training in a week of 10 hours and com-
peted in karate or rowing. None of the participants had a
lack of food intake, head injuries, neurological and psychiat-
ric disorders, or other illness history.

2.2. Experimental Design. More specifically, participants
were asked not to eat after 09.00 pm before the test day.
We performed EEG measurements at 09.00-10.00 am
before breakfast. Before the start of the experiment, we
asked participants to focus on the food and nonfood
images without large motor movements that can nega-
tively affect the signal. We presented the stimuli randomly
using in-house developed software. In our study, standard-
ized and contrast-color-adjusted images were selected from
the study of Charbonnier et al. to minimize the adverse
effects of food images on the ERP [42]. In this study, we
separated the images according to their nutrient content
[43] into five groups. Since our aim is not to classify the
response to the images through calorie content, we just sepa-
rated the groups as food and nonfood ones. In the experi-
ment, we have shown images for 800ms and inserted a
negligible time of two adjacent stimuli that are shown in
Figure 1. The number of neutral images was 28 × 5, while it
was 73 × 5 for food images. The resolution of the images
was adjusted to 1280 × 1024.

2.3. Data Collection. We used a 16-channel V-AMP ampli-
fier (Brain Products TM, Germany) with a sampling rate of
1024Hz. In this study, we collected EEG from FP1, FP2,
FP1, FP2, F3, Fz, F4, P3, P4, Pz, C3, C4, Cz, O1, O2 Oz,
T7, and T8 channels with two electrodes as the reference
and ground, as shown in Figure 2. Impedances of the chan-
nels have been kept below 5khm.

The SensoMotoric Instruments (SMI) iView XTM RED
eye tracking technology was used simultaneously with the
EEG. A 22” LCD screen with 1920 × 1080 resolution and
the eye-tracker system are shown in Figure 3. The frequency
of the SMI eye-tracking system is 60Hz, and it can record
eye movements with a 0.5-degree recording error.

2.4. Data Analysis. Eye movements are analyzed to check if
the subjects focused on the visual stimuli using SMI BeGaze
(Behavioral and Gaze Analysis) software. Next, noisy com-
ponents are removed from the EEG signal and the relevant
properties of the data are extracted based on signal process-
ing techniques. In this step, if the extracted features are not
appropriate, inaccurate findings can be achieved. Thus, it is
necessary to find and extract suitable features from the raw
signals to obtain accurate classification results [44, 45]. The
last step is the use of various machine learning techniques
(like a decision tree and support vector machine) to classify
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the EEG signal using the characteristics obtained from the
feature extraction process. Preprocessing of data is very sub-
stantial for improving the noise ratio of the EEG signal. We
applied a low-pass filter at 40Hz and a high-pass filter at
0.1Hz. Artifacts have been marked on the EEG data and

removed for further processing. After the preprocessing step,
a total of 4754 single epochs remained. Next, EEG data are
epoched with a length of 200ms before and 800ms post to
each stimulus marker. In the second step, for both food
images and nonfood images, the features are extracted using
the data collected from 21 subjects. The feature vector
consists of both time and frequency domain features. Data-
sets of essential features obtained from EEG for food and
nonfood images are as follows: the amplitude, time-
frequency power, and time-frequency connectivity metrics.
Datasets have formed as follows. DataSet1: 16 attributes ð16
electrodesÞ × 4754 row values are computed for the LPP
and P300 amplitude. DataSet2: wavelet transform (WT) is
used to compute 16 attributes ð16 electrodesÞ × 4754 row
values for each frequency band (delta, theta, alpha, beta,
and gamma) for the LPP and P300. DataSet3: wavelet coher-
ence is applied to form 120 attributes ð15 × ð15 + 1Þ/2
electrodesÞ × 4754 row values in each frequency band (delta,
theta, alpha, beta, and gamma) for the LPP and P300.

The k-nearest neighbor (kNN), support vector machine
(SVM), Linear Discriminant Analysis (LDA), Logistic
Regression (LR), Bayesian classifier, decision tree (DT),
and Multilayer Perceptron (MLP) classifiers are imple-
mented using each dataset. The first classifier used in this
study is the kNN, which is a nonparametric supervised
learning algorithm. The new sample to be tested with the
features extracted that occur during the classification is
assigned to the most appropriate class according to its prox-
imity to the k-nearest neighbors [46]. The second classifier,
SVM, uses a distinctive hyperplane to determine classes.
The hyperplane is the one that maximizes the margins using
the distance from the nearest training points of the class. As
a linear classifier, LDA (also known as Fisher’s LDA) is an
enhanced version of principal component analysis. The
Bayesian classifier is a supervised statistical method for clas-
sification. It uses the probability to assign the most likely
class of a given example described by its feature vector.
MLP is a classifier based on artificial neural networks. The
logistic regression used in this study is a statistical technique
for binary classification. A tree-like structure containing the
rules for classification in DT is produced using the mutual
information hidden in the dataset. All of these classifiers
were implemented in Python using the Scikit package.

3. Results

As a result of the analysis, the heat map of food/nonfood
images obtained from the eye-tracking technology proves
that the participants focused their attention on the presented
images during the study as shown in Figures 4 and 5.

The grand average ERP components obtained from 21
subjects in the study are summarized in terms of P300 and
LPP amplitudes as shown in Table 1. and Figure 6. We
investigated the amplitude differences that occurred as a
result of the presence of the food and nonfood stimuli using
paired t-tests for each electrode.

Oz and T7 electrodes differed between food and
nonfood stimuli significantly in the absence of a multiple
test correction procedure while none of the electrodes’
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Figure 1: Graphical rendition of task.
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Figure 2: 16 channel electrodes are distributed on the scalp.

Figure 3: SensoMotoric Instruments (SMI) Iview XTM RED and
22” LCD 1920 × 1080 screen.
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LPP components differed between stimuli. Further, this
result motivated us to infer the mechanism of the mea-
sured ERP by the computation of the frequency decompo-
sition. The increased occipital activity of the P300
observed concerning food stimuli agrees with our previous
studies [47]. After the frequency decomposition of the
EEG time series, we computed the statistical tests to eluci-
date the differences between food and nonfood stimuli.
For the P300 component, in the delta band, Pz
(p < 0:032) and Oz (p < 0:002); in the theta band, T7
(p < 0:03); and in the alpha band, FP2 (p < 0:014), elec-
trodes differed between food and nonfood stimuli. On
the other hand, for LPP, differences were observed just
in the alpha band for Fp2 (p < 0:038), Fz (p < 0:016), T7
(p < 0:025), and T8 (p < 0:041).

Furthermore, we computed the coherence between the
electrodes in each frequency band and performed t-tests to
check the significance of the differences for food and non-
food stimuli. In the theta band, P300 coherence between
Fp1 and Fp2 (p < 0:0003) and delta band LPP coherence of
Fp2-Fz (p < 0:00037) are observed to differ between stimuli.
After the descriptive investigation of the features, we focused
on the classification procedures.

In this study, we achieved accuracy values close to 80%
for the discrimination of the electrophysiological responses
given to food-related stimuli versus nonfood stimuli in a
hunger state, using various classification algorithms for
datasets. The classification accuracy values are summarized
in Tables 2–4 for the amplitudes of P300/LPP (DataSet1),
for time-frequency-derived components of P300/LPP

Figure 4: Heat map of food images.

Figure 5: Heat map of nonfood images.
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(DataSet2), and for connectivity metrics of the elec-
trodes in the time-frequency domain of P300/LPP
(DataSet3), respectively. A sample topography image is
shown in Figure 7 for P300 and LPP while topogra-

phies regarding different time-frequency components
are visualized in Figure 8.

We repeated the classification procedures based on indi-
vidual subjects’ data and reported the results (mean and
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Figure 6: P300 and LPP amplitudes for food and nonfood stimuli.

Table 1: Amplitudes of P300 and LPP components are summarized (microvolt).

Channel P300 (Food) mean/std P300 (Non-Food) mean/std p LPP (Food) mean/std LPP (Non-Food) mean/std p

Fp1 1.205/1.144 1.623/1.119 0.3695 2.315/1.142 2.114/1.091 0.7773

Fp2 -0.027 / 1.172 0.054/1.135 0.8795 1.020/1.171 0.445 /1.138 0.3008

F3 -6.537/1.155 -6.286/ 1.14 0.5663 -5.781/ 1.173 -5.822 /1.142 0.9162

Fz 7.298/ 1.008 7.462 / 1.001 0.7081 6.812 / 1.016 6.413 / 0.992 0.3246

F4 0.721/1.014 0.676 /1.019 0.9343 1.368 / 1.026 1.438/ 1.006 0.879

P3 4.107/ 1.008 4.461/ 0.989 0.3675 4.955 / 1.030 5.054/ 1.015 0.8533

P4 -15.839 / 1.282 -15.967/1.3 0.8282 -15.452/ 1.3 -14.816 / 1.329 0.2634

Pz -8.574 / 1.186 -8.037/ 1.193 0.3823 -8.047/ 1.2 -8.468 / 1.197 0.4037

C3 2.556 / 0.960 3.079 / 0.954 0.2059 2.109 / 0.964 1.722 / 0.963 0.485

C4 -1.077 /0.946 -1.092/ 0.932 0.9672 -1.349 / 0.955 -1.37/0.938 0.9524

Cz 7.233 /0.963 7.405 /0.949 0.7175 6.215 / 0.964 6.177 / 0.940 0.9365

O1 1.193 / 0.999 0.899 / 0.996 0.3825 0.657 / 1.006 0.739 /1.035 0.8176

O2 4.099 / 0.982 3.856 / 0.989 0.5896 3.194 / 0.990 3.286 / 0.997 0.8204
Oz∗ 5.218 / 0.952 4.275 /0.943 0.0122 4.752 /0.958 4.681 /0.953 0.8566
T7∗ -1.646 / 1.187 -2.662 / 1.151 0.0394 -2.08 / 1.19 -1.683 / 1.192 0.5251

T8 0.069/ 1.171 0.254 / 1.123 0.7408 -0.688 / 0.091 1.149 / 1.185 0.2419
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standard deviation) in Table 5. In Figure 9, classification
accuracy values of all algorithms are visualized.

4. Discussion

Up to our knowledge, the present study is the first one that
classifies the electrophysiological responses to food and non-
food stimuli in a hunger state. For this, the first dataset con-
sists of the amplitudes of the P300 and LPP components
from single epochs. The dataset was formed by pooling the
rows computed for each subject. As stated by Blankertz
et al. [48], the investigation of ERP components from
single-trial measurements is a complex problem because of
trial variability and background noise. Thus, each row was
normalized to avoid the amplitude differences within sub-
jects and single-trial epochs. In the hunger state, P300 and
LPP amplitudes were found to differ concerning food and

nonfood stimuli in posterior regions [49]. Similar to this,
Geisler and Polich reported P300 differences due to the food
deprivation [31]. In contradiction to these findings, when
the participants ingest hypoglycemic glucose, P300 changes
were not observed [31]. In another study, LPP increased
when the responses to food images and flower images were
compared. In that study, P300 amplitude increased over
the occipital, temporal, and centroparietal areas [26]. In
our study, the maximum classification accuracy was 78%
when the amplitudes of the P300 and LPP derived from
single-trial measurements were used as features, separately.
The differences in P300 or LPP components in the presence
of the food/nonfood stimuli varied, as reported in previous
studies. In ERP studies, averaging of the responses causes
an increase in the signal-noise ratio of the signal and
enhances the contrast between the cases.

However, in the concept of our study, a remarkable
accuracy value (78%) has been obtained from the use of

Table 2: Accuracy of classifiers for P300 and LPP amplitude (%).

Method/Feature P300 LPP

k-NN 76 76

LR 78 77

DT 65 66

LDA 78 77

NB 68 68

SVM 78 77

MLP 77 76

Table 3: Accuracy of classifiers for P300 and LPP power (%).

Method/Feature P300 (%) LPP (%) P300 (%) LPP (%) P300 (%) LPP(%) P300 (%) LPP (%)

k-NN 77 76 76 77 77 76 75 77

LR 77 76 76 77 78 76 76 78

DT 62 62 63 63 66 64 63 68

LDA 77 76 76 77 78 76 76 78

NB 74 73 76 76 78 76 76 78

SVM 77 76 76 77 78 76 76 78

MLP 77 75 76 77 78 76 76 77

Table 4: Accuracy of classifiers for P300 and LPP coherence (%).

Method/Feature P300 (%) LPP (%) P300 (%) LPP (%) P300 (%) LPP(%) P300 (%) LPP (%)

k-NN 77 76 76 77 77 77 77 77

LR 77 77 77 77 77 77 77 77

DT 64 62 63 64 63 64 64 65

LDA 77 77 77 77 77 77 77 77

NB 65 67 66 67 69 71 74 74

SVM 77 77 77 77 78 78 77 78

MLP 69 74 73 74 62 73 70 73
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single-trial P300 and LPP amplitude components, sepa-
rately. In the ERP literature, in a classification study, the
average accuracy value increased to 86% based on the
N170 component. In that study, single-trial measurements
as responses to pictures having positive and negative emo-
tions were the input data to the classifier [50]. Single-trial

EEG measurements can provide valuable information in
the presence of adequate contrast mechanisms. For
instance, in the comparison of the resting-state EEG data
with the brain dynamics measured during an increased
mental workload state, high classification accuracy results
are achieved [51]. In our study, the consistent accuracy
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values obtained using several techniques exhibit the limita-
tion of the stimulus identification. DT outputs the lowest
accuracy in classification, which might be due to the low
number of levels of the tree.

For the ERP data collection, one needs to perform an aver-
aging procedure over several responses given to the same or
similar stimulus. Thus, conducting ERP experiments is a
time-requiring process. On the other hand, in our study, we
concentrated just on the single sweeps which last less than a
second. So, the data that we need is limited by physiological
mechanisms for the testing phase of the classification. There-
fore, for real-time implementation, the minimum detection

time can be thought of as the time needed to compute P300
and LPP features. On the other hand, the classification proce-
dures consist of a training phase where several realizations of
the labelled data are being used. For the estimation of the com-
putational complexity, the number of features (f ) and the
number of samples (n) have a crucial role. For instance, in k-
NN, in the test phase, the complexity is directly related to f
∗ n, while it is just affected by f in DT. Since the complexity
values are on the order of the square of sample size, the train-
ing phase is time-consuming for DT, MLP, and SVM. On the
other hand, LR is much faster. When we pool the data, our
sample size becomes more than thousands.

Table 5: The mean and standard deviation of accuracy values computed from each individual subject.

Accuracy k-NN LR DT LDA NB SVM MLP

Dataset 1

P300
Mean 73.7 75.1 71 75.1 71.7 73.9 61.6

Std. Dev. 1.2 1.3 2.9 1.6 2.1 5.7 6.4

LPP
Mean 74.1 75 70.6 75 71.8 76 61.5

Std. Dev. 1.4 1.1 2.5 1.3 2 3.1 8.9

Dataset 2

P300 (Delta)
Mean 73.6 75.3 69.9 74.9 71.8 77.4 58.6

Std. Dev. 1.6 1.6 2.9 1.5 2 0 13.5

P300 (Theta)
Mean 73.6 74.9 70 74.9 71.3 77.4 54.1

Std. Dev. 1.8 1.5 2.5 1.4 2.6 0 13.7

P300 (Alpha)
Mean 73.5 74.8 70.7 74.9 70.9 77.4 59.2

Std. Dev. 1.8 1.4 2.6 1.3 2.2 0 9.6

P300 (Beta)
Mean 73.4 75 70.9 74.8 72.5 77.4 57.7

Std. Dev. 1.7 1.7 2.6 1.5 2.3 0 9.6

LPP (Delta)
Mean 73.7 65.2 69.2 59.3 62.1 70 58.1

Std. Dev. 2.2 2.6 3.3 3.2 3.3 3 10.5

LPP (Theta)
Mean 73.7 67.7 69.1 59.7 61.2 74.8 59.9

Std. Dev. 1.5 2.5 3 3.4 5.1 1.5 9.7

LPP (Alpha)
Mean 73.2 66.7 68.6 59.7 60.7 74 56.1

Std. Dev. 2 2.7 2.7 2.8 5 2.2 8.9

LPP (Beta)
Mean 73.6 67.3 67.6 59.8 61.8 75.6 61.7

Std. Dev. 1.8 2.6 2.8 2.9 5.7 1.5 7.1

Dataset 3

P300 (Delta) Coh
Mean 73.3 65.7 69.8 58.4 60.8 69.3 55

Std. Dev. 2 2.6 2.8 3.3 4.2 2.5 9.6

P300 (Theta) Coh
Mean 73.6 67.6 68.5 58.1 61.8 74 58.1

Std. Dev. 1.4 3.6 3.3 4.3 4.4 2.2 10.9

P300 (Alpha) Coh
Mean 73.4 66.4 68.4 59.6 58.9 73.4 58.8

Std. Dev. 1.7 3 2.3 3.3 5.9 1.7 7.4

P300 (Beta) Coh
Mean 74.1 67.2 68.9 60.1 59.8 73.3 58.5

Std. Dev. 2.1 2.4 2.5 3.9 5.4 2.3 9.6

LPP (Delta) Coh
Mean 73.7 65.2 69.2 59.3 62.1 70 58.1

Std. Dev. 2.2 2.6 3.3 3.2 3.3 3 10.5

LPP (Theta) Coh
Mean 73.7 67.7 69.1 59.7 61.2 74.8 59.9

Std. Dev. 1.5 2.5 3 3.4 5.1 1.5 9.7

LPP (Alpha) Coh
Mean 73.2 66.7 68.6 59.7 60.7 74 56.1

Std. Dev. 2 2.7 2.7 2.8 5 2.2 8.9

LPP (Beta) Coh
Mean 73.6 67.3 67.6 59.8 61.8 75.6 61.7

Std. Dev. 1.8 2.6 2.8 2.9 5.7 1.5 7.1
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5. Conclusion

In the ERP literature, the common sense is to analyze the
electrical activity in different frequency bands. Thus, in the
concept of this study, the time series were decomposed into
a time-frequency space using wavelet transform. Moreover,
the connectivity approach was adopted to multichannel
ERP measurements in the time window of P300 and LPP
to deduce the coherence information. Based on our findings,
we can propose that the use of complex features is not nec-
essary since the usage of them does not overcome the basic
amplitude features.

There are still many gaps in our understanding of the
brain responses given to visual stimuli. The concept of visual
stimuli cannot directly be classified with high-accuracy
values. On the other hand, it is more straightforward for
mental illness detection or motor imagery studies. Thus, in
future studies, one should focus on the feature engineering
side of the EEG. In particular, deep learning with convolu-
tional neural networks can be adopted to develop spatial
filters on the topography images. This process may yield
researchers to exhibit valuable information from the mea-
sured ERP signals.
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