
EURASIP Journal on Advances
in Signal Processing

Conte Alcaraz et al. EURASIP Journal on Advances in Signal
Processing         (2021) 2021:10 
https://doi.org/10.1186/s13634-020-00715-1

RESEARCH Open Access

Efficiency of deep neural networks for
joint angle modeling in digital gait
assessment
Javier Conte Alcaraz1* , Sanam Moghaddamnia2 and Jürgen Peissig1

*Correspondence:
javier.conte@ikt.uni-hannover.de
1Institute of Communications
Technology, Leibniz Universität
Hanover, Appelstraße 9A, 30419,
Hannover, Germany
Full list of author information is
available at the end of the article

Abstract

Reliability and user compliance of the applied sensor system are two key issues of
digital healthcare and biomedical informatics. For gait assessment applications,
accurate joint angle measurements are important. Inertial measurement units (IMUs)
have been used in a variety of applications and can also provide significant information
on gait kinematics. However, the nonlinear mechanism of human locomotion results in
moderate estimation accuracy of the gait kinematics and thus joint angles. To develop
“digital twins” as a digital counterpart of body lower limb joint angles, three-
dimensional gait kinematic data were collected. This work investigates the estimation
accuracy of different neural networks in modeling lower body joint angles in the sagittal
plane using the kinematic records of a single IMU attached to the foot. The evaluation
results based on the root mean square error (RMSE) show that long short-term memory
(LSTM) networks deliver superior performance in nonlinear modeling of the lower limb
joint angles compared to other machine learning (ML) approaches. Accordingly, deep
learning based on the LSTM architecture is a promising approach in modeling of gait
kinematics using a single IMU, and thus can reduce the required physical IMUs
attached on the subject and improve the practical application of the sensor system.

Keywords: Deep neural network, Digital gait analysis, Machine learning, Nonlinear
modeling, Inertial measurement unit

1 Introduction
Wearable sensor systems (WSSs) allow extensive data acquisition in a simple and conve-
nient way regarding their portability and flexible attachment to any part of the body (e.g.,
lower limbs, upper limbs, torso) [1]. Among them, inertial measurement units (IMUs)
are of particular interest to scientists and engineers in diverse application fields due to
their small size, low cost, light weight, good precision, and non-invasive characteristics.
An inertial sensor performs multiparameter sensing, such as 3D linear acceleration, 3D
angular velocity, and 3D magnetic field, and thus allows to capture a wide range of loco-
motor activities [2, 3]. The main challenge here is to analyze, extract, and translate the
relevant information on normal and pathological gait behavior into effective and afford-
able interventions. This is posed by the high dimensionality and great heterogeneity of the
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Fig. 1 Wearable system concept: the gait kinematic data x(n) are collected and processed with machine
learning methods in the Android application for digital and biomedical healthcare systems. On the left side,
the traditional sensor fusion algorithm based on KF estimates the lower limb joint signals using the
information from four IMUs. On the right side, the novel machine learning approach estimates the lower limb
joint angles based on the information of only one IMU placed on the foot. The dashed line represents the
reference data y(n) for the training and test phases of the different machine learning (ML) approaches

gait data as well as the time and effort involved in the sensor placing and configuration
[4]. The issue concerning the high dimensionality of the gait data can be solved by apply-
ing conventional dimension reduction techniques such as principal component analysis
(PCA) and linear discriminant analysis (LDA). In [5], PCA is applied to get a smaller set
of features for the classification of gait data recorded by a multi-sensor wearable system.
A similar approach was used in [6] to classify subjects using one IMU placed at different
body locations.
To keep the system complexity as low as possible, one solution approach is to reduce

the number of sensors in the WSS via sensor virtualization or “digital twins.” The dig-
ital equivalent can replace the physical counterpart (see Fig. 1) and requires no special
knowledge of the physical structure of the human biomechanics, which in the case of
the human movement is complex [7]. In other words, by applying signal and statistical
processing methods to data from a smaller number of sensors, the remaining sensor sig-
nals can be estimated rather than being directly measured. The authors in [8] proposed a
novel memory polynomial model for the estimation of the lower limb joint angles based
only on the magnitude of the acceleration signal of one IMU located at the ankle. In [9],
an extended Kalman filter (KF) was used to estimate the vertical hip acceleration and
sagittal trunk posture applying a heuristically modified Fourier series model based on the
vertical acceleration and sagittal angular velocity from one IMU placed at the ankle. A
novel double-pendulum model was proposed in [10], in which a small number of sensors
attached on both sides of the shank were used to estimate the movements of the thighs.
The feasibility of the estimation of gait kinematics with a reduced number of sensors has
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been demonstrated in previous studies. This serves as the basis for the realization of high-
precision, robust, and customizable digital twins capable of reducing hardware sensors,
which is to the great advantage of digital healthcare and bioinformatics applications.
Nevertheless, the most promising way to utilize the vast amount of gait data generated

by modern wearable sensors is the use of ML due to its capability of integrating both
stochastic and computer science for identifying patterns in large datasets [11, 12]. In the
field of gait analysis, healthcare, and bioinformatics, ML is applied in general to either the
task of classification or estimation. Regarding the first, different studies have been con-
ducted in the field of gait analysis, such as activity or gait phases recognition [13, 14]. In
[15], the authors trained a long short-term memory (LSTM) based on linear acceleration
and angular velocities from inertial sensors to automatically classify human activities. A
similar approach was proposed in [16], where the data from five different sensors placed
on the body were collected and a convolutional neural network (CNN) was trained for
subject identification. Regarding estimation, different studies applyML and deep learning
to simulated gait data obtained from the markers of camera systems to assess lower limb
kinematics [17, 18]. In [19], a generalized regression neural network (GRNN) was trained
to estimate foot, lower leg, and thigh kinematics in the sagittal plane from emulated 2D
foot acceleration signals from a complex camera system and four IMUs during walking. In
[20], a multilayer perceptron (MLP) was used to simulate the complexities of lower limb
motions together with a camera system as input data for the neural network (NN). Few
studies have applied deep learning techniques for estimation tasks with real kinematic
data. A deep CNN was proposed in [21] for gait parameter extraction based on one IMU
attached to the shoe. The authors in [22] obtained a value of 7◦ RMSE in the estimation of
the knee joint angle with mechanomyography signals and a CNN. The potential of NNs
and deep learning for modeling the nonlinear relationship of lower body joint angles from
foot movement and its applicability as “digital twin” for gait kinematic analysis has not yet
been explored. Therefore, different from the aforementioned studies, this work evaluates
the performance of different neural networks in modeling lower body joint angles using
nonlinear methods to extract significant information from the gait kinematics records of
a single IMU attached to the foot.
The rest of the paper is organized as follows: Section 2 presents the system concept,

methodology, and the framework applied for the gait segmentation followed by a descrip-
tion of the networks investigated in this work. In Sections 3 and 4, the evaluation results
are presented and discussed, respectively. Finally, the main conclusions of this work are
presented in Section 5.

2 Methods
Figure 1 illustrates the overall concept of a WSS. It starts with collecting 3D linear accel-
eration a(t) ∈ IR3xT and 3D angular velocity g(t) ∈ IR3xT and is followed by the gait cycle
segmentation, the extension of the kinematic information, and the estimation of the lower
limb joint angles based on different input sets and the training of different NNs. A brief
description of the procedure and applied techniques is given in this chapter.

2.1 Wearable sensor system

A digital mobile gait measurement system based on four IMUs was used to collect the
reference gait kinematic data for training the networks. The sensor system consists of four



Conte Alcaraz et al. EURASIP Journal on Advances in Signal Processing         (2021) 2021:10 Page 4 of 20

Fig. 2 Reference lower body joint angles in the sagittal plane during one gait cycle using the kinematic gait
data from the IMUs

IMUs integrated into a sensor platform developed by Shimmer. Specifically, we used the
Shimmer 3 sensor platform, which provides real-time motion sensing. The kinematic gait
data are transmitted by Bluetooth to an Android application, which we developed for this
purpose. The received data is feed to a multi-sensor fusion algorithm, where the lower
body joint angles in the sagittal plane are estimated from the kinematic signals of the four
IMUs and the gait data are analyzed according to [23]. Figure 2 shows the joint angles
estimated with the kinematic gait data of the IMUs. The IMUs were attached using straps
to the pelvis, foot, lower leg, and upper leg as shown in Fig. 1. To provide comparable
conditions, the same sensors were attached at the same position on each subject. We
chose straps due to their flexible structure, lower cost, and easy practical application.
The installation is simple, and it takes only a few minutes. There is no need for special
laboratory equipment, and the gait measurements can be done in a corridor or in an open
space like a park or at home. The IMUs include a 3D linear accelerometer a(t) and 3D
gyroscope g(t). The sensor specifications are shown in Table 1. The kinematic gait data
were sampled synchronously at a sampling rate of 60 Hz.

2.2 Data pre-processing

2.2.1 Gait cycle segmentation

Human walking can be explained and described in the context of a cycle. A stride is the
distance between the initial contact (IC) of the first foot and the next IC of the same foot.

Table 1 Sensor specification for data acquisition

Sensor type Range Resolution

3DoF accelerometer ± 8 g (m/s2) 16 bit

3DoF gyroscope ± 500 dps (◦/s) 16 bit
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Fig. 3 Gait events and gait phases in one gait cycle. The gait cycle is divided into stance and swing phase.
Stance starts from IC to terminal contact TOE. Stance phase nearly represents about 60% of gait cycle. Swing
phase begins as soon as the toe leaves the ground, and ends just prior to IC. Swing phase occupies the rest
40% of the gait cycle

In other words, a gait cycle is made up of two steps. Each stride contains a stance and a
swing phase. The stance and swing phases are the minimum number of phases in which
a gait cycle can be divided. A more complex phase model with eight sub-phases is shown
in Fig. 3 [24]. The IC and toe off (TOE) can be extracted from the foot angular velocity on
the sagittal plane exploiting the feature which, within each gait cycle, the foot alternatively
rotates clockwise and counterclockwise about the ankle joint [25].
The local maxima of the foot angular velocity are detected, and they are associated with

the MS phase [26]. As shown in Fig. 4, within each pair of MS peaks, the first negative
peak of the foot angular velocity is associated with the IC and the second one with the
TOE. The optimal values, for which the peaks comply with the actual/true IC and TOE,
are specified as follows: For the MS, the values of minimal peak distance and height were
set to 50 samples and 1.7 rad/s, respectively. For the IC/TOE, the minimal peak distance
and height were set to 30 samples and 0.5 rad/s, respectively. The value of the mini-
mal peak distance for MS events was determined using the autocorrelation function of
the foot angular velocity and calculating the mean and variance of the distance (in sam-
ples) between MS peaks of the autocorrelation. From the knowledge on the IC and TOE,
it is possible to define the duration of the stride, stance, and swing phases and accord-
ingly other temporal parameters (cadence, step length, gait speed, etc.). The defined IC
events were used to segment the kinematic gait data into gait cycles. Each gait cycle was
resampled to the length of 100 samples so that all segments have the same length.

2.2.2 Hilbert-Huang transformation

In [27, 28], nonlinear and non-stationary methods are proposed to analyze the gait signals
due to its potential to extract complex relationships in the gait signals, which cannot be
found with linear methods. Therefore, the Hilbert-Huang transformation (HHT) is used
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Fig. 4 Illustration of the angular velocity in the sagittal plane from different locations. The IC and TOE events
are obtained from the foot angular velocity. The red triangle, green circle, and black square markers represent
the mid-swing (MS), IC, and TOE, respectively

in this work to extend the input data of the NN exploiting the nonlinear relation between
the foot signals and the lower limb joint angles [29]. The HHT applies the empirical mode
decomposition (EMD) and the Hilbert transform (HT) [28]. The most important part of
the HHT is the EMD method which allows the decomposition of any data into a finite
small number of intrinsic mode functions (IMFs). The IMF fulfills two conditions: First,
the number of maxima and zero crossing values must be equal or differ at least by one.
Second, the average value of the envelopes corresponding to those created by the local
maxima and minima must be zero. The EMD offers a possibility to exploit the informa-
tion hidden in the gait signals, and can be calculated from each gait cycle s(t) using the
following steps:

• Detection of all extrema (minima and maxima) of s(t).
• Interpolation and cubic spline curve fitting of the maxima and minima to obtain the

upper envelope u(t) and the lower envelope l(t), respectively.
• Calculation of the meanm1(t) = u(t)+l(t)

2 and the mode g1(t) = u(t)−l(t)
2 function of

the envelopes.
• Calculation of the first component by subtracting the mean envelope function from

the segment c1(t) = s(t) − m1(t).
• In case of c1(t) satisfies the IMF conditions, imf1(t) = c1(t) and continuing with the

next step, otherwise replacing s(t) with c1(t) and iteration of the first four steps.
• Calculation of the residual r1(t) = s(t)− c1(t) and iteration of the previous steps until

becoming a monotonic function as final residual, which is the trend of the segment.

Once the algorithm ends, the gait cycle s(t) can be expressed as a linear superposition of
IMFs by:
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Fig. 5 IMF signal decomposition for the foot angular velocity in the sagittal plane which is used as input for
the networks

s(t) =
n∑

i=1
imfi(t) + rn(t) , (1)

where i = 1, . . . , n is the number of IMFs. Figure 5 shows the first two IMFs of the foot
angular velocity in the sagittal plane. Once the gait cycle representation is obtained as
a superposition of zero mean oscillatory modes, the HT can be applied to each IMF as
follows:

H[ imfi(t)]= 1
π
PV

∫ ∞

−∞
imfi(τ )

t − τ
dτ . (2)

PV denotes the Cauchy principal value of the integral. The residue rn(t) should be left
out of the Hilbert spectral analysis, since it is a monotonic function or a constant. The
analytic signal zi(t) is defined by:

zi(t) = imfi(t) + jH[ imfi(t)]= ai(t)ejθi(t) , (3)

where ai(t) =
√
imfi(t)2 + H[ imfi(t)]2 is the instantaneous amplitude. To extract the

instantaneous frequency (IF) and the instantaneous energy (IE) of each IMF, the derivative
of the phase θi(t) and the squared magnitude of ai(t) are computed as below:

fi(t) = 1
π

dθi(t)
dt

, (4)

ei(t) = |ai(t)|2. (5)
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2.2.3 Norm of the kinematic gait data

One method to extend the information of the raw kinematic gait data is to include
signals norm [16]. The norm of the 3D linear acceleration a(t) and 3D angular veloc-
ity g(t) signals can be obtained by A(t) =

√
ax(t)2 + ay(t)2 + az(t)2 and G(t) =

√
gx(t)2 + gy(t)2 + gz(t)2 for t = 1, 2, ...,T where T is the length of the kinematic signal.

2.2.4 Dataset

For this work, 20 healthy subjects (mean age, 28 ± 4 years; height, 181 ± 3.5 cm) were
considered. The medical history of all participants showed no pathological findings or
surgical intervention in the lower limbs. The data recording was performed via wearable
wireless IMUs as described in Section 2.1. Only the three-dimensional linear acceleration
and three-dimensional angular velocity signals were recorded for the investigations using
the WSS and an Android tablet. The lower limb joint angles in the sagittal plane were
calculated using the information from four IMUs and a KF. The IMUs were placed on the
right side at the foot, lower leg, upper leg, and pelvis of the participants as shown in Fig. 1.
They were secured with tight tape to reduce motion artifacts. Each participant performed
a walk test in forward direction of around 20 m at a preferred velocity, and subsequently
five walking trials. The kinematic gait data of the subjects were recorded and segmented
in gait cycles. In order to extend the information of the kinematic gait signals, for each
gait cycle, the norm of the acceleration and the gyroscope and the HHT were calculated.
The number of IMFs used in this work is two.
Table 2 shows the different input sets used to train the different networks. The input

sets have the dimensions Di × 124,400, where Di is the total number of signals of each
input set (i = 1, ..., 5) and 124,400 is the length of the kinematic signals. The first input
set comprised 3D linear acceleration and angular velocity signals from the IMU on the
foot. The second set extends the information of the kinematic signals using the norm of
the acceleration and angular velocity. The third set includes the IMFs of the kinematic
signals. The fourth and the fifth sets additionally include the IF and the IE information,
respectively. The output of the networks is the lower body joint angles in the sagittal plane
with dimensions 3 × 124,400.

2.3 Neural networks

A NN is a computing model whose layered structure resembles the networked structure
of neurons in the brain, with layers of connected nodes [30]. NNs can be trained to rec-
ognize patterns, classify data, and estimate future events. A NN breaks down the input
into different layers of abstraction. Its behavior is defined by the way in which individ-
ual neurons are connected and by the weights of those connections. These weights are
automatically adjusted during training according to a specified learning rule until the

Table 2 Input sets of the neural networks

Signals 3D Acc A 3D Gyr G IMFs IF IE Total signals (Di)

Set 1 x x 6

Set 2 x x x x 8

Set 3 x x x x x 24

Set 4 x x x x x x 40

Set 5 x x x x x x x 56

Number of signals 3 1 3 1 16 16 16
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neural network achieves a desired level of performance. Regarding the sequential and
nonlinear characteristics of the kinematic gait signals, in this we considered GRNN, non-
linear autoregressive network with exogenous inputs (NARX), and LSTM networks for
black box modeling between the kinematic gait data and the lower body joint angles in
the sagittal plane. A brief introduction of the network architectures is provided in the
following sections.

2.3.1 Generalized regression neural networks

GRNNs are used in different applications related to modeling, system identification, pre-
diction, and control of dynamic systems [31]. It has been shown that GRNNs can be also
applied for joint angle estimation using kinematic data [19] and it will be used in this
work as reference to compare the performance of the different networks. The GRNN is a
single-pass neural network which uses a Gaussian activation function in the hidden layer
[32]. The model process is based on kernel density estimation from a set inputs xi (kine-
matic data) and outputs yi (joint angles). The GRNN estimation applies the conditional
expectation of output ŷi(n) given the input xi(n):

ŷi(x) = E[ yi|xi]=
∫

yi p(yi|xi)dyi =
∫
yi p(yi, xi)dyi∫
p(yi, xi)dyi

, (6)

where p(yi|xi) is the conditional probability density function [32]. It is possible to estimate
the joint probability density p̂(yi, xi) given by:

p̂(yi, xi) = 1
K

K∑

i=1

1
(2π)(Di+1/2)ε(Di+1) e

−
(

(y−yi)2+‖x−xi‖2
2ε2

)

. (7)

After simplifying the integrals in the numerator and denominator, the final expression of
the estimator is given by:

ŷi(x) =
∑K

i=1 yie
(−‖x−xi‖2/2ε2

)

∑K
i=1 e

(−‖x−xi‖2/2ε2
) , (8)

where the parameter ε is the bandwidth of the Gaussian kernel.

2.3.2 Recurrent neural network

Recurrent neural networks (RNNs) can represent time series, audio, video, and anything
that is presented by means of data sequences. In the sequence data, the present val-
ues depend on their past values, as it is the case for the joint angles. RNNs are able to
learn arbitrary nonlinear dynamical mappings, such as those commonly found in nonlin-
ear time series prediction [33]. They are not only of interest for the prediction of time
series but also generally for the control of the dynamical systems. In [34, 35], the authors
explored the possibilities of knee and ankle angle prediction using the surface elec-
tromyography signal by applying NARX and LSTM networks. They proved the efficient
applicability of recurrent neural network-based nonlinear models for predicting human
lower limb joint angles. Compared with feedforward neural networks (FNNs), where the
data flow occurs only in one direction, RNNs apply a back-coupling which results in an
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Fig. 6 Architecture of a RNN with an input, a hidden, and an output layer. The network maps the input
sequence xDi ,t to a hidden sequence hn,t and to a sequence of outputs ym,t . The parameters Di , n, andm are
the number of signals, the number of hidden units, and the number of outputs, respectively.Wxh ,Whh , and
Why are the input to hidden, hidden to hidden, and hidden to output matrices, respectively. The bias vectors
of the network are represented by bh for the hidden layer and by by for the output layer

asynchronous data flow between nodes. The architecture of a simple RNN is similar to
that of a MLP, except that the output of the neuron in hidden layer is fed back to itself
with a weight and a time delay as depicted in Fig. 6. The feedback of previous hidden
values (memory effect) allows the network to learn the temporal dynamics of sequential
data. A RNN maps a input sequence xlt to a sequence of hidden values hlt = (hl1, . . . ,hlT )

and outputs a sequence ylt iteratively using following equations:

hlt = φ
(
Wl

xhxt + Wl
hhh

l
t−1 + blh

)
, (9)

ŷl+1
t = Wl

hyh
l
t + bly , (10)

from t = 1, 2, . . . ,T where φ(.) is the hidden layer activation function, W is the weight
matrices (Wl

xh is the input to hidden weight matrix, Wl
hh is the hidden to hidden weight

matrix, andWl
hy is the hidden to output weight matrix), blh is the hidden bias vector, and

bly is the bias vector of the output.

2.3.3 Nonlinear autoregressive networks with exogenous inputs

NARXs have been considered as a good predictor for time series problems and used
to model various nonlinear dynamic systems [36]. They provide the ability to incorpo-
rate past values of estimated output y(t) and exogenous inputs x(t). This property of the
NARX networkmakes it more suitable for themodeling problem as the time history infor-
mation of inputs (kinematic gait data) and past values of the output (estimated lower body
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Fig. 7 A NARX network with series-parallel architecture. The taped delay line (TDL) blocks introduce past
values (memory effect) of the input and output signals to the network

joint angles) carry a significant amount of information. The general mathematical rela-
tionship between inputs and outputs for a NARX neural network model is represented
as:

ŷ(t) = φ
(
x(t), . . . , x(t − p), y(t − 1), . . . , y(t − q)

)
, (11)

where the value of the estimated output signal ŷ(n) depends on q previous output values
and p previous input values. φ(.) is the nonlinear mapping function and is approximated
by the feedforward neural network. The TDL blocks introduce past values (q and p) of
the input and output signals to the network. Due to the advantages over the parallel
architecture, such as higher accuracy of the feedforward network input, pure feedforward
architecture, and use of static backpropagation for training, the serial-parallel architec-
ture shown in Fig. 7 is considered in this work. The hyperparameters used for the training
are explained in Section 2.3.5.

2.3.4 Long short-termmemory network

LSTM networks are a special type of RNN. The LSTM cell reads the input time series
sequentially and transforms the input data into a hidden state at each time step, whereby
the current hidden state is a nonlinear function of the current input and the previous
hidden state. The advantage of LSTMnetworks over other types of RNN is that the depen-
dency of the current on the previous hidden state is designed in such a way that the LSTM
obtains the ability to keep parts of its hidden state over a larger number of time steps than
is possible with other RNN architectures, such as NARX. In [18], this type of network
was used to estimate the lower body joint angles with simulated kinematic data obtained
from the markers of a camera system. The main cell of a LSTM shown in Fig. 8 is made of
input, output, and forget gates. The concept of gatewas introduced to avoid the problems
with vanishing or exploding gradients [37]. The LSTM cell remembers the values over an
arbitrary interval of time and the other gates can be seen as neurons with an activation
function based on the current data xt , a hidden state ht−1 from the previous iteration, the
weight matrices Wij, and bias bi associated to the gates i and j. The activation functions
are sigmoid (σ ) or tanh. The gates can be seen as the flow regulator of values through
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Fig. 8 LSTM cell. The cell can process data sequentially and keeps its hidden state h over the time

the LSTM connections, and control which operation is performed by the cell at each iter-
ation. For the sake of clarity, the super index l has been omitted. For a LSTM cell, the
evolution of its parameters is determined at each iteration by:

it = φi (Wxixt + Whiht−1 + bi) (12)

ft = φ
(
Wxf xt + Whf ht−1 + bf

)
(13)

ot = φ (Wxoxt + Whoht−1]+bo) (14)

gt = φ
(
Wxgxt + Whght−1]+bg

)
(15)

ct = ftct−1 + it g̃t (16)

yt = ht = otφ(ct) , (17)

where it , ft , ot , and ct are the input, forget, output, and cell activation gates, respectively.
The weights Wij and biases bi of the gate connections are learned or updated during the
network training.

2.3.5 Training

The networks analyzed in this study were implemented in Matlab. They were trained to
model the relation between the kinematic gait data from one IMU placed on the foot and
the lower body joint angles in the sagittal plane. Five different sets of kinematic signals
(see Table 2) were used as input and reference lower body joint angles in the sagittal plane
as output. The input sets were divided in 80%/20% for the training and test phases, respec-
tively. The performance metric used to compare the different networks is the RMSE,
which is calculated according to:
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RMSE =
√√√√1

L

L∑

n=1

(
y(n) − ŷ(n)

)2 , (18)

where L is the length of the signals. y(n) and ŷ(n) are the reference and estimation
signals, respectively. The evaluation of the different networks is based on a 10-fold cross-
validation scheme to reflect random influences of the data. Due to the different ranges of
motion of the lower limbs and the amplitudes of input signals, a normalization of the sig-
nals (training and test) is carried out separately. For that reason, the signals are normalized
to the range [−1,1] using the following equation:

y′ = 2
y − min(y)

max(y) − min(y)
− 1 (19)

where y′ is the normalized reference signal. After the training phase, the signals were
scaled back to the original amplitudes.
Since ε is the only free parameter in GRNN, the network was trained using a grid search
to find the optimal value for the ε parameter. The optimal value for ε was determined
experimentally and amounts to 1.3.
The NARX network includes three layers (an input layer, a hidden layer, and an output

layer) and a feedback connection enclosing the input layer. In the input layer, a TDL of
two samples was experimentally found to achieve the best performance for different num-
bers of neurons. A hyperbolic tangent function and a linear function were selected as the
transfer functions of the hidden and output layers. After an iterative process to choose
the number of neurons of the hidden layer, the optimal number of neurons was set to 100.
The training function applied was the scaled conjugate gradient [38].
The structure of the LSTM network was built with three LSTM layers, a fully con-

nected layer, and a linear layer. To prevent overfitting, dropout layers were used after each
LSTM layer. This technique effectively samples a large number of thinned architectures
on the hidden layers by randomly dropping nodes during training. The dropout rate was
fix to 0.3. The LSTM network was trained using the state-of-the-art Adam optimization
method [39], which solves an optimization problem viewed as an error function depend-
ing on the network parameters. The error measures the difference between the reference
and the estimation on the training input set. The backpropagation algorithm changes
the weights and biases of all layers with the goal of minimizing the error. In practice,
only random subsets of the training data called mini-batches are given to the optimiza-
tion algorithm in one iteration of the training phase to improve the speed of the learning
phase [40]. Differentmini-batch sizes were analyzed, and the best trade-off between speed
and performance was found to be 100. The weight initialization was performed using
Xavier [37]. The learning rate was set to 0.01. The training epochs were set to 50, which
was found to achieve a good trade-off between generalization and classification accuracy,
and at the same time avoids overfitting. A stop loss criterion was applied to the train-
ing progress by evaluating the validation loss over the validation steps. The training was
stopped if there was no improvement in the validation loss during the last 3 validation
checks. The configuration of the computer used for training the networks consisted of an
Intel� Core 10980XE™, 128 GB RAM and two NVIDIA GeForce RTX 2070 Super.
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Table 3 Average RMSE performance comparison of the different neural networks and input sets

Set 1 Set 2 Set 3 Set 4 Set 5

GRNN Hip (°) 3.64 3.38 3.74 3.17 3.64
Knee (°) 5.36 5.14 5.31 4.88 5.35
Ankle (°) 5.21 4.67 4.88 4.53 4.69

NARX Hip (°) 2.64 2.53 2.71 2.52 2.86
Knee (°) 3.25 2.92 3.28 2.31 3.62
Ankle (°) 4.65 3.49 4.73 3.28 3.92

LSTM Hip (°) 2.37 2.11 2.32 1.91 2.68
Knee (°) 2.87 2.64 2.95 2.12 2.82
Ankle (°) 3.54 2.76 2.86 2.57 3.21

3 Results
In this section, the results achieved with the neural networks presented in Section 2.3 are
given. Table 3 shows the performance of different input sets in the nonlinear estimation
of the lower body joint angles in the sagittal plane using the proposed networks. Figure 9
shows the joint angle estimation using the GRNN. Figure 10 presents the joint angle esti-
mation using the proposed NARX network. Figure 11 shows the joint angle estimation
using the proposed LSTM network. The blue lines represent the reference joint angles,
and the red dashed lines represent the estimated joint angles. As seen in Table 3, the
LSTM outperforms the other NNs and achieves up to 1.85◦ and 0.63◦ better results for
the estimation of the lower limb joint angles compared to GRNN andNARX, respectively.
According to previous studies [14, 41], the extension of the information from kinematic
signals through transformations and using signals from accelerometer and gyroscopes

Fig. 9 Estimated lower limb joint angles in the sagittal plane using the GRNN with input set 4 and the
reference lower limb joint angles from the wearable system. Blue solid lines and red dashed lines are the
reference and the estimated joint angles, respectively
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Fig. 10 Estimated lower limb joint angles in the sagittal plane using the NARX with input set 4 and the
reference lower limb joint angles from the wearable system. Blue solid lines and red dashed lines are the
reference and the estimated joint angles, respectively

Fig. 11 Estimated lower limb joint angles in the sagittal plane using the LSTM with input set 4 and the
reference lower limb joint angles from the wearable system. Blue solid lines and red dashed lines are the
reference and the estimated joint angles, respectively
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improves the performance of the networks. In this study, the best results in terms of RMSE
were found with input set 4 and an average RMSE of 1.91◦, 2.12◦, and 2.57◦ for the hip,
knee, and ankle joint angles was achieved.

4 Discussion
The aim of this study was to evaluate the efficiency of nonlinear techniques in predict-
ing lower limb joint angles from one IMU placed on the foot and provide an easy-to-use
wearable system. Therefore, different neural network structures were investigated and the
analysis framework was introduced. The first part of the analysis was the segmentation
of the gait signals using the gyroscope information to find the IC and TOE events. After-
ward, the gait information of each gait cycle was extended by including the norm and the
HHT. Five different input sets were fed successively to train the NNs. The lower limb joint
angles’ prediction improved using input sets 2 and 4, and the best results were achieved
with input set 4. Due to extension of information, the NNs were capable to learn the non-
linear relationship between the foot movement and the joint angles and to reduce the
estimation error. The LSTM performed better than NARX and GRNN in terms of RMSE,
respectively. One possible reason for the better performance of RNN compared to GRNN
is that GRNNs are single-pass neural networks with no back propagation. Another reason
is that the GRNNs do not incorporate the previous values for the estimation of the joint
angles. The performance difference between LSTM and NARX can be explained due to
the LSTM cell structure (see Fig. 8). The cell has the ability to forget parts of its previously
stored memory, as well as to add parts of the new information over a larger number of
time steps.
Previous studies on the estimation of lower limb joint angles have been conducted in

the recent years. However, they differ from our work in the type of applied sensors, the
number and location of IMUs, the NN structure, the number of datasets, and the type
of data (simulated/virtual kinematic). In [20], an artificial NN is applied to simulate the
progression of angle values in the lower limbs, where the angles extracted from a cam-
era system are the inputs for the network, and the correlation coefficient between the
input and output signals serves as the performance measure. In [17], the lower limb joint
angles were estimated using a CNN with a camera system, 23 markers, and 9 strain sen-
sors. The RMSE results obtained in the sagittal plane for inter-participant were 5.39◦,
6.38◦, and 3.92◦ for the hip, knee, and ankle, respectively. The authors in [22] obtained
a value of 7◦ RMSE in the estimation of the knee joint angle with mechanomyography
signals and a CNN. The outcomes reported in [18] which are 1.74◦, 1.92◦, and 1.80◦ for
the hip, knee, and ankle joint angles in the sagittal plane, are comparable with those in
this work. However, the larger dataset applied in their study and the simulated kinematic
data obtained from the markers of the camera system, which do not include the soft tis-
sue movements measured by IMUs, could explain the relatively better performance in
the estimation of the lower limb joint angles. According to our studies, the pattern and
range of motion of the lower limb joint angles vary from one subject to another, and in
particular those for the ankle and knee are less consistent compared to those of the hip.
A larger dataset could further improve the estimation results. In addition, the anthro-
pometric differences and various walking styles of the subjects can lead to individual
biomechanical gait parameters, and thus estimation errors, which can be tolerated to a
certain degree.
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5 Conclusions
The main focus of this work is to investigate the efficiency of machine learning and
deep neural networks applied in joint angle nonlinear modeling of the lower limbs in the
sagittal plane using the kinematic records of a single IMU placed on the foot. The orig-
inal contributions of this work are summarized as follows. First, an overall performance
assessment framework is established, where a thorough accuracy estimation as a function
of the applied network and the number and type of datasets is obtained. Second, the appli-
cation of the magnitude and the HHT of the kinematic gait signals to provide additional
information for the network such as IMF, IF, and IE is investigated.
A comparison of three different neural network approaches with different input com-

binations was performed, and the RMSE was used to assess the estimation accuracy of
the lower limb joint angles. The LSTM outperforms the GRNN and NARX networks and
achieves up to 1.85◦ and 0.63◦ better accuracy estimation of the lower limb joint angles,
respectively. It is also shown that, including the magnitude, the IMF and IF of the kine-
matic signals provide an accuracy improvement of about 0.7◦ on average. The best results
in terms of RMSE were obtained with input set 4, and an average RMSE of 1.91◦, 2.12◦,
and 2.57◦ for the hip, knee, and ankle joint angles was achieved. According to the evalua-
tion results, LSTM networks are very accurate in the estimation of lower limb joint angles
and of great potential in building digital twins for gait rehabilitation. Future research
activities could focus on the lower limb joint estimation using CNNs to reduce the esti-
mation error, perform estimation more precisely, and simplify the pre-processing steps
on the kinematic data. The application of the proposed framework to a bigger number
of subjects and different walking conditions to obtain a one-fits-all modeling approach
will be the subject of future studies as well. Looking ahead, this work supports the use of
wearable sensors in combination with machine learning techniques for the estimation of
lower limb joint angles in the sagittal plane in digital health and rehabilitation applica-
tions. Ultimately, the straightforward and easy use of the proposed wearable system in the
form of digital twins has considerable practical implications, and opens new possibilities
for in-field diagnosis and better prevention strategies.
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20. M. Błażkiewicz, A. Wit, Artificial neural network simulation of lower limb joint angles in normal and impaired human
gait. Acta Bioeng. Biomech. 20, 43–49 (2018). https://doi.org/10.5277/ABB-01129-2018-02

21. J. Hannink, T. Kautz, C. F. Pasluosta, K. Gaßmann, J. Klucken, B. M. Eskofier, Sensor-based gait parameter extraction
with deep convolutional neural networks. IEEE J. Biomed. Health Inform. 21(1), 85–93 (2017). https://doi.org/10.
1109/JBHI.2016.2636456

22. H. Wu, Q. Huang, D. Wang, L. Gao, in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), A CNN-SVM Combined Regression Model for Continuous Knee Angle Estimation Using
Mechanomyography Signals, (2019), pp. 124–131. https://doi.org/10.1109/ITNEC.2019.8729426

23. J. Conte Alcaraz, S. Moghaddamnia, J. Peissig, in 2017 22nd International Conference on Digital Signal Processing (DSP),
Mobile quantification and therapy course tracking for gait rehabilitation, (2017), pp. 1–5. https://doi.org/10.1109/
ICDSP.2017.8096106

24. J. Perry, J. M. Burnfield, in Gait analysis : normal and pathological function, 2nd ed., Gait analysis : normal and
pathological function (SLACK, Thorofare, 2010)

25. G. P. Panebianco, M. C. Bisi, R. Stagni, S. Fantozzi, Analysis of the performance of 17 algorithms from a systematic
review: influence of sensor position, analyzed variable and computational approach in gait timing estimation from
IMU measurements. Gait & Posture. 66, 76–82 (2018)

26. A. M. Sabatini, C. Martelloni, S. Scapellato, F. Cavallo, Assessment of walking features from foot inertial sensing. IEEE
Trans. Biomed. Eng. 52(3), 486–494 (2005). https://doi.org/10.1109/TBME.2004.840727

27. A. Goshvarpour, A. Goshvarpour, Nonlinear Analysis of Human Gait Signals. Int. J. Inf. Eng. Electron. Bus. 4, 15–21
(2012). https://doi.org/10.5815/ijieeb.2012.02.03

28. N. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, H. H. Liu, The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond.
Ser. A: Math. Phys. Eng. Sci. 454, 903–995 (1998). https://doi.org/10.1098/rspa.1998.0193

29. G. Huang, C. Wu, J. Lin, in 2012 International Conference on Computerized Healthcare (ICCH), Gait analysis by using
tri-axial accelerometer of smart phones, (2012), pp. 29–34. https://doi.org/10.1109/ICCH.2012.6724466

30. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Report (Cornell Aeronautical
Laboratory). (Spartan Books, Washington, 1962)

31. A. J. Al-mahasneh, S. G. Anavatti, M. Pratama, Applications of General Regression Neural Networks in Dynamic Systems.
(IntechOpen, Rijeka, 2018). https://doi.org/10.5772/intechopen.80258

32. D. Specht, A general regression neural network. IEEE Trans. Neural Netw. 2, 568–576 (1991). https://doi.org/10.1109/
72.97934

33. K. S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks. IEEE Trans.
Neural Netw. 1(1), 4–27 (1990). https://doi.org/10.1109/72.80202

34. R. Gupta, I. S. Dhindsa, R. Agarwal, Continuous angular position estimation of human ankle during unconstrained
locomotion. Biomed. Signal Process. Control. 60, 101968 (2020)

35. X. Ma, Y. Liu, Q. Song, C. Wang, Continuous Estimation of Knee Joint Angle Based on Surface Electromyography
Using a Long Short-Term Memory Neural Network and Time-Advanced Feature. Sensors. 20(17), 4966 (2020).
https://doi.org/10.3390/s20174966

36. H. Liu, X. Song, in 2015 10th Asian Control Conference (ASCC), Nonlinear system identification based on NARX network,
(2015), pp. 1–6

37. X. Glorot, Y. Bengio, in AISTATS, Understanding the difficulty of training deep feedforward neural networks, vol. 9,
(2010), pp. 249–256

38. M. F. Møller, A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993).
https://doi.org/10.1016/S0893-6080(05)80056-5

39. D. P. Kingma, J. Ba, in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. ed. by Y. Bengio, Y. LeCun, Adam: A Method for Stochastic Optimization, (2015),
pp. 1–15. http://arxiv.org/abs/1412.6980

40. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning. (MIT Press, Cambridge, 2016)

https://doi.org/10.1109/JSEN.2019.2928777
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.1109/ICSENS.2016.7808590
https://doi.org/10.3390/s16010115
https://doi.org/10.1109/EMBC.2018.8513115
https://doi.org/10.3390/s17122735
https://doi.org/10.3390/s19235325
https://doi.org/10.3390/s19235325
https://doi.org/10.1007/s11517-019-02061-3
https://doi.org/10.1016/j.gaitpost.2007.11.001
https://doi.org/10.5277/ABB-01129-2018-02
https://doi.org/10.1109/JBHI.2016.2636456
https://doi.org/10.1109/JBHI.2016.2636456
https://doi.org/10.1109/ITNEC.2019.8729426
https://doi.org/10.1109/ICDSP.2017.8096106
https://doi.org/10.1109/ICDSP.2017.8096106
https://doi.org/10.1109/TBME.2004.840727
https://doi.org/10.5815/ijieeb.2012.02.03
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1109/ICCH.2012.6724466
https://doi.org/10.5772/intechopen.80258
https://doi.org/10.1109/72.97934
https://doi.org/10.1109/72.97934
https://doi.org/10.1109/72.80202
https://doi.org/10.3390/s20174966
https://doi.org/10.1016/S0893-6080(05)80056-5
http://arxiv.org/abs/1412.6980


Conte Alcaraz et al. EURASIP Journal on Advances in Signal Processing         (2021) 2021:10 Page 20 of 20

41. S. -M. Lee, S. M. Yoon, H. Cho, in 2017 IEEE International Conference on Big Data and Smart Computing (BigComp),
Human activity recognition from accelerometer data using convolutional neural network, (2017), pp. 131–134.
https://doi.org/10.1109/BIGCOMP.2017.7881728

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/BIGCOMP.2017.7881728

	Abstract
	Keywords

	Introduction
	Methods
	Wearable sensor system
	Data pre-processing
	Gait cycle segmentation
	Hilbert-Huang transformation
	Norm of the kinematic gait data
	Dataset

	Neural networks
	Generalized regression neural networks
	Recurrent neural network
	Nonlinear autoregressive networks with exogenous inputs
	Long short-term memory network
	Training


	Results
	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

