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Abstract: Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in
bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However,
the affinity and especially the selectivity of MIPs are in general lower than those of their biological
pendants. Enzymes are useful tools for the preparation of MIPs for both low and high-molecular
weight targets: As a green alternative to the well-established methods of chemical polymerization,
enzyme-initiated polymerization has been introduced and the removal of protein templates by
proteases has been successfully applied. Furthermore, MIPs have been coupled with enzymes in
order to enhance the analytical performance of biomimetic sensors: Enzymes have been used in
MIP-sensors as “tracers” for the generation and amplification of the measuring signal. In addition,
enzymatic pretreatment of an analyte can extend the analyte spectrum and eliminate interferences.

Keywords: enzymatic MIP synthesis; template digestion; enzyme tracer; enzymatic analyte
conversion; molecularly imprinted polymers

1. Introduction

Biological receptors such as antibodies and enzymes are widely used in affinity technology,
in applications where specific molecular recognition is required. These include biosensors, assays,
bioseparation, but also applications in the biomedical field, such as medical treatment or drug
delivery. However, these biomacromolecules have some drawbacks that limit their use in technology,
in particular their limited stability and availability.

In order to substitute antibodies and enzymes by fully synthetic materials in the above-mentioned
applications, the concept of molecularly imprinted polymers (MIPs) has been created: Monomers
are polymerized in the presence of the target analyte or a derivative thereof, resulting in cross-linked
polymer networks with cavities that mimic the active sites of biopolymers, e.g., antibodies, enzymes,
or hormone receptors [1–4]. Molecularly imprinted polymers are more stable under harsh conditions
such as high temperature, extreme pH, and organic solvents, and they are potentially cheaper to
produce compared to their biological pendants. However, the affinity and especially the selectivity of
MIPs are in general lower than those of their biological counterparts, with some honorable exceptions.
This research area is therefore raising increasing interest; at present, more than 1200 papers on
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MIPs are published per year [5–9]. Some ten percent of MIP papers describe artificial receptors for
proteins [7,10–13], including enzymes [13–21].

Molecularly imprinted polymers have been mostly developed for binding of targets, thus
mimicking the function of antibodies. In addition to these “plastic antibodies”, synthetic catalysts
have been created which mimic the substrate conversion by enzymes. Stable analogs of the postulated
transition state of the catalyzed reaction are used as the template of the MIP to mimic the active
center of the enzyme [22–24]. Redox enzymes have been mimicked by integrating metal ions or metal
complexes into the polymer matrix of MIPs [25–29]. Moreover, catalytic MIPs have been obtained for
reactions for which no natural enzyme catalyst exists [30].

On the other hand, enzymes are useful tools for the preparation of surface-imprinted MIPs
and for the optimization of signal transduction in MIP-sensors. Both aspects have not yet been
comprehensively discussed in the literature. This article aims to demonstrate the potential of enzymes
in the workflow of MIP preparation and for enhancing the analytical performance of MIP-sensors.
The following approaches are presented:

• Enzyme-initiated polymerization has been introduced as a green alternative to the
well-established chemical polymerization and electrosynthesis.

• Removal of protein templates has been achieved under mild conditions by proteases, especially
proteinase K.

Furthermore, MIPs have been coupled with enzymes in order to enhance the analytical
performance of biomimetic sensors:

• Enzyme-labeled “tracers” have been used in analogy to competitive immunoassays in
MIP sensors.

• The measuring signal of MIP-sensors has been amplified by electro-enzymatic recycling of the
redox marker ferricyanide using horseradish peroxidase (HRP).

• The enzymatic pretreatment of the analyte allowed the interference-free electrochemical
measurement or the conversion of a non-binding analyte into a target analog of the MIP.

2. Enzymes in the Workflow of the Preparation of Surface-Imprinted MIPs

2.1. Preparation of Surface Imprinted MIPs

MIPs for low-molecular weight targets are often prepared by classical bulk-imprinting techniques.
However, for biomacromolecular targets such as proteins, this still remains challenging due to their
large size, high surface complexity, and conformational flexibility. Better accessibility of large target
molecules can be achieved by generating the binding sites directly at the surface [31]. Various
so-called surface-imprinting techniques were developed in the past few years employing in particular
(photo)chemical polymerization, electrochemical synthesis, self-polymerization of dopamine by
ambient oxygen, as well as enzyme-initiated polymerization (see Scheme 1).
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2.1.1. Photo- and Chemically Initiated Polymerization

The initiation of polymerization reactions by the addition of a chemical compound, in combination
with UV-irradiation, is a common technique in polymer chemistry and was also applied to the
production of MIPs. One approach that combines this technique with the concept of surface-imprinting
is the synthesis of MIP nanoparticles (NPs).

In the case of core-shell MIP nanoparticles, the polymer layer is deposited by emulsion or grafting
on a preformed support nanosphere. By choosing the appropriate support material, the particle size
can be easily varied and specific properties such as fluorescence or magnetism of the core can be
beneficial for separation or readout [32]. In this way, MIP nanoparticles for small molecules, e.g.,
cholesterol [33] but also for proteins, e.g., bovine hemoglobin [34] were prepared.

In 2013, Poma et al. described an approach for the solid-phase synthesis of MIP nanoparticles
using a reusable template [35]. Low-molecular weight targets were immobilized on glass beads serving
as the solid-phase. Using thermoresponsive polymers, the washing and release of high-affinity MIP
nanoparticles from the solid phase could be controlled by temperature changes. In the same year,
Ambrosini et al. proposed a comparable approach with elution at lower temperatures compatible with
the use of proteinaceous templates [11]. These were immobilized in an oriented way by using affinity
ligands in order to improve the binding site homogeneity of the imprinted nanoparticles. Trypsin was
chosen as the template, which was later extended to the enzymes kallikrein and ribonuclease A [12].
Metal-chelates served as affinity ligands for surface-bound histidines while the use of the competitive
inhibitor p-aminobenzamidine as a ligand enabled the polymerization in close proximity of the
protein’s recognition site. In an earlier work by Cutivet et al., the latter approach was used to prepare
the first MIP microgels acting as potent trypsin inhibitors [13].

2.1.2. Electropolymerization

Electropolymerization is an elegant way to prepare MIPs directly on the conducting surface of
a transducer, e.g., electrodes or quartz crystal micro balance (QCM) and surface plasmon resonance
(SPR) chips. Three different methods have been developed with a clear dominance of the last one:
Electrochemical generation of the “active” initiator of the radical chain reaction [36], generation of a
pH change by water electrolysis to trigger the deposition of the polymer, e.g., chitosan, at the electrode
surface [37], and polymer synthesis by anodic oxidation of functional monomers.

The first successful attempts to electrosynthesize MIPs were performed by Malitesta et al. [38]
using o-phenylenediamine (o-PD) for glucose, and in the same year Panasyuk et al. used phenol
to synthesize a MIP for phenylalanine [39]. These studies initiated the development of a broad
spectrum of electrosynthesized MIPs which are mostly based on pyrrole, derivatives of thiophene,
phenylenediamines, and other derivatives of aniline. Most of the electropolymerizable monomers can
be deposited from aqueous solutions and buffers can serve as supporting electrolytes. Compared to
free radical polymerization initiated generally either thermally or by UV light, electropolymerization
most often requires no initiator. Electrically conducting polymers can be grown by the electrochemical
oxidation of pyrrole and ethylenedioxythiophene (EDOT) monomers, reaching a thickness appropriate
for three-dimensionally structured MIPs [40]. Polypyrrole can be overoxidized by applying high
potentials which result in the formation of carboxyl groups and the loss of conductivity. EDOT
as a functional monomer offers interactions with the target by hydrogen-bonds, electrostatic, and
π-π interactions, and shows low nonspecific adsorption of proteins [41]. Aniline [42] and related
compounds such as o-phenylenediamine [43,44] and o-aminophenol [45] bear functionalities that
can participate in hydrogen-bonding, π-π-, and other types of interactions with the template. The
most widespread electrochemical polymerization technique for MIPs is cyclic voltammetry (CV).
By varying the number of scan cycles and the scan rate, the thickness and the compactness of the
deposited polymer film can be controlled, respectively. Potentiostatic deposition lacks control over
film compactness, but the film thickness can be precisely adjusted by the charge consumed during
electropolymerization [46,47].
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2.1.3. Self-Polymerization

Inspired by adhesive amino acids existing in the elastic byssus threads of mussels,
Messersmith et al. were the first to present the spontaneous generation of thin polydopamine coatings
(2–50 nm) on different organic and inorganic materials (noble metals, metal oxides, semiconductors,
ceramics, and synthetic polymers) by self-polymerization of dopamine at alkaline pH (8.5) [48].
Dopamine was selected, since it combines the catechol (3,4-dihydroxy-L-phenylanaline) and amine
(lysine) functionalities that were found in high amounts in secreted adhesive mussel proteins [49].
The polymerization reaction is assumed to be initiated by the oxidation of the catechol moiety via
ambient oxygen to a quinone, resulting in layers whose thickness is dependent on the immersion time of
the material to be coated and could therefore be adjusted to the dimensions of any proteinaceous target.

Zhou et al. introduced the self-polymerization of dopamine as a tool for the imprinting of
proteins [50]. In a mixture containing dopamine, Fe3O4 nanoparticles, and human hemoglobin in
slightly alkaline buffer (pH 8.0), the NPs were covered with a ca. 10 nm thin layer of polydopamine.
After removal of the template they were capable of selectively recognizing hemoglobin with good
binding capacity. Since then, the technique of self-polymerization has been employed in several
studies for the imprinting of proteins on various platforms such as magnetic [51,52], gold [53],
or silica nanoparticles [54,55], silicon nanowires [56], 4-vinylphenylboronic acid-based monolithic
skeletons [57], gold electrodes [58,59], or multi-walled carbon nanotubes [60]. These studies showed
that apart from the advantage of controllable thickness, MIPs comprised of polydopamine exhibit
good to excellent binding properties, have high hydrophilicity, biocompatibility, as well as pH (3–11)
and longtime stability [61].

2.1.4. Enzyme-Initiated MIP Synthesis

Enzymatic polymer synthesis is attractive for green polymer chemistry [62], as enzymes work at
mild conditions and have good recyclability as well as biocompatibility. So far, three groups of enzymes
have been used to initiate polymerization reactions: oxidoreductases (e.g., HRP, laccase), transferases
(e.g., glycosyltransferase, acyltransferase), and hydrolases (cellulase, lipase) [63]. Oxidoreductases
catalyze the oxidative polymerization of different organic compounds such as phenols or anilines under
the consumption of hydrogen peroxide or other peroxides. In the context of vinyl-based and acrylic
polymers, enzyme-initiated polymerization recently also stepped into focus. Thereby, oxidoreductases
such as HRP [64] produce the radicals that then initiate radical polymerization.

Very recently, HRP-initiated radical polymerization has been introduced by Haupt's group as a
tool for the preparation of MIPs for small molecules such as 2,4-dichlorophenoxyacetic acid (2,4-D)
and salicylic acid, but also for the protein trypsin [10]. HRP with H2O2 as the substrate and a mediator
molecule such as acetylacetone generates radicals that can initiate the polymerization of vinyl and
acrylate monomers (see Scheme 2).

In order to execute the polymerization in aqueous media, the water-soluble cross-linker
1.4-bis(acryloyl)piperazine was applied. To prevent contamination of the MIP with HRP and to
suppress the formation of a polymer shell around the initiator enzyme, a solid-phase synthesis
approach was used where the HRP was immobilized on 0.1 mm glass beads. Using this system,
MIP-nanogels with diameters between 50 and 300 nm were obtained. The possibility of re-using
the glass beads with immobilized HRP to initiate more than one batch of polymer particles
was demonstrated for 2,4-D imprinted nanoparticles: Four successive batches of MIP and NIP
(non-imprinted polymer) were synthesized with the same immobilized HRP. After polymerization,
the HRP-charged glass beads can be easily separated from the polymerization mixture and are washed
to eliminate any residual unreacted monomers and polymers. The imprinted nanoparticles were
characterized by dynamic light scattering and radioligand binding assays. Particle sizes and binding
capacity were rather reproducible between different batches. Above six cycles, the nanogel yield
started to decrease, indicating partial inactivation of the immobilized enzyme.
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The MIP for 2,4-D showed imprinting factors (IF) of around 5 and good discrimination of
structurally related compounds. The MIPs for salicylic acid had a particle size of 150 nm and a
maximum IF of 3. For trypsin, the particles had a size of 25 nm and an IF of 4. Regarding their
recognition properties, enzyme-initiated MIP nanoparticles were shown to be comparable to or even
outperforming their photo-initiated counterparts [10].
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Scheme 2. (A) Schematic representation of the synthesis of molecularly imprinted polymer
nanoparticles by immobilized HRP-initiated free-radical polymerization. The monomers used here
are 4-vinylpyridine (4-VP) and 1,4-bis(acryloyl)piperazine (PDA). H2O2 is the substrate of HRP,
and acetylacetone is a mediator. The imprinting template is 2,4-D; (B) Simplified catalytic cycle
of horseradish peroxidase (HRP) and the commonly accepted formation of radicals. Reproduced from
Ref. [10], with permission. Copyright from John Wiley and Sons (2017).

2.2. Template Removal by Enzymes

The essential prerequisite for template removal is not to alter the binding sites and integrity of
the polymer structure. In fact, the choice of regeneration conditions is a trade-off between complete
removal of the target and preservation of the integrity of the binding sites. Methods applied include
the application of chaotropic agents, extraction by organic solvents, the use of highly acidic or basic
solutions and/or surfactants such as sodium dodecylsulfate (SDS) or Tween 20, sometimes at elevated
temperatures [7], and electroelution [10,13,31].

For protein targets, an alternative to harsh solvent extraction is proteolytic digestion, e.g.,
by proteinase K or trypsin (see Scheme 1). Proteinase K is a serine protease with broad cleaving
specificity. The predominant site of cleavage is the peptide bond adjacent to the carboxyl group
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of aliphatic and aromatic amino acids with blocked alpha amino groups [52]. It is still active
even in the presence of some common chemicals which denature proteins, such as SDS, urea, and
ethylenediaminetetraacetic acid (EDTA) [65,66]. Therefore, proteinase K is commonly used for nucleic
acid isolation and for general protein degradation in cell lysates [65].

Proteinase K and trypsin have been used for template removal in protein imprinting. The process
can be performed under mild conditions, which is favorable for retaining the polymer structure. Since
after digestion protein fragments still remain in the binding sites of the MIP, intensive washing is
required. Hawkins et al. achieved efficient removal of hemoglobin from a polyacrylamide-based
MIP [67]. Proteinase K has been successfully used to remove myoglobin (16.7 kDa) from a
polyaminophenol-layer [45], canceroembryonal antigen (CEA) from a polypyrrole based MIP [68],
trypsin from methacryloylaminobenzamidine based microgels [13], as well as concanavalin A (ConA)
(102 kDa) from a polyscopoletin-matrix [69]. In the latter case, proteinase K was used in combination
with Tween 20.

3. Enzymes for the Enhancement of the Analytical Performance of MIP Sensors

3.1. Signal Amplification in Electrochemical MIP Sensors

In addition to the utilization in the synthesis of MIPs, electrochemical methods are also used for
measuring the binding of both low and high molecular weight targets. Amperometry, differential
pulse voltammetry (DPV), and impedance spectroscopy are more sensitive and simple compared
to quartz crystal microbalance (QCM) or surface plasmon resonance (SPR). Electrochemical pulse
methods offer the possibility to eliminate signals of easily oxidizable substances such as ascorbic acid
and catecholamines by selecting the potential window, however at the expense of increased measuring
times. Two major principles have been applied:

(i) Electroactive targets, such as morphine, paracetamol, tamoxifen, and diclofenac can permeate
through the cavities of the MIP to the electrode and an electrochemical signal can be generated
by the conversion of the target using different electrochemical methods. This principle has been
frequently used for drugs which contain phenolic structures but also for a few proteins which
show direct electron transfer, e.g., cytochrome c, hemoglobin, and hexameric tyrosine-coordinated
heme protein (HTHP) [21,70,71].

(ii) Binding of the target modulates the diffusive permeation of redox markers in a
concentration-dependent manner. This effect has been frequently applied to characterize
each step of MIP preparation for electro-inactive targets, such as melamine, methyl parathion,
phenobarbital, caffeine, 17β-estradiol, acetylsalicylic acid, and warfarin [72–76]. In addition, this
method is frequently applied to quantify the binding of the target analyte. However, it supplies
an indirect signal which integrates all changes of the MIP-layer. Using this approach, several
papers claim measuring ranges over more than four decades of target concentration and lower
limits of detection (LOD) in the sub-nanomolar range for both low- [77,78] and high-molecular
weight targets [79–81]. Rebinding of the target in the pores of the MIP could be strong for small
molecules. On the other hand, the film thickness for surface imprinted layers is lower than
the dimension of macromolecular targets. Thus, affinity constants for non-covalent MIPs could
hardly reach the sub-nanomolar region. From the practical point of view, it seems questionable
to evaluate the tiny current decreases per concentration decade of the cyclic and differential
pulse voltammograms.
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Enzymes offer further possibilities to enhance the analytical performance and sensitivity
of electrochemical MIP sensors as they can be used for signal amplification (see Scheme 3).
Electro-enzymatic recycling of the redox marker was successfully applied by Lian et al. for signal
amplification in the readout of the target binding of MIPs for the antibiotic kanamycin [82]. In the first
system, the ferrocyanide which is formed at the MIP-covered electrode is enzymatically reoxidized
by peroxide in the presence of HRP (see Scheme 4). The catalytic action of HRP leads to an increase
of the reduction peak in the cyclic voltammogram and the concomitant decrease of the anodic peak.
The enzymatic recycling by HRP results in an eight times larger signal for the same MIP system upon
addition of peroxide. The authors claim that this signal amplification leads to a shift of the lower limit
of detection by two orders of magnitude from 3.9 µM to 28 nM. The second system used the same
polypyrrole-based MIP for kanamycin, but used 1,1′-ferrocenedicarboxylic acid as the redox marker
and glucose oxidase (GOx). In the presence of glucose—the co-substrate of GOx—the LOD was shifted
down to 23 nM, a value comparable with the HRP system. This highly effective principle may be
extended for other analytes and the application of alternative electro-enzymatic recycling systems.
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3.2. Enzyme-Labels in MIP-Based Affinity Sensors

In 1993, Mosbach and co-workers presented the development of the first molecularly imprinted
sorbent assay for the detection of diazepam and theophylline [83]. This method is analogous to
competitive immunoassays with the antibody replaced by a MIP. The latter is incubated in a mixture
containing both the analyte and a labeled analyte, and the analyte concentration can be assessed
from the tracer signal, which decreases with increasing analyte concentration. Since then, several
publications have addressed the design and improvement of this technique employing, e.g., different
labels and thus readout methods [84]. Besides radiochemical or fluorescent tracers, enzymes have
been conjugated with the target molecule, thus facilitating the analyte quantification via an enzymatic
reaction (see Scheme 3).

The first enzyme-labeled molecularly imprinted sorbent assay was reported by Surugiu et al.
in 2000 [85]. The antigen 2,4-dichlorophenoxyacetic acid was coupled to tobacco peroxidase
enabling colorimetric (o-PD/H2O2) as well as chemiluminescent (luminol/H2O2) detection with
linear measuring ranges of 40–600 µg·mL−1 and 1–200 µg·mL−1, respectively. This setup was further
developed by coating microtiter plates with imprinted polymer microspheres enabling analyses in a
high-throughput format [86], as well as by coating glass capillaries enabling flow-injection competitive
assays yielding a dynamic range of 5 pg/mL to 100 ng/mL in a discontinuous detection mode [87].

Piletsky et al. developed imprinted microplates for the detection of epinephrine and
atrazine [88]. Here, the monomers were directly polymerized on the microplate walls in the
presence of the template. The analytes were conjugated with HRP and the reaction with
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and H2O2 was detected. A comparable
approach was used by Wang et al. for the detection of estrone in environmental water [89] and
by Chianella et al. for the detection of vancomycin in buffer and blood plasma [90]. The latter
developed an assay with a high sensitivity and a detection limit of 2.5 pM, which even outperformed
analogous immunoassays. Similarly high sensitivity was obtained for an isoproturon-MIP developed
by Li et al. by applying electrochemical luminescence [91]. GOx was used as the tracer enzyme and
the luminescence signal was detected after the addition of glucose and luminol, yielding a linear
measuring range from 90 pM up to 5 nM and a detection limit of 4 pM.

An electrochemical readout has been used for the detection of oxytetracycline [92]. The analyte
was labeled with HRP and the activity towards the oxidation of hydroquinone in the presence of H2O2

was detected by differential pulse voltammetry, yielding a detection limit of the sensor of 0.65 nM (see
Scheme 5).
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3.3. Combinations of MIPs with the Enzymatic Conversion of the Analyte

Pretreatment of the analyte by an enzyme can lead to a broadened analyte spectrum by the
conversion of “non-target” substances into target analogs or to benefits regarding the measuring
conditions (see Scheme 3). Additionally, integrated MIP/enzyme architectures can allow for the
elimination of interferences.

A family of electrochemical MIP sensors for the non-steroidal antiestrogen tamoxifen (TAM) and
the analgesic drugs paracetamol and aminopyrine was prepared by electropolymerization. For these
three electroactive targets, the signal was generated by a redox marker and by the direct anodic
oxidation of the target at the MIP-covered electrode. For improving the selectivity and to prevent
fouling of the electrode surface, the target analyte was enzymatically converted before the interaction
with the MIP-covered electrode.

Signal generation of the TAM sensor by the anodic oxidation of the target leads to a continuous
signal decrease in a series of measurements. Obviously, an insulating film is formed from the
oxidation products. In order to prevent this adverse effect, another electrode reaction was applied [93].
Pretreatment of the TAM solution with hydrogen peroxide in presence of HRP generated an oxidation
product which can be reduced at 0 V. At this potential, fouling of the electrode by formation of a
polymer film is circumvented. In the present stage of development, the enzymatic reaction has to be
performed in solution because the harsh regeneration of the MIP is not compatible with the stability of
the enzyme.

Different electrochemical sensors for paracetamol have been described in the literature [94–99]
which indicate either the change of diffusional permeability of the MIP layer for a redox marker or the
anodic oxidation of paracetamol (PAR). Both methods have severe problems: As described for TAM, the
anodic oxidation of phenolic substances leads to an insulating cover and the decrease of the ferricyanide
signal is prone to several interferences. To overcome these problems, PAR was enzymatically converted
before interaction with the electrochemical MIP-sensor. Combinations of the MIP-electrode with
different enzymatic reactions are presented in Scheme 6: The target paracetamol was pretreated
with tyrosinase in order to indicate the product at low electrode potential, where electrochemical
interferences by ascorbic acid are suppressed and the fouling of the electrode prevented.

The copper enzyme tyrosinase converts a broad spectrum of phenolic compounds using
ambient oxygen as the electron acceptor [100–104]. Among them, PAR is converted in two
consecutive one-electron oxidation steps into N-acetyl-p-benzoquinone (4-AOBQ) [105] (see Scheme 6).
This product generates a cathodic current signal at potentials below−0.1 V [106]. Tyrosinase-catalyzed
oxidation of paracetamol has been applied in both an amperometric biosensor for monitoring the
degradation of paracetamol and the elimination of its interference in a glucose oxidase-based glucose
electrode [107].

The treatment of PAR with tyrosinase resulted in the abolishment of the anodic current signal at
0.6 V and the formation of the cathodic signal at −0.1 V [108]. The current of the PAR-MIP electrode
at −0.1 V increased linearly between 2.5 µM and 335 µM (R2 = 0.9969) and approached saturation
above 550 µM. Most important, the interfering signals for ascorbic acid and uric acid are completely
absent, but also the signals for L-DOPA and catechol are reduced to only 20 percent of the signal
for paracetamol.

Furthermore the extension of the analyte spectrum by enzymatic pretreatment of the sample has
been demonstrated: Phenacetin—a drug which has been withdrawn from the market—is converted
by a non-specific esterase to phenetidine [108] (see Scheme 6). Whilst phenacetin did not generate
an oxidation current at 0.6 V, its treatment with esterase brought about concentration dependent
signals. Control experiments with phenetidine showed in the DPVs a peak at the same potential [109].
The MIP did not discriminate the very similar substances paracetamol and p-phenetidine and showed
comparable sensitivities for both substances. This result shows that the combination of the esterase
catalyzed hydrolysis with the MIP-covered electrode allows the measurement of phenacetin.
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As an alternative to the esterolytic conversion of phenacetin into an electroactive product, it was
checked whether horseradish peroxidase catalyzes the O-dealkylation to paracetamol. Contrary to the
effective catalysis of N-dealkylation of aminopyrine by HRP [110], the formation of an electroactive
product was not observed.

Aminopyrine (AP) is metabolized by liver P450s and HRP to formaldehyde and aminoantipyrine
(AAP), which is devoid of the two methyl groups at position N4. A MIP electrode for the
target AAP recognized both AAP and AP with comparable sensitivity [110]. Both HRP and the
mini-enzyme-Microperoxidase-11 (MP-11) were immobilized on top of the MIP for AAP. This new
approach combines substrate conversion and the specificity of target recognition by a MIP sub-layer. In
this hierarchical architecture, the peroxide dependent conversion of AP takes place in the layer on top
of a product-imprinted electropolymer. In the peroxide dependent oxidation of AP (but not of AAP)
catalyzed by both HRP and MP-11, an intermediate was formed which generated a cathodic current
at 0 V at the glassy carbon electrode. Uric acid gave no response since it is not electroactive at 0 V.
The contribution of ascorbic acid was also completely suppressed by the action of the MIP layer and
oxidation with peroxide. Therefore, the enzyme/MIP-sensor indicates only AP (also in the presence of
AAP) and prevents interferences by ascorbic acid or uric acid.

4. Conclusions

Up to now the field of MIP-sensors—both for low and high molecular weight analytes—has been
dominated by electrochemical transducers which indicate mostly a redox marker or an electroactive
analyte. Electrochemical methods have been successfully applied in MIP-sensors for drugs or
environmental analysis. On the other hand, QCM and SPR are appropriate means for the indication of
macromolecules. The application of enzymes in combination with MIP-sensors has the potential to
“upgrade” their analytical performance. Up to now, the degree of applying enzymes in the preparation
of MIPs and in signal generation for analyte recognition is at different levels of development.

Enzyme-initiated polymerization is still at the initial stage of development. Whether it will
compete with the established methods such as electropolymerization, chemical nanoparticle synthesis,
and self-polymerization still remains to be seen. The need of immobilizing the enzyme is an additional
working step.
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The application of enzymes in the removal of the template is presently restricted to proteinase K
for removing proteins. For oligomeric proteins, splitting into subunits by chaotropic reagents seems
more straightforward. On the other hand, the application of nucleases for nucleic acids, lipases for
lipids, and glycosidases for carbohydrates may come in the near future.

Enzyme labels are the key in highly sensitive luminescence-based MIP-binding assays and in
electro-enzymatic recycling for signal amplification.

The enzymatic pretreatment of a target analyte can generate a product which is indicated at a lower
electrode potential or a “non-target” substance that can be converted into a target analog. Integrated
MIP/enzyme architectures allow for the elimination of interferences in the detection of drugs.
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