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In-silico Prediction of Synergistic 
Anti-Cancer Drug Combinations 
Using Multi-omics Data
Remzi Celebi   1, Oliver Bear Don’t Walk IV2, Rajiv Movva3, Semih Alpsoy4 & Michel Dumontier   1

Chemotherapy is a routine treatment approach for early-stage cancers, but the effectiveness of 
such treatments is often limited by drug resistance, toxicity, and tumor heterogeneity. Combination 
chemotherapy, in which two or more drugs are applied simultaneously, offers one promising approach 
to address these concerns, since two single-target drugs may synergize with one another through 
interconnected biological processes. However, the identification of effective dual therapies has been 
particularly challenging; because the search space is large, combination success rates are low. Here, 
we present our method for DREAM AstraZeneca-Sanger Drug Combination Prediction Challenge to 
predict synergistic drug combinations. Our approach involves using biologically relevant drug and cell 
line features with machine learning. Our machine learning model obtained the primary metric = 0.36 
and the tie-breaker metric = 0.37 in the extension round of the challenge which was ranked in top 15 out 
of 76 submissions. Our approach also achieves a mean primary metric of 0.39 with ten repetitions of 10-
fold cross-validation. Further, we analyzed our model’s predictions to better understand the molecular 
processes underlying synergy and discovered that key regulators of tumorigenesis such as TNFA and 
BRAF are often targets in synergistic interactions, while MYC is often duplicated. Through further 
analysis of our predictions, we were also ble to gain insight into mechanisms and potential biomarkers 
of synergistic drug pairs.

The last decade has seen a revolution in the discovery of small molecule cancer drugs1,2. Drug development has 
trended away from the one-drug-fits-all paradigm towards a diverse array of targeted agents that exploit specific 
knowledge of individual tumors3. While this approach can provide success, the confinement of drugs to a single 
target fails to take into account the complex etiologies of many cancers4. Specifically, the single target model is 
highly susceptible to the genetic diversity of tumors; one cell with a resistance-conferring mutation can cause 
complete evolution of the tumor in a few months5. Thus, under the current system of drug development, acquired 
resistance and intratumor heterogeneity will continue to hinder effective and permanent cancer treatment.

Theoretically, combination drug therapy can address many of the limitations that single target agents cannot. 
The underlying rationale is that drugs targeting different components of an interconnected network (either a 
single pathway or two related pathways) can more effectively suppress a certain biological process6. Several model 
studies have supported this hypothesis: Simultaneous drug treatments are far more robust to mutation, since two 
unlikely independent events must happen instead of one (i.e., p1 ≈ 10−6, so ≈ ≈ −p p 102 1

2 12)4. Further, even in 
the presence of cross-resistance mutations, combination therapy still offers potential for treatment7,8.

However, tangible development of drug combinations has lagged behind theoretical discussion, primarily 
because identifying successful combinations is a difficult problem. More often than not, simultaneous adminis-
tration results in no interaction between drugs and thus no net beneficial effect (termed additivity), or adverse 
interactions leading to decreased efficiency and possible toxicity (antagonism). Synergistic combinations are drugs 
that amplify each other’s activity, leading to elevated effects at low concentrations and, thus, reduced toxicity9. 
Picking out these synergistic combinations from the millions of possibilities requires meticulous experimentation 
and prohibitive levels of time and money10.

To aid in the identification and development of combination therapies, a few in silico methods have been 
proposed to predict successful drug pairs for further experimental tests in recent years. DrugComboRanker, 
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the method by11, identifies synergistic drugs that target different signaling modules of a given disease network. 
However, this approach is limited to identification only of combinations that have known disease pathway inter-
actions and is also highly susceptible to false positive pathway cross-talk. A method called DIGRE, proposed 
by12, works by identifying secondary drugs that are more effective on cells post-treatment with the first drug. 
However, DIGRE relies on knowledge of differentially expressed genes post-drug treatment, for which data is 
not widely available or practical to obtain in a clinical setting; perhaps because it considers synergy for sequential 
drug treatment, which has been shown to be ineffective at overcoming tumor resistance7. Another approach, 
RACS, identifies labelled drug combinations that are most similar to unlabelled combinations in the context of 
seven target-related features, and then incorporates overlap of differentially expressed gene signatures to predict 
synergy13. Like DIGRE, RACS also relies on elusive post-treatment data, but its feature set also limits its predic-
tions to direct drug-protein interactions; our work on compensatory pathway analysis shows that these first-order 
synergistic effects are far from exhaustive. Huang et al.14 developed a computational model to predict drug com-
binations by using clinical side effects (SE) from post-marketing surveillance and the drug label. A database 
including 349 approved drug combinations was constructed with integration of drug information from SIDER, 
TWOSIDES, and DCDB sources. Logistic regression prediction model with 10-fold cross validation was utilized 
to determine predictive power of drug-drug combinations (DDC) relying on top 3 SE features identified by deci-
sion tree: pneumonia, haemorrhage rectum, and retinal bleeding. This approach does not use gene expression, 
pathway, and protein-domains information. They only look for marketed drugs in combination. Li et al.15 aimed 
to predict synergistic drug combinations with various features including drug chemical structure similarity, target 
distance in protein-protein network, and targeted pathway similarity. They also used fifteen pharmacogenomics 
features using drug treated gene expression profiles and built a prediction model for synergistic drug combination 
using the Random Forest method. They only used gene expression profile data of MCF7 cell line following drug 
treatment on the cell line from CMap. Zhao et al.16 developed a computational method for predicting synergistic 
activity of drugs used in combinations by integrating molecular and pharmacological data. They used STITCH, 
Drugbank and TTD databases to obtain compound-protein interactions. As a result of their analyses, they pre-
dicted 16 possible drug combinations. They reported that 11 out of their 16 predictions had already been identi-
fied as effective in the literature.

Predicting synergistic combinations using a wide range of cancer cell lines and drugs is much more chal-
lenging due to heterogeneity at molecular, chemical and biological level. Prior approaches have been limited by 
small dataset size and low data variety that could not reflect the extent of the standard prediction challenge. The 
DREAM AstraZeneca-Sanger Drug Combination Prediction Challenge offered one of the largest combinatorial 
cell line screening datasets, which also includes molecular data and chemical/biological data17. The dataset quan-
tifies drug synergy with the Loewe model, defined as calculating the excess cell kill rate over the expected additive 
kill rate when the drug combination, is administered to cancer cell lines. The molecular information contained 
somatic mutations, copy-number alterations, DNA methylation, and gene expression profiles measured before 
drug treatment; and the compound information included putative drug targets, and where available, chemical 
properties. Here, we present our machine learning model developed to predict synergistic drug combinations 
for the DREAM AstraZeneca-Sanger Drug Combination Prediction Challenge. In order to best encapsulate the 
biological patterns underlying this synergy, we explored the most predictive and biologically relevant features for 
the prediction of drug synergies and trained a machine learning model using the features that characterise drugs 
and cell lines.

Our submission for Subchallenge 1 A of the DREAM AstraZeneca-Sanger Drug Combination Prediction 
Challenge was ranked in top 15 out of 76 submissions according to the primary metric used by the challenge 
organizers. Our machine learning model obtained the primary metric = 0.36 and the tie-breaker metric = 0.37 
in the extension round of the challenge {https://www.synapse.org/#!Synapse:syn4231880/wiki/411305}. Our 
approach also achieves a mean primary metric of 0.39 with ten repetitions of 10-fold cross-validation. Through 
further analysis of our predictions, we were also able to gain insight into mechanisms and potential biomarkers 
of synergistic drug pairs. By automatically combining single-target drugs for synergistic therapy, our work paves 
the way towards efficient and widespread combinatorial cancer treatment.

Results
Model performance.  Machine learning models accurately predict synergy.  We began by comparing model 
performance training on the complete feature set (111,168 features) that contains all expression, copy number, 
and mutation data, and training on the abridged feature set (2121 features), to see if the latter completely encoded 
the relevant information. The abridged feature set includes the drug and cell line features that are biologically 
informative for drug synergy which have been extracted to train the machine learning models. Indeed, the 
abridged set performs equivalently for regression tasks across all five models (Fig. 1a), supporting our hypothesis 
that biologically informed feature curation can reduce overfitting and improve predictions. Thus, subsequent 
training was performed using the abridged set, both for its better performance and its faster training time.

Our next goal was to identify the most accurate model. We performed ten trials of 10-fold CV, and XGBoost 
and Random Forest stood out significantly from the others for regression (P < 5 × 10−4, two-sample z-test). With 
post-tuning, XGBoost achieved a weighted average Pearson correlation of WAPCC = 0.39; random forest was 
the next best model with WAPCC = 0.36 (Fig. 1b). Since XGboost was significantly better than Random Forest 
(P < 0.01, two-sample z-test), we used the XGBoost model for all downstream analyses.

Tuning XGBoost parameters.  XGBoost performance and training time is heavily affected by choice of parame-
ters18. We optimized four of these variables that cause most deviation: number of trees used (n_estimators), the 
maximum number of decisions (max_depth) for each tree, subsample ratio of observations and features (sub-
sample and colsample_bytree) used to build each tree. Holding n_estimators constant, we varied the other three 
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parameters and calculated cross-validation error at each step. We observed the minimum error with max_depth = 8.  
After setting the max depth to 8, we repeated the same process and varied the other three parameters. Error 
converged asymptotically for these iterations, so we took the best parameter values (n_estimators = 500,  
max_depth = 8, subsample = 0.75 and colsample_bytree = 1.0) that reached minimum error. Figure 2 shows the 
differences in regression performances (evaluated by ten trials of 10-fold CV) of the tuned vs. untuned models 
(P < 0.01).

Biological interpretation.  Feature importance analysis identifies biomarkers of synergy.  To determine 
biological factors underlying drug synergy, we computed an importance metric that represents percent contri-
bution to the XGBoost model’s prediction for each of the 2121 features (computed as accuracy improvement 
when that feature is included). We first looked at the total group scores for the 15 types of features (Fig. 3). As 
expected, trivial information (drug combination ID, cell line ID, tissue, disease, and sex) did not contribute much 
(8% total), justifying our creation of a more sophisticated feature set. The monotherapy features are the most 
informative features which accounted for 31% of predictive power. Notably, genomic context (expression, CNV, 
mutations) accounted for 32% of predictive power. Our three novel drug synergy network features had a net score 
of 3%, indicating their promise for future research towards any type of drug interaction prediction. Target protein 
domains did not help much (0.5%), perhaps indicating that most drugs were not promiscuous (and thus, the 
putative targets alone held most relevant information).

Although monotherapy and gene module expression are the two most important feature sets, we looked at 
the performance of a model which excluded these data in order to mimic current clinical settings. Also the 
competition organizers divided the first challenge (SC1) into two parts; in SC1A the competitors were asked 
to make prediction using all available data, whereas in SC1B the use of molecular data was limited to mutation 
and copy number variation. Figure 4 shows differences between the XGBoost models trained with/without the 
monotherapy data and gene expression. We also plotted the area under the receiver operating characteristic curve 
(ROC-AUC) to evaluate the performance of the binary predictions. In generating ROCs, we trained the models 

Figure 1.  (a) Comparison of Primary metrics (weighted average Pearson correlations - WAPCCs) with the full 
and abridged feature sets. (b) Comparison of Primary metrics of the five models using the abridged feature set. 
*P < 0.01, ***P < 10−4, two-sample z-test. All error bars denote bootstrapped 95% confidence intervals. LinReg, 
Linear Regression; SVM, Support Vector Machine; n.s., not significant.

Figure 2.  Parameter tuning of XGBoost. Comparison of ten repetitions of 10-fold cross validation weighted 
average Pearson correlations with the tuned parameters (n_estimators = 500, max_depth = 8, subsample = 0.75 
and colsample_bytree = 1.0) and untuned default parameters (n_estimators = 250, max_depth = 8, 
subsample = 1.0 and colsample_bytree = 1.0) was obtained. Error bars denote bootstrapped 95% confidence 
intervals.
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for classification by binarizing the target values. The threshold was set at 20.0 as suggested by the challenge organ-
izers (any score above 20.0 is represented by a 1, other scores map to 0). When gene expression and monotherapy 
information are excluded, the performance of XGBoost model drops significantly for real synergy value predic-
tion (WAPCC = 0.32) but this difference is not significant in terms of binary predictions (AUC = 0.70).

Co-expression network created by the WGCNA approach identified cohesive modules having distinct gene 
expression patterns. Cohesiveness is a measure of how tightly a particular gene fits into its module. The more 
cohesive the module, the more similar the co-expression relationships are across the module. Module enrichment 
analysis performed after module identification showed that a majority of the modules have indeed biological 
functionality. When focused on these biologically important modules, the WGCNA detected several centrally 
located intramodular hub genes within the modules. These hub genes are highly connected to the rest of the 
genes in the module, so they can be regarded as major components of the module. Indeed, expression profiles of 
these hub genes are highly correlated to module eigengene values of the modules they belong to. In this respect, it 
seems that they are the most important genes in the modules, so effective drugs likely to attack to these hub genes. 
Thereby, they can be considered as biological targets or biomarker candidates for drug sensitivity.

We next conducted a finer analysis, looking at the most significant of the 2121 variables individually (using 
the same percent contribution importance metric) to extract more specific biological information regarding syn-
ergy. For drug targets, a master cancer signaling protein19, tumor necrosis factor alpha (TNFA), ranked highest. 
B-raf V600E, a mutant of the oncogene BRAF that determines drug sensitivity via signaling20, and ATR, a kinase 
protein regulating DNA repair21, were the next most significant. Using two-sample Kolmogorov-Smirnov test, 
TFNA (P < 2.3−3) and B-raf V600E (P < 2.0−15) can significantly favour synergistic combinations, while the drug 
combinations targeting AKT1 (P < 0.05) and ATR (P < 2.2−14) proteins are likely to be antagonistic. For copy 
number variation, repetitions or deletions in the MYC and NFKBIA genes were most significant. MYC is a tran-
scription factor whose copy number has been strongly correlated to colon cancer in the past22, whereas NFKBIA 
is involved in several cancer pathways but only has a tenuous link between CNV and cancer23. Pathway analysis 
revealed that cell differentiation, apoptosis, and cancer signaling processes were most important. The membrane 
active transport pathway also ranked highly, perhaps for its role in regulating drug influx and efflux24. We also 
analyzed potential synergy mechanisms of highly ranked mutations, summarized in Table 1. Five of these muta-
tions have been previously shown to be cancer risk factors. Thus, feature importance analysis combined with 
results from existing literature implicates the aforementioned variables as novel potential biomarkers of syner-
gistic drug effects.

Figure 3.  Bar plot of XGBoost feature group importances. For each training variable, an importance score is 
calculated as the improvement in predictive accuracy when that variable is included. Constituent scores (e.g., 
the 53 individual importance scores for gene expression modules) are summed to determine the net importance 
of each feature class. The x-axis units represent fractional contribution (sum of bar lengths = 1).

Figure 4.  (a) Comparison of Primary metrics (weighted average Pearson correlations - WAPCCs) using all 
available molecular data (SC1A) and the molecular data excluding the monotherapy and gene expression 
feature sets (SC1B). (b) Comparison of the area under the receiver operating characteristic curve (ROC-AUC) 
with/without the monotherapy and gene expression feature sets.
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Discussion
Cancers are complex diseases that are regulated by multiple complementary or redundant pathways. As a result, 
acquired drug resistance is an issue plaguing the vast majority of current single-agent chemotherapy regimens. 
The design and development of targeted drug combinations that disrupt multiple modes of metastasis is thus 
becoming increasingly necessary. Here, we establish the first comprehensive machine learning framework that 
successfully predicts synergistic drug combinations and presents opportunity for further exploratory biological 
analysis.

In this study, IC50 is used as a sensitivity measure for predicting drug synergy since GDSC and DREAM stud-
ies reports the sensitivity of all the screened anti-cancer drugs with IC50. This measure is not a powerful indicator 
of drug activity as IC50 could not be measured when maximum drug concentration is not sufficient for killing the 
cells/cell lines. Indeed, we noticed that most of the screened cell lines in the GDSC and DREAM studies does not 
reach an IC50 point within screening concentration interval. In addition, we identified that there are substantial 
deviations in IC50 values reported for the cell lines screened by the same drugs in DREAM study. It shows either 
assay used in experimental procedure does not measure correct IC50 values or cell lines are genetically heter-
ogenic, i.e, they consist resistant and sensitive sub-populations of cells. So using IC50 as a sensitivity measure 
might lead to underperformance of our in-silico models generated for predicting synergistic drug combinations. 
Instead of IC50, using alternative sensitivity measures such as Activity Area and Amax, which are regarded to be 
more reliable indicatiors of drug sensitivity, would improve the predictive power of our models and give us a more 
reliable picture of synergistic drug pairs.

This work takes a data-driven approach to drug synergy prediction, integrating comprehensive pharmacologi-
cal data with molecular information to train powerful machine learning models. Importantly, we combine several 
different biological data types to build a comprehensive, novel feature set and thus optimize performance. We 
show that XGBoost is the most well-suited learning algorithm to synergy identification. Ultimately, our model’s 
high correlation, generalizability to external data, and de novo discovery of drug combinations currently under-
going clinical trials alongside novel synergistic pairs all support its predictive success over previous methods.

We provide the workflow that generates the feature set and the results so that other labs can easily use or 
extend this methodology. The workflow can also handle additional features or missing features and can be run on 
a standard desktop machine. Note that the performance and training time of the XGBoost model are greatly influ-
enced by the hyperparameters that need to be tuned. The overall performance of the method may be improved 
with the addition of gene expression and monotherapy data, however such data are challenging to obtain in 
clinical settings owing to financial, logistic and technological reasons. We note some possible limitations in our 
model’s predictions. Using a synergy score as the output metric may not be ideal, since it is an integral over a wide 
range of concentrations (whereas in practice, treatments at lower concentrations are generally more clinically 
feasible). Additionally, computational models may report false positives, so our newly discovered combinations 
must be validated.

In the future, we hope to further explore undiscovered mechanisms of drug synergy. Specifically, drugs acti-
vating and repressing shared transcription factors via downstream effects has been recently suggested as a syn-
ergy mechanism25. We also plan to conduct experimental trials of predicted synergistic drug combinations on 
cancer-specific cell lines and patient organoid models to further support our in silico approach. Regardless, we 
expect our current framework to aid in rapid identification and development of synergistic drug combinations 
towards specific and comprehensive cancer treatment for all.

Methods
To better understand drug-drug interactions and suggest viable synergistic pairs, we approached the problem by 
aggregating as much open data as possible to build an accurate predictive model. We subsequently analyzed our 
predictions to identify novel and plausible mechanistic synergy hypotheses. Our workflow spanned three stages: 
feature compilation, building and evaluation of machine learning models, and biological interpretation of our 
results (Fig. 5).

Training data.  We used a dataset recently released by AstraZeneca and the Dialogue for Reverse Engineering 
Assessments and Methods (DREAM) consortium17 as the core training data for our method. The data are 
composed of synergy scores for 2790 experiments (Subchallenge 1 Training set + leaderboard) across 167 

Mutation Pos. Gene Pathology Hypothesized Influence on Synergy References

3:179218294 PIK3CA Breast MSM in PIK3a domain changes drug sensitivity 44

11:36489991 TRAF6 Bladder Affects MAPK apoptotic signaling pathway 45

9:130862983 ABL1 Colon Confers resistance to tyrosine-kinase inhibitor drugs 46

4:102613584 NFKB1 Colon MSM in binding domain affects transcription regulation —

22:41166649 EP300 Lung MSM disrupts transcriptional co-activation —

10:121565526 FGFR2 Colon, Lung Increased expression, affecting FGF signaling pathway 47

12:25245351 KRAS Colon, Lung Disrupts Akt/mTOR pathway through PPI networks 48

Table 1.  Most predictive mutations of synergy, identified by XGBoost. The location of the mutation is given 
as its chromosome followed by its genomic coordinate. Brief hypotheses for the influence of each mutation on 
synergy are proposed. Pos., Position; PPI, Protein-Protein Interaction; MSM, Missense Mutation (results in 
different amino acid).
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drug combinations and 85 cell lines, representing a small fraction of the complete combinatorial space (2790/
(167*85) = 19.6%) but still the largest combination drug screen to date. Synergy scores are defined by integrating 
experimental cell kill fraction minus the expected additive cell kill fraction as defined by the Loewe model26.

Feature set.  Pairs of drugs that are synergistic on one cell line are not necessarily synergistic on other cell 
lines12. Hence, we hypothesized that information on both the drugs and the tested cell line is predictive of synergy, 
making it necessary to incorporate both classes of features into our method. We extract the biologically relevant 
features, called abridged feature set. We detail the groups of features used to train our models below.

Chemical structure.  Drug structure at the molecular level describes its binding activity. Chemical fingerprints 
are the most commonly used structural profile of drugs27. Fingerprints are bit vectors that indicate the presence 
(1) or absence (0) of various chemical features (e.g., a C=N group, a six member ring, etc.). To integrate finger-
prints into our pipeline, we used the Python OpenBabel 2.3 library28 to take an input chemical formula (SMILES 
ID; given by AstraZeneca) and generate length 166 Molecular Access System (MACCS) binary structural feature 
lists29. For each drug combination, we used the sum of the two single drug bit vectors as features (i.e., a 2 repre-
sents both drugs having the feature, a 1 represents one of the drugs having the feature, and a 0 represents neither 
of the drugs having the feature; this mapping worked best) preserving similarity resolution across each of the 166 
structural elements. While individual elements may not be relevant, we expect our model to learn combinations 
of structures that are predictive.

Drug targets.  Targets can shed light on the biological processes that the drug controls. We started by using 
summed bit vectors of the putative targets (given as part of the AstraZeneca synergy dataset), of which there 
were 185 across all the drugs; thus, a 2 represents a shared target, a 1 represents a target of one the drugs, and a 0 
represents a target for neither of the drugs. However, this matrix was sparse across the training dataset, since the 
drugs have a median of one putative target each.

Target protein domains.  To account for other drug-protein interactions, we generated structural protein 
domain features for the targets of each drug and mapped them to drug combinations in the same 2, 1, or 0 format. 
We used four databases (Pfam30, Prosite31, SMART32, and SUPERFAMILY33 with 131, 97, 67, and 75 features, 
respectively) resulting in 370 total domain features. These features may account for cases in which drugs are not 
known to interact specifically with a given target, but they still have some binding affinity (termed a promiscuous 
interaction).

Targeted pathways.  We also generated 309 features for the biological pathways involving the drug targets using 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The rationale for these features was to provide 
a direct read on the specific metabolic, signaling, and regulatory processes that the drug combinations disrupt, 
which may inform synergistic effects.

Drug synergy network.  We have explored the network based features to see if drug synergy is transferable 
between the cell lines and distinguish synergistic drug combinations. Previous studies have reported predictive 
success using network topology of drug-drug interaction networks13,34. We built an undirected synergy network, 
in which two synergistic drugs are connected by an edge. We identified a drug combination as synergistic if 
the majority of synergy scores for that drug combination across cell lines is greater than 20. Using the synergy 

Figure 5.  Our pipeline for modeling and analysis of drug synergy. We integrate features from two input 
streams: drug data and cell line data. We train our machine models on the compiled feature set and perform 
biological analysis of predictions to propose novel hypotheses explaining drug synergy.
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network, we extracted three features frequently used in social network link prediction for each drug pair: number 
of common neighbors, Jaccard coefficient, Adamic-Adar coefficient35.

The network proximity features for a drug pair (x, y) in the drug synergy network are defined as follows:

x yCommon Neighbors x y( , ) ( ) ( ) (1)∩= |Γ Γ |

∩
∪

=
Γ Γ
Γ Γ

x y
x y

Jaccard x y( , )
( ) ( )
( ) ( ) (2)

∑
∩

=
Γ∈Γ Γ z

Adamic Adar x y/ ( , ) 1
log ( ) (3)z x y( ) ( )

where Γ(x) represents neighbors of node x, Γ(y) represents neighbors of node y in the drug synergy network.

Monotherapy information.  To calculate synergy scores defined by excess over the Loewe additivity model, the 
AstraZeneca study also conducted cell viability assays for the 69 individual drugs involved in the 167 combina-
tions36. These monotherapy features included, for each drug in the combination, the maximum concentration 
used in the assay, the IC50 value (concentration where half of maximum kill is achieved), the Hill coefficient H 
(slope of the dose-response curve), the max kill percentage Einf and data quality check information.

Gene expression profiles using weighted correlation network analysis.  Microarray expression data of 17,419 genes 
were generated for the 85 cell lines by the Genomics for Drug Sensitivity in Cancer (GDSC) group37. However, 
using such a large number of gene expression values directly can be detrimental, since data for individual genes 
have noisy deviations across cell lines that are not biologically meaningful (we saw minimal improvement in 
model performance when we used raw expression). To overcome this issue and summarize biological processes 
that are otherwise difficult to learn, we leveraged Weighted Gene Co-Expression Network Analysis (WGCNA), 
a robust technique to identify systems-level gene modules38. Modules are determined by hierarchal clustering of 
the 17,419 × 17,419 gene expression correlation matrix39. As expected, genes within a given module have highly 
correlated expression profiles (Fig. 6a), but are also frequently enriched for Gene Ontology (GO) terms that indi-
cate biological function (Fig. 6b). Thus, we used mean expression values of the 53 modules as cell line features.

Mutations and copy number variations.  Genomic sequence features also provided important information 
for cell line-specific context. The Catalogue Of Somatic Mutations In Cancer (COSMIC) database performed 
whole-exome sequencing of the 85 cell lines to identify coding single nucleotide polymorphisms (SNPs) and copy 
number variations40. In total, there were 75,281 SNPs that occurred in at least one cell line, but the vast majority of 
these mutations were not predictively relevant. We filtered out all SNPs in genes that are not in the KEGG cancer 
pathways, resulting in 876 features represented in binary format; these included BRAF, TP53, and other canonical 
tumorigenesis mutations41. Copy number variations (CNVs) are long, repeated segments of genes that have been 
increasingly implicated in disease in recent years42. To filter CNVs, we correlated the copy number of each gene 
with its expression across the 85 cell lines. Genes in the cancer pathways with a statistically significant, above 
median correlation (P < 0.01, Fisher’s correlation test; Spearman rank correlation >0.17) were hypothesized to 

Figure 6.  Weighted Gene Co-Expression Network Analysis identifies modules of correlated genes. (a) 
Expression heatmap for the 162 genes that form one of the modules. Note that in each cell line, the genes are 
either primarily highly expressed (green rows) or primarily lowly expressed (red rows), indicating that gene 
expression is correlated within modules. (b) Selected gene ontology biological term enrichments for genes in the 
cluster from (a) illustrate module-level biological function. ***P < 5 × 10−7, ****P < 10−20 (Hypergeometric 
test with Bonferroni multiple testing correction).
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possibly have functionally relevant CNVs (Fig. 7), and their copy numbers were included in the feature set (143 
genes).

Machine learning prediction.  To learn patterns from the feature set and make accurate synergy score 
predictions, we trained multiple machine learning models with the AstraZeneca data to identify an optimal 
framework.

Types of models trained on the feature set.  We trained five machine learning models on the feature set for synergy 
score prediction: linear regression, Lasso, support vector machine (SVM), random forest, and XGBoost. The first 
four models were trained using the {sklearn} Python package43, while XGBoost was trained using the {xgboost} 
Python package18. Linear regression fits a line to the training data by minimizing its cost function, which we chose 
to be the sum of the squared distances of the predictions from the actual synergy scores. Lasso is a linear regres-
sion with an L1-regularization term (i.e., the sum of the absolute values of the coefficients) in the cost function to 
prioritize models with smaller coefficients and thus reduce overfitting. SVM works by building a hyperplane in 
an f-dimensional feature space such that all dimensions are within ε of the target value and the L2-norm (sum of 
squared coefficients) is minimized. Random forest stochastically assigns a set of features and training examples 
to each of its n decision trees that are independently trained and then averaged for the final prediction. XGBoost 
is similar but adds L2-regularization and boosting, a method to prioritize the weights learned from the most 
mispredicted examples.

Evaluating predictive performance using cross validation.  For evaluation of model performance using only the 
AstraZeneca dataset, we did ten repetitions of 10-fold cross-validation (CV). This involves randomly splitting 
the data into 10 equally sized segments, iteratively training on 9 of the 10 folds, and testing on the remaining 
tenth. We used the weighted average Pearson correlation coefficient (WAPCC) of the experimental value vs. our 
prediction as the primary evaluation metric suggested by the challenge organizers. The primary metric is defined 
as follows:

ρ
=

∑ − ⋅

∑ −
=

=

WAPCC
n

n
1

1 (4)
i
N

i i

i
N

i

1

1

where N = 167 is the number of the tested drug combinations, ρi is the Pearson correlation for drug combinations 
i, ni is the number of cell lines that drug combination i is applied to.

The reported metrics are not on the final test set, and are rather cross-validation scores. All the performances 
we achieve should thus be considered post-hoc analyses and may appear higher than our final performance on 
the challenge itself.

Biological interpretation with feature importance.  To analyze the relative predictive power of the different bio-
logical classes of features and identify potential biomarkers, we calculated how much each feature increased the 
accuracy of the XGBoost model (termed ‘gain’)18.

Figure 7.  Expression and copy number variation (CNV) correlations differ across genes. (a) NSMCE2 
expression varies with CNV for the 85 cancer cell lines, while (b) MED19 does not have a significant correlation. 
(c) Distribution (probability density) of Spearman rank correlations and (d) distribution of negative log  
P-values for all 17,419 genes. CNV of cancer genes with above median Spearman and a significant P-value were 
used as features. P-values are generated with Fisher’s r-to-z transformation for correlation testing.
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Data Availability
Challenge data is available through registration via https://openinnovation.astrazeneca.com/data-library.html 
and it is expected to be public soon. Code is accessible via https://www.synapse.org/#!Synapse:syn5605365/
wiki/394725 and https://github.com/rcelebi/dream-drugcombo.
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