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ABSTRACT Credit card fraudsters exploit various methods to capture card information. One of the common
methods is to duplicate the credit cards by skimming. In this study, we introduce a new point of compromise
detection method in order to trace and identify merchants where the skimming operation took place and card
information has been captured by criminals. The proposed method first extracts discriminative features by
using principle component analysis(PCA) and Autoencoder extractors and then it clusters similar fraudulent
transactions with K-Means algorithm, afterwards it highlights possible merchants that are involved in
this scheme by finding matching merchants in the produced clusters with a retrospective analysis of all
transactions. Our experiments showed that the proposed method could achieve promising results with zero-
knowledge on the existing skimming points. The application of our proposed method on real-life card
transactions enabled us to pinpoint 7 out of 9 point of compromise previously identified by the reporting
bank.

INDEX TERMS Financial fraud, point of compromise detection, credit card skimming, clustering, autoen-
coder, retrospective analysis.

I. INTRODUCTION
Fraudulent transactions arise from various means, such as
lost, stolen or skimmed credit cards, credit cards that are not
received by the users, or fake credit card applications [1].
Credit card skimming is one of the most exploited methods.
Skimming may be done physically or online. In the physi-
cal method, the credit card is run through the skimmer and
the skimmer device acquires the credit card number, expi-
ration date, and the user’s full name. In the online method,
credit card information is obtained from the user or from
the servers of an e-commerce system through cyber-attacks
such as phishing, SQL injection, or keylogging [2]–[4]. The
location, where the credit card information is stolen, is called
point of compromise (POC) or common point of purchase
(CPP). Although locating a POC would facilitate implement-
ing precautions to prevent skimming at that location, cur-
rently, a POC is only detected when the corresponding bank
personnel conduct an investigation upon being notified by
card users about fraudulent use. However, such notifications
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run in the tens of thousands. Therefore, detecting a POC
manually is difficult due to the large volume of data and
time consuming nature of required checks. Thus, there is a
strong need for an autonomous system that detects POCs to
minimize financial loss arising from such credit card fraud.
Scientific studies focus on present-day analysis for POC
detection, whereas patents highlight retrospective analysis,
but they are limited by their proposed statistical methods, and
are not tested experimentally in real life.

In this study, a system has been designed and put into action
to detect POCs by using the fraudulent transactions reported
to the banks. The proposed system traces POCs by grouping
the fraudulent transactions with similar characteristics via
deep learning approach and running a retrospective temporal
analysis on these groupings. This analysis leveraged not only
fraudulent transactions, but also regular ones. The success of
the introduced system was tested with real POC data used as
groundtruth provided by 35 members of the Interbank Card
Center (BKM).

To the best of our knowledge, our study is the first-ever
in the current literature to employ deep learning approach,
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presenting the impact of the retrospective analysis empiri-
cally through various temporal and spatial scenarios, while
using actual card transactions. The contributions of this paper
are given as follows:
• In our proposed method regardless of the issuer reports,
we continuously cluster fraud transactions based on their
similarity. To this end, features extracted via Autoen-
coder were used as input to the K-Means clustering
algorithm.

• We provide a concrete implementation of retrospective
analysis on the clusters and evaluate its effectiveness on
the tracing and detection of POCs. In this regard, to the
best of our knowledge, our proposed method is the first
attempt to examine the impact of retrospective analysis
which was only suggested in a theoretical manner to
improve performance in patents.

• Our introduced model requires zero-knowledge on the
existing POCs. Therefore, it utilizes an unsupervised
approach to cluster fraud transactions with the aim of
targeting undetected POCs.

• To the best of our knowledge, it is the first-ever
study which utilizes a real transaction dataset to
detect POCs.

Section II presents a literature review on detecting card
frauds and POCs. Section III sets out the main steps of the
proposed system to solve the issue and probes the possible
methods to be used in these steps. Section IV explains the
components of the proposed system for POC detection and
evaluates the results that are obtained by measuring system
performance with an actual dataset. Finally, Section V pro-
vides a general assessment of the proposed system.

II. RELATED WORK
POC detection is directly related to credit card fraud issues.
Thus, we first looked into the previous studies on credit
card fraud detection, then moved on to the studies that focus
directly on detection of POCs.

A. CREDIT CARD FRAUD DETECTION
Credit card fraud is a major problem that takes a financial toll
on banks, companies and individuals. There are a number of
studies on the issue that are based on various methods, such
as artificial intelligence and machine learning. Each of these
studies presents both advantages and disadvantages [5].

As part of the literature review, we also examined the
datasets that are used in credit card fraud studies [6], [7].
Researchers that investigate credit card fraud have a hard
time accessing actual credit card transactions due to the
risks involved around confidentiality of personal data and
availability of sensitive data such as credit card transactions.
That is why some researchers, for example Aleskerov [8]
and Behera [9], conducted their research on synthetic data.
In these studies, the Gaussian method was used to synthet-
ically create the product category, and the amount and time
information for the spending.

The approaches that are based on machine learning to
detect card fraud involve supervised, unsupervised and hybrid
methods.

In the studies using supervised methods, fraudulent trans-
actions are detected based on patterns, which are established
by analyzing labeled previous card transactions. Strong mod-
els have been developed by utilizing the profiles that are
based on the card type and spending amount, in addition to the
card transaction information [10]. Supervised approaches in
credit card fraud include the Bayesian Network, the Artificial
Neural Networks model [11], the Support Vector Machine
(SVM), the Decision Tree [12], the Logistic Regression, and
the Random Forest [13]–[15] methods. An analysis of these
studies shows the Bayesian Network, the Random Forest,
and the Decision Tree methods to be more successful. The
highly unbalanced nature of credit card data impairs the
success of the supervised classifiers [16]. A majority of
the studies employ undersampling and oversamplingmethods
to overcome this issue [17]–[19].

Unsupervised methods handle fraud detection and card
fraud issues as an issue of outlier detection. The Gaussian
Mixture Model, K-Nearest Neighbors, Isolation Forest, Self
Organizing Map and other similar methods are employed for
outlier detection [20]. Malini and Pushpa [21] used the KNN
model to examine the card fraud problem. Hybrid models
[22], [23] that involve the combined use of unsupervised
and supervised methods stand out as successful in card fraud
detection. Additionally, deep learning methods that can be
trained with large scale data and produce complex models
are used for card fraud detection. Roy et al. [24] used the
Artificial Neural Network (ANN), Recurrent Neural Net-
work (RNN), Long-Short Term Memory (LSTM), and Gated
Recurrent Unit (GRU) in their study. The study concludes
that the GRU method provides better results in comparison
to others. The Autoencoder and the Restricted Boltzmann
Machine (RBM) deep learning methods were also utilized in
card fraud detection [25], [26]. Thesemethods allow unsuper-
vised learning for training data distribution. Once themodel is
trained, it becomes possible to detect the samples that do not
come from the same distribution. Kazemi and Zarrabi [25]
showed that the Autoencoder produced better results than
other methods.

B. POINT OF COMPROMISE DETECTION
There are a limited number of studies on detecting POCs. One
of the main reasons could be lack of available datasets. The
paragraphs below assess the relevant patents and a conference
paper.

The patent studies attempt to associate POCs to the num-
ber of pre-fraud accounts that are used in the businesses
[27]–[29]. Pre-fraud accounts or pre-fraud transactions com-
prise all retrospective transactions starting with the time of
the fraudulent transaction up to the time when skimming had
taken place. Therefore, pre-fraud transactions can be detected
by analyzing all retrospective transactions within that time
period.
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Klebanoff [27] determined a pre-fraud rate by dividing
the number of pre-fraud accounts at a business by the total
number of payment accounts. This study postulates that when
the pre-fraud rate exceeds a threshold, that business could be
defined as a PPOC. They also proposed that the daily pre-
fraud rate at a business could be used for the same purpose.
Moreover, they grouped fraudulent transactions according to
the Merchant Category Code (MCC) and conducted weekly
retrospective analyses. On the other hand, Yan [28] asserted
that fraud transactions could be grouped by taking into con-
sideration the accounts from which large amounts of money
were withdrawn at various locations on the same day. They
then attempted to detect one or multiple POCs by analyzing
the pre-fraud account groups for a certain period of time
prior to the day the frauds had taken place. The study calls
this period of time an exposure window, which may last
for a day, a week or a month. However, there are other
studies suggesting that using an exposure window of more
than a month may produce better results [29]. Nevertheless,
these studies have not been conducted on an experimental
level, nor do they provide a concrete and quantitative success
assessment, or present a success rate increase. Some of the
studies employ profiles such as the card user or the merchant,
in addition to the pre-fraud rate, in the retrospective analysis.
Information such as the daily transaction volume at a busi-
ness, location andMCC are used to create a merchant profile,
while card information, payment method, spending habits,
etc. are applied to form a card user profile. Moreover, other
studies attempt to increase the success rate of POC detec-
tion by associating these profiles with each other [30], [31].
Another study proposes an approach that can detect card
POCs for a certain exposure window by using the information
of a credit card that is known to have been skimmed [32].
One thing these studies have in common is that they conduct
retrospective analysis based on the statistics that are obtained
from fraudulent transactions and that they are based on statis-
tical calculations. The results of these studies do not provide
a quantitative success rate.

Araujo et al. [33] likens the POC detection problem to that
of detecting malware in a computer file system and uses
a bipartite graph to solve this problem. However; for data
privacy concerns, the study does not provide details about
the use of datasets. Additionally, it does not disclose how
many POCs were detected for which time window, nor does
it state the number of POCs that would be used as reference
for a success assessment. Another drawback of the method
proposed in the study is that detecting a POC requires other
POCs that have been detected before.

The literature review shows that the proposed methods for
POC detection, with the exception of scientific publications
in patent format, rely on the current state and do not con-
duct retrospective analyses. Meanwhile, the studies involving
patents propose that POC detection accuracy and success rate
could be improved by starting off with the pre-current state
transactions by employing a retrospective approach. Nev-
ertheless, these approaches have been proposed only

conceptually; they have not been tested on any datasets, nor
have their impact on success been studied experimentally.
Furthermore, the retrospective analysis period in the patents
were set completely with a hypothetical approach. Also,
a review of these studies reveal that they adopted a general
approach to conduct retrospective analysis through funda-
mental statistical methods. POC is a point which is used at
a time before detection of the fraud and at which the fraud-
ulent cards were used. Therefore, a retrospective analysis is
a factor in determining success. In our study, we combined
machine translation techniques with a retrospective analysis
while employing the actual card transactions in a six-month
span, and put forth the factors that affect the success rate both
temporally and spatially.

III. SYSTEM DESIGN
This study aims at detecting POCs by identifying and cluster-
ing similar fraudulent card transactions, followed by a retro-
spective analysis of respective transactions in each cluster to
establish common spending points. To this end, consequent to
the necessary feature extraction an unsupervised learning was
employed. The transactions in the obtained clusters were then
subjected to the aforementioned retrospective analysis with
regard to the spending location and amount to trace POCs.
Figure 1 provides the architecture of the proposed system.
The dataset and system details are explained in the respective
sub-sections.

A. DATASET
Asmentioned earlier, one of the distinguishing characteristics
of our proposed system is the fact that it was built and eval-
uated using real card transactions. On that account, we col-
laborated with the BKM in our research. BKM facilitates
and supports the systems, platforms and infrastructure for
every money transfer and card payment between 35 banks in
Turkey. This collaboration also facilitated a thorough retro-
spective analysis as a result of having all past transactions,
fraudulent or not, at our disposal. It is important to note
that actual skimming could have taken place during cus-
tomer’s legal transactions. Therefore, the temporal analysis
must include all the transactions. In order to evaluate the
performance of our proposed systemwe compared our results
regarding detected POCs to the groundtruth data provided
by one of the largest and well-established member banks of
BKM.

The dataset for tracing the POCs was constructed using
fraudulent transactions reported to the BKM between
2017 and 2018, and consists of 681.862 instances. The
groundtruth data consists of 9 points of purchase, which have
been established to be actual POCs by a BKM member bank
in December 2018. Table 1 presents the selected 21 features,
as well as the groups for these features related to the transac-
tions in the dataset. Feature groups are explained in detail in
the experiments section.

Banks consider different scenarios as a means to conduct
a fraudulent card transaction. These scenarios include on one
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FIGURE 1. High-level data flow diagram of the proposed system, Red clusters indicates PPOC
clusters.

TABLE 1. Feature types and selected features of fraud transactions.

hand cards reported as lost, stolen or not received by the users,
and on the other hand transactions stated as counterfeit by

the card users or the issuers. This information is provided by
the banks in the ‘‘Fraud Type Code’’ field of the TC40 [34]
message. The code corresponding to counterfeit transactions
is defined as ‘‘4’’. Unfortunately, at the time of reporting
a fraudulent transaction by the user, this transaction could
not be categorized as skimming immediately without further
investigation. Therefore, the code ‘‘4’’ is ambigious in its
definition and in real-life both banks and BKM assume that a
code of ‘‘4’’ almost always indicates a counterfeit transaction.
Even if further investigation reveals that the reported transac-
tion took place in a POC, the reason code still remains ‘‘4’’.
Therefore, all TC40 records with a reason code of ‘‘4’’ are
generally treated as counterfeit transactions.

Investigation of the TC40 data revealed that skimming
cases took place either at ATMs or at various businesses,
particularly in restaurants and clothing stores, as well as gas
stations. One skimming case showed that after 20 credit cards
were skimmed at a restaurant, 181 fraud transactions took
place in a span of three months. Ninety percent of these
fraudulent transactions took place in the form of ATM with-
drawals in similar amounts. In addition to ATM withdrawals,
purchases were made in the close-by districts of the same
city. Investigation of another case revealed a total of 41 fraud-
ulent transactions, 40 of which were in the form of ATM
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withdrawals, after seven credit cards were skimmed at a
sports center. ATM withdrawal amounts were again similar
to each other. Further investigation yielded similar results.
Therefore, we could assume that cards skimmed at a given
POC were subjected to similar spending characteristics.

B. PREPROCESSING
Credit card transaction data consist of the transaction details
that banks report to the BKM. Since banks gather information
from various sources, they may provide the data in different
forms. Therefore, the need for preprocessing becomes ever
more important. Thus, we applied the following operations.
data cleansing, aggregation, normalization, and data trans-
formation.

Inaccurate, incomplete or missing values reduce the suc-
cess of the models, and thus, they should be fixed. Therefore,
the following actions were performed on the dataset with
regard to data cleansing.
• Redundant fields within the instances were removed.
• Format differences for the same field resulting from
inconsistencies among the banks were fixed and unified.

• Incomplete/missing fields were remedied through impu-
tation by filling out the empty values either with the
values of similar instances or the average value of the
respective field.

Data aggregation is a preprocessing action that is required
to identify the data patterns and trends. Spending dates were
aggregated using the week that the spending took place in
order to express them holistically and to reduce the number
of features required to represent the spending dates. The same
approach was also used for special occasions such as the
New Year, National/Religious holidays, and Black Friday.
Min-Max normalization was then applied to the transac-
tion amount and to the spending dates after they have been
aggregated as outlined above. Afterwards, all the categorical
features within the dataset were converted into corresponding
numerical features. This was achieved by applying One-
Hot Encoding [35] which converts categorical variables in
numeric form during the preliminary data preparation. It takes
a column with categorical data and creates new columns with
as many different categorical values as in this column.

C. FEATURE SELECTION AND EXTRACTION
Various analyses were conducted for a better assessment of
the dataset, and correlation matrices were created to examine
the association of pair of features. When creating the correla-
tionmatrices, different metrics were used based on the type of
features. If both features were categorical, Cramer’s V [36]; if
one was categorical and the other was numerical, Correlation
Ratio [37]; and if both were numerical, Pearson correlation
metrics [38] were used to determine the correlation values.
• Cramer’s V metric: If both features are categorical, then
the Cramer’s V metric is used to determine the corre-
lation value. In the equation 1; χ2 is the chi-squared
statistic, N is the sample number, and k represents the
number of categories of the binary feature with the

fewest number of categories.

Cramer’s V =

√
χ2

N (k − 1)
(1)

• Pearson correlation metric: If both features are numeric,
then the Pearson correlation metric is used to deter-
mine the correlation value. In the equation 2; X and Y
represent feature variables of two instances, X and Y
represent the average value of these variables, and n is
the number of total samples.

PearsonXY =

∑n
i=1(Xi − X )(Yi − Y )√∑n

i=1(Xi − X )2
√∑n

i=1(Yi − Y )2
(2)

• Correlation Ratio metric: If one feature is categorical
and the other is numerical, then the correlation ratio is
used to determine the correlation values. In the equa-
tion 3; X and Y are random variables, Var(Y ) is the
variance of Y , Var(Y |X ) is the conditional variance, E
is the expected value, or in other words, its average.

η2Y |X = 1− E
[

Var(Y | X )
Var(Y )

]
(3)

Some metrics also provide the direction of the correlation
by producing results in the range of [−1, 1]. However, as the
correlation itself was the determining factor, the absolute
value function was utilized in order to equalize the outcomes
of the above mentioned metrics into the [0, 1] range.

Feature selection is done by analysing correlation matrix
to eliminate highly correlated feature pairs. In order to deter-
mine high correlation between features, we used a threshold
with value 0.9. After elimination process, we had 21 selected
features.

In order to refine the characteristic features obtained at the
end of the feature selection process and to achieve dimension-
ality reduction, feature extraction was applied. This process
also helped to transform possibly correlated features into
a smaller number of uncorrelated features. Both Principal
Component Analysis (PCA) and Autoencoder methods were
examined for feature extraction.

1) PRINCIPLE COMPONENT ANALYSIS
PCA [39] is a linear conversion method that minimizes the
dataspace by promoting the features with high variance. PCA
is not a suitable method for categorical feature data because it
is dependent on variance values. Since the nominal categor-
ical features may have different values in the dataset used,
building the PCA model would be almost impossible due to
the data sparsity and the large dataspace following the One-
Hot Encoding.

Incremental PCA (IPCA) [40] was preferred because this
PCA model is a more suitable variant for memory use in
large datasets. In PCA methods, examining the effect of the
principal components on cumulative variance is one of the
approaches that is applied to establish the size of the new fea-
ture space. The size of the new feature space was established

109540 VOLUME 9, 2021



F. Ogme et al.: Temporal Transaction Scraping Assisted POC Detection

by examining the cumulative variance values for the trained
IPCA model.

2) AUTOENCODER
Autoencoder [41] is a type of artificial neural network with
a multi-layered structure made up of perceptrons that are
developed by modeling the neurons of the human brain.
Autoencoders represent unsupervised learning because the
class information is the data itself in them. Autoencoders may
also be employed for purposes such as reducing data noise or
identifying anomalies. They were used for feature extraction
in this study. Different feature spaces were experimented
by examining the reconstruction error to establish the size
of the new feature space that would be attained with the
Autoencoder.

Parameter and model selection for the PCA and Autoen-
coder is explained in the Experiments section.

D. CLUSTERING SIMILAR FRAUD TRANSACTIONS
Since we observed that the skimmed credit cards were usually
used in batches, we examined whether the POCs could be
detected by grouping collective fraudulent transactions. The
K-means algorithm was applied to cluster the fraudulent
transactions. However, since we cannot foresee the number
of clusters in a given fraudulent transaction dataset, the value
of k , which represents the number of clusters, must be deter-
mined dynamically. In order to establish an effective k value,
we first utilized the Elbow method [42] by generating Elbow
curves corresponding to the instances under consideration.
In doing so, for different k values within-cluster sum of
squares (WCSS) values were obtained. Equation 4 presents
the within-cluster sum of squares (WCSS) where x gives the
instance in the ith cluster, and ci the cluster centers. There are
a number of proposed approaches for detecting the optimal
knee in such discrete data. According to [43], we chose to
apply the Kneedle algorithm to determine the optimal k value.

WCSS =
k∑
i=1

∑
xεCi

Distance(ci, x)2 (4)

For each transaction within the fraudulent transaction
dataset, a fraud type code is given as depicted in Table 2.
As mentioned earlier in Section III-A upon feedback from
card users, banks especially examine transactions with a fraud
type code of ‘‘4’’. Consequently, such transactions initially
reported as counterfeit would turn up as skimming frauds, i.e.
as pointers to eventual POCs. Unfortunately, some skimming
frauds could not be identified as a result of the lack of user
feedback. On the other hand, fraudulent transactions reported
as ‘‘0’’ through ‘‘3’’ could also have been used in a skimming
operation indirectly. Therefore, it is imperative to cluster all
the fraudulent transactions not just only transactions with
a type code of ‘‘4’’. This allows us to examine the coun-
terfeit transactions that were not identified as such in the
dataset.

TABLE 2. Different types of frauds in dataset.

After clustering, the counterfeit transactions would be scat-
tered to some clusters more intensely than the others due
to their similarity. As per our observation the credit cards
involved in those counterfeit transactions would have been
skimmed at some common business during casual spending
transactions.

E. TEMPORAL TRANSACTION SCRAPING
In temporal transaction scraping all the candidate POC clus-
ters, where each cluster consists of similar counterfeit trans-
actions, were put through a retrospective analysis. In order
to methodically determine candidate POC clusters, we for-
mulated the counterfeit ratio value. This value represents the
ratio of transactions with a fraud type code of ‘‘4’’ to all
the transactions in a given cluster. We call clusters with a
ratio exceeding a given threshold d as candidate POC clusters
or POC clusters in short. Specific details on the selection
of this value and its effect on the performance are elabo-
rated in Experiments section. For the purpose of carrying
out the aforementioned retrospective analysis the transactions
in each POC cluster should be related to the corresponding
card. However, this would yield duplicate cards. Therefore,
for each POC cluster duplicate cards were eliminated and the
rest of the analysis was carried out using distinct cards. The
next step was merely a database query to establish the point
of purchases where these cards had been used within a given
backward time period. The obtained merchants were then
expressed as time-ordered intersection sets. This operation
enables us to obtain the discredited shopping points. After
sorting this merchant list based on their appearances and
scores, the first N entries of each set, i.e. highly suspicious
shopping centers, were used to form the candidate POC list.
Similarly, this list contained duplicate merchant entries which
were eliminated too. The details of the temporal transaction
scraping is given in Algorithm 1.

IV. EXPERIMENTS
In the experiments we employed card transactions reported
to the BKM between 2017 and 2018. There are over 2.44 bil-
lions of total transactions for this time period. Of those trans-
actions 681.862 were fraudulent and furthermore 21.298 of
those belonged to December 2018. The 9 POCs, that were
provided, were detected as follow up investigations of
the reporting bank team triggered by customer complaints
regarding their expenditure in December 2018. Therefore,
the 21.298 fraudulent transactions belonging to this time
period, were used as the initial seed for clustering. On the
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Algorithm 1 Temporal Transaction Scraping Algorithm
Inputs:

Dataset: X = {x1, x2, . . . , xn}, Number of Clusters: k , Cluster Labels: L = {l(x) | x = 1, 2, 3, . . . , n}, Fraud
Transaction Clusters: C = {c1, c2, . . . , ck}
Outputs:

Set of Possible POC(s): PPOC{}
Parameters:
t(integer): exposure window size as months, d(float): counterfeit ratio threshold for selecting PPOC cluster,
N (integer): maximum number of candidates for a cluster

Algorithm:
1: candidateList[ ]← list()
2: for ci ∈ C{} do
3: counterfeitRatioi←

∑
counterfeits∈ci∑
allfrauds∈ci

4: if counterfeitRatioi ≥ d then
5: cardsi{} ← get distinct cards in fraud transactions ∈ ci
6: prefraudCountsi{} ← dict()
7: for cardij ∈ cardsi{} do
8: prefraudsij{} ← db.getAllTransactions(cardij) in exposure window(t)
9: for prefraudijt ∈ prefraudsij{} do

10: merchant ← get merchant from prefraudijt
11: if merchant ∈ prefraudCountsi.keys then
12: prefraudCountsi[merchant]← prefraudCountsi[merchant] + 1
13: else
14: prefraudCountsi[merchant]← 1
15: end if
16: end for
17: end for
18: Merchantsi{} ← prefraudCountsi.keys
19: merchantScoresi{} ← db.getMerchantScores(Merchantsi)
20: sortedMerchantsi{} ← sortMerchantsi{} by prefraudCountsi{} and merchantScoresi{}
21: selectedMerchantsi{} ← select first N merchants from sortedMerchantsi{}
22: candidateList[ ].append(selectedMerchantsi)
23: end if
24: end for
25: PPOC{} ← get distinct candidates in candidateList

1Object db stands for an interface class that allows us to execute database queries.
2Subscripts i, j, t denotes indices for respectively clusters, cards, and transactions.

other hand, all the fraudulent transactions, i.e. 681.862, were
exploited in the feature extraction phase. However, as a pre-
liminary step, 45 raw features were analyzed using the cor-
relation based approach described in Section III-A and were
eliminated to 21 features (Table 1). 18 out of 21 features were
converted into their one hot encoded representation since they
were categorical features. Consequently, the initial feature
space was expanded to 14.802 features. Then, we opted to
utilize and compare the performances of two different fea-
ture extractors, namely PCA and Autoencoder. The aformen-
tioned clustering took place via the extracted features.

The distribution of the binary combination of the principle
components of the PCA extractor and the deep features of
the Autoencoder extractor are given in Figure 2. The plots
d-e clearly demonstrate that Autoencoder extracted features
produce better clustering than PCA.

Before performing the retrospective transaction analysis
for the cards existing in the clusters, clusters having a d
value below the threshold were eliminated. Empirical results
showed that a threshold value greater than 0.7 resulted in
excessive elimination of clusters whereas less than 0.4 did not
contribute to the elimination process substantially. Therefore,
we concluded to select the value d as 0.4 ≤ d < 0.7. The
remaining clusters were then subjected to the retrospective
transaction analysis as outlined in Section III-E.

For all the experiments, we utilized the IBM PowerAI
system, which is designed for use in deep learning studies.

A. CLUSTERING FRAUD TRANSACTIONS VIA PCA
EXTRACTED FEATURES
Considering the huge number of instances to be included
in the feature extraction process, we utilized the IPCA
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FIGURE 2. Clusters projected onto a reduced feature space containing binary combinations of the extracted features. PCA (top), Autoencoder
(bottom).

model [40], a PCA method variant, in order to improve
the memory usage. The IPCA model was realized incre-
mentally in batches of 500 fraudulent transactions. Changes
in the number of eigenvalues were examined for dimen-
sion estimation of the feature set. The resulting scree plot
is given in Figure 3. Kneedle algorithm was applied to
the y-axis values to determine the optimum knee point
which turned out to be ‘‘3’’ for our dataset. Thus, in the
rest of experiments we utilized those extracted four PCA
features.

December 2018 fraudulent transactions were then sub-
jected to feature extraction using the PCA model obtained
and K-means clustering was performed. The resulting Elbow
graph is given in Figure 6. Although the Kneedle algo-
rithm pointed to 25 clusters, further analysis showed that
better results could be achieved with 30 clusters. Therefore,
we moved on with 30 clusters.

B. CLUSTERING FRAUD TRANSACTIONS VIA
AUTOENCODER EXTRACTED FEATURES
As previously mentioned all the fraudulent transactions
were input to the Autoencoder model to obtain extracted
features. The Autoencoder model architecture consisted of
a simple model architecture made up of a single hidden
layer shown in Figure 4. We employed Rectified Linear
Unit activation [44] with L1 regularizer [45] for encoding
phase and sigmoid activation for decoding phase. We also
employed the AdaDelta Optimization [46] both for speedy

FIGURE 3. Scree plot of PCA showing eigenvalues of each components.

binary cross entropy and achieving convergence with fewer
iterations.

In order to determine the optimum number of features
the output of the Autoencoder was varied from 1 to 20 in
steps of 2 and for each output size the Autoencoder was
run 10 times. The mean square error was used as the
reconstruction error criterion. The resulting graph, given
in Figure 5, shows that no particular change was observed
in the reconstruction error for output sizes greater than five.
Also, application of the Kneedle algorithm yielded the value
of three. Therefore, we decided to use an Autoencoder extrac-
tor with an output size of three.
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FIGURE 4. Single hidden layered autoencoder model architecture.

FIGURE 5. Scree plot of Autoencoder showing reconstruction error for
different latent feature sizes.

Similar to the PCA feature extractor the obtained Autoen-
coder model was applied to the fraudulent transactions
of December 2018. The resulting Elbow graph of the
K-means clustering applied to the extracted features is given
in Figure 6. Again, the Kneedle algorithm indicated an opti-
mum cluster size of 25, but further analysis showed that, as in
the PCA case, 30 clusters would yield better results.

C. TEMPORAL ANALYSIS FOR POINT OF COMPROMISE
As outlined in the Experiments Section, the d value is crucial
for a correct elimination of spurious clusters to accelerate and
to improve the POC tracing process. However, in order to
determine the optimum d value temporal analysis should also
be run and the number of suggested and correctly detected
POCs must be evaluated against groundtruth POC data. For a
thorough analysis, while varying the d value from 0.4 to 0.7 in
0.1 steps, as given in Figure 7, we carried out a retrospective
temporal analysis starting with one month and ranging up to
six months in one-month intervals. The whole process was
executed for both PCA and Autoencoder feature extractors,
thus, giving a total of 120 different scenarios. The summary
of these scenarios are given in Figure 7 and Figure 9. These
figures also include the results for d values below 0.4 and

TABLE 3. Effect of different N values on both suggested and detected
POCs.

above 0.7 just to illustrate the validity of the aforementioned
range of 0.4-0.7 for d . As can be seen below 0.4 no feasible
cluster elimination would be attained and above 0.7 some of
the viable clusters would be lost. Consequently, we opted to
choose a d value of 0.4.

The remaining clusters were subjected to the temporal
scraping algorithm given in Algorithm 1. In order to be on
the safe side, we extended the backward-looking analysis up
to 12 months (Figure 8) which in turn revealed the fact that
the number of fraudulent transactions decrease gradually both
when getting closer to time period when the actual skimming
occurred and the time period when the POC was identified.
Thus, the fraudsters put some time frame after the skimming
before actually exploiting the cards. Then, the number of
exploits grow to a peak point and decrease eventually as the
risk of the identification of the POC increases.

Similar to the analysis of the d value, the backward-looking
analysis showed that the optimal backward range lies in two
or three months as given in Figure 9. After that the suc-
cess rate falls considerably. Therefore, a three-month time
period was chosen as the exposure window. Although we
are fully aware of the fact that the exposure window size
is tightly correlated to the dataset contrary to the current
literature [27]–[29] which suggests a window size between
oneweek to onemonth our research clearly showed that given
the characteristics of the fraudulent transactions an exposure
window size of three months would yield considerably better
results.

Although each cluster contains unique instances apply-
ing, a temporal analysis on this instances would produce
duplicate merchants which is actually a desirable outcome.
Because recurring merchants as a result of this backward-
looking analysis indicates an intersection of these pseudo
unrelated transactions at some time in the past at a specific
location. Naturally, duplicate merchant ids should be unified.
The last varying parameter of N is used to somehow control
the number of obtained matching merchant ids. Up to some
point increasing the number N also increases the number of
matched merchants but also produces a larger list of sug-
gested POCs. As can be seen in Table 3, our analysis showed
that a value greater than 50 did not change the number of
detected POCs but considerably increased the number of
suggested POCs. Therefore, for our dataset, we chose the
value of N as 50.
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FIGURE 6. Elbow plots of clustering on feature extraction methods: PCA and Autoencoder.

FIGURE 7. (a) Total count of Possible POC candidates predictions for each different counterfeit density threshold(d ) selection (b) Total count
of detected POCs for each different counterfeit density threshold(d ) selection.

FIGURE 8. Past fraudulent transaction counts of compromised accounts
related with reference POCs.

Table 4 presents the number of candidate clusters after
elimination, the number of suggested and identified POCs
as produced by our approach. It is evident that Autoencoder
extracted features clustered with K-means outperforms the K-
means clustering with PCA extracted features. Therefore, for
the dataset under consideration the best approach is K-means
clustering precedeed byAutoencoder extraction and followed
by a retrospective analysis within an exposure window of
three months.

FIGURE 9. Effects of using different exposure windows on detecting POCs.

TABLE 4. Results of different methods.

V. CONCLUSION
In this study, we introduced a new POC detection mechanism
using the similarity information of fraud transactions in order
to pinpoint the skimming points which requires an exhaustive
manpower to be identified. Our novel approach enabled us to
trace POCs with zero-knowledge on the existing POCs and
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to prevent possible credit card fraudulent transactions which
might occur in the future.

The test results obtained from real-life transaction dataset
showed us utilizing Autoencoder extractor in our method
outperforms the PCA extractor. Thus, wewere able to identify
7 POCs out of 9 by givingAutoencoder features into K-means
algorithm and then analyzing the transactions in the obtained
clusters retrospectively. The whole process was completed
within a period of 5 minutes involving the aforementioned
dataset with 2.44 billions of transactions. It is also important
to note that our system only suggested 105 possible target
POCs among thousand merchants. On the other hand, we pre-
sented the effect of retrospective analysis and determined that
looking threemonths backward would be sufficient enough to
identify the maximum number of skimming points. This eval-
uation could avert unnecessary labor for analyzing millions
of transactions older than three months. Thus, the manpower
could be benefited at minimum during POC tracing.
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