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In 2019, the world had been attacked with a severe situation by the new version of the SARS-

COV-2 virus, which is later called COVID-19. One can use artificial intelligence techniques 

to reduce time consumption and find safe solutions that have the ability to handle huge 

amounts of data. However, in this article, we investigated the classification performance of 

eight deep transfer learning methodologies involved (GoogleNet, AlexNet, VGG16, 

MobileNet-V2, ResNet50, DenseNet201, ResNet18, and Xception). For this purpose, we 

applied two types of radiographs (X-ray and CT scan) datasets with two different classes: 

non-COVID and COVID-19. The models are assessed by using seven types of evaluation 

metrics, including accuracy, sensitivity, specificity, negative predictive value (NPV), F1-

score, and Matthew’s correlation coefficient (MCC). The accuracy achieved by the X-ray 

was 99.3%, and the evaluation metrics that were measured above were (98.8%, 99.6%, 

99.6%, 99.0%, 99.2%, and 98.5%), respectively. Meanwhile, the CT scan model classified 

the images without error. Our results showed a remarkable achievement compared with the 

most recent papers published in the literature. To conclude, throughout this study, it has been 

shown that the perfect classification of the radiographic lung images affected by COVID-

19. 
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1. INTRODUCTION

The first detected case of coronavirus was in Wuhan, China, 

in December 2019. The spread of the virus significantly 

around the world and the death that occurred due to the virus 

necessitated the World Health Organization to announce the 

existence of a pandemic  [1-4]. By the time the outbreak was 

announced, the virus had spread dramatically throughout the 

world and deaths began to increase dramatically, which led to 

the collapse of the health sector in many countries [5-7]. The 

symptoms of Covid, it was very similar to the flu, the most 

common symptoms of COVID-19 are fever, headache, sore 

throat, cough, severe pneumonia, septic shock, runny nose, 

fatigue, muscle pain, diarrhea, hemoptysis, dyspnea, 

lymphatic distress, and distress syndrome. acute respiratory 

[8-14]. 

This spread (COVID-19) forced the health sector to start 

finding ways that have the ability to diagnose the disease in 

order to limit its spread. The traditional ways for diagnosis of 

COVID-19 are based on the diversity of the dataset provided 

by different tools such as blood tests (CBCs), the reverse-

transcription polymerase chain reaction (RT-PCR), and the 

clinical image. Meanwhile, the WHO organization advised 

relying on the RT-PCR to confirm the coronavirus infection 

[6]. However, RT-PCR consumes time which is considered 

quite a risk for people with COVID-19 in addition to the error 

rate of the test, which is estimated at about 30% [15]. Thus, X-

ray and CT scan techniques that provide a clinical image assist 

radiologists in determining the accurate decision [16-18]. Due 

to the inexpensive, available, and quite a low-risk to health, 

the X-ray modality became the first method of diagnosis of 

COVID-19, but at the same time considered fairly challenging 

in some countries that lack medical supplies [19, 20]. 

Moreover, it may incidence a high error in the diagnosis of the 

infection [21, 22]. 

The scientists resorted to using deep learning techniques 

and developing models to show the high ability to diagnose 

using images based on the promising results obtained by using 

deep learning techniques. Among these diseases that are based 

on medical imaging techniques such as Lung infection 

(pneumonia) [23], asthma [24], Chronic Obstructive 

Pulmonary Disease (COPD) [25], tuberculosis [26], lung 

cancer [27], and many others types associated with breathing 

problems. 

Recently, deep learning with convolutional neural networks 

is utilized for the classification of medical images. There are 

two main popular types of images used to detect COVID-19 

with deep learning techniques; X-rays and Computer 

tomography (CT) scans. These images are being used for the 

diagnosis of effects that occurred as a result of COVID-19 

infection prior to the early stage of treatment [28, 29]. In the 

recent literature, different types of pre-trained deep learning 

models are formed to be used in the detection of COVID-19 

named as GoogleNet [30], Xception [31], U-Net [32], AlexNet 

[33], VGG19 [34], RestNet50 [35], Mobilenets [36], 

DenseNet [37], and SqueezeNet [38]. 

We summarize the most important aims of this paper as the 

following: 

Traitement du Signal 
Vol. 40, No. 2, April, 2023, pp. 407-420 

Journal homepage: http://iieta.org/journals/ts 

407

https://orcid.org/0000-0002-4125-2613
https://orcid.org/0000-0001-7249-4976
https://orcid.org/0000-0003-3014-9626
https://orcid.org/0000-0003-1484-8603
https://orcid.org/0000-0001-6578-1969
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400201&domain=pdf


 

(1) To investigate the classification accuracy of the COVID-

19 affected radiological lung images from the images of 

healthy subjects, for this issue, eight different types of deep 

learning mechanisms are utilized using both X-ray and CT 

scans. 

(2) To evaluate the deep transfer learning ability to classify 

COVID-19 infection based on chest radiography, which is a 

very helpful tool for the health sector for different COVID-19 

variants such as Omicron. 

(3) To pave the way for using pre-trained models with other 

diseases, which provide rapid classification and accurate 

results as well as less consumption time compared with 

developing a model from scratch.  

In this paper, we present an overview of COVID-19 

diagnostic methods utilizing transfer learning. Section II 

describes search methodologies according to previous various 

studies, and the data resources description is explained in 

Section III. Section IV illustrated the methodology of 

Implementing the classifiers used in this paper. Section V 

explores the DL techniques used for the detection of COVID-

19 patients. Section VI shows the measurement parameters 

used to evaluate metrics. Section VII explains the results and 

discussion, and finally, the conclusion is described in Section 

VIII. 

 

 

2. LITERATURE REVIEW 

 

Different types of deep learning techniques are provided 

using radiography and computed tomography datasets to 

detect different diseases. In the study, done by Liu et al. [39], 

the authors developed an enhanced CNN model, which uses 

the radiographic data set for tuberculosis detection. 

Furthermore, in the model, random sampling was 

implemented to address the issue of the unbalanced dataset, 

while the best accuracy was observed as 85.68%. In another 

study done by Dong et al. [40], they used an X-ray data set 

with various types of pre-trained deep learning including 

ResNet, AlexNet, and VGG16. They utilized the pre-trained 

model with more than 16000 images as input for binary and 

multilevel classification. The maximum precision was 

obtained at 82% for the binary classification, while the others 

reached an accuracy of over 90%. Chouhan et al. [41] reported 

a 96% accuracy value for pneumonia detection from X-ray 

images after the implementation of an ensemble of AlexNet, 

DenseNet121, GoogLeNet, and ResNet18 with deep transfer 

learning. Similar to the previous study, Hemdan et al. [42] 

developed a new type of CNN model called the COVIDX-Net 

which was composed of seven types of pre-trained deep 

learning models, namely VGG19, DenseNet121, InceptionV3, 

ResNetV2, Inception-ResNet-V2, Xception, and 

MobileNetV2. In their study, X-ray images were also used as 

input for the COVIDX-Net. On the other hand, Waheed et al. 

[43] modelled Auxiliary Classifier Generative Adversarial 

Network (ACGAN), to enhance X-ray for better classification 

accuracy. Their method improved the accuracy value obtained 

using CNN from 85% to 95%. Likewise, Khan et al. [1] 

proposed a new deep learning model called CoroNet, which is 

based on the Xception architecture pre-trained. The CoroNet 

was trained by using an X-ray image dataset which was 

collected from different resources publicly available for both 

COVID-19 and pneumonia. Wang et al. [44] designed a new 

deep convolutional neural network model called COVID-Net 

that can perform the diagnosis of the COVID-19 virus from 

the publicly available X-ray image dataset collected from 

COVIDx. Mahmud et al. [5] CovXNets proposed to 

implement several types of classification for the detection of 

COVID/normal/Viral/Bacterial pneumonia, cases. The highest 

accuracy value obtained was 97.4%. Furthermore, 

Apostolopoulos and Mpesiana [45] evaluated the performance 

of popular state-of-the-art convolutional neural network (CNN) 

architectures that were proposed in recent years in the medical 

literature. They especially concentrated on the proceedings 

that consisted of transfer learning. They used two different 

types of datasets to examine the CNN models and achieved 

96.78% accuracy. The first one was composed of 1427 X-ray 

images which were 224 images of COVID-19, and 700 images 

of bacterial pneumonia. For the second one, the datasets are 

composed of 1442 X-ray images (224 images of COVID-19, 

714 images of bacterial viral pneumonia, and 504 images of a 

normal case). Horry et al. [46] used pre-trained models, with 

X-ray input images, and highlight challenges that affect the 

results within the use of COVID-19 data sets. Their new 

method helps to reduce the noise from X-ray images therefore 

the deep learning models will just concentrate on identifying 

COVID-19. As a result, they achieved 80% accuracy after the 

use of ResNet, Xception, Inception, and VGG models. 

Likewise, Sethy et al. [47] used deep learning feature 

extraction and then used feature results as input to support 

vector machine (SVM) for classification using X-ray images. 

The dataset consists of three types of X-ray images; normal, 

pneumonia, and COVID-19. These types of images were input 

for different types of CNN models including AlexNet, VGG16, 

VGG19, MobileNet, and ShuffelNet. The features extracted 

from images images are utilized as input to the SVM classifier. 

The best accuracy achieved was 95.38% within RestNet+SVM. 

A new architecture of deep learning called Generative 

Adversarial Networks (GANs) was proposed by Sheykhivand 

et al. [48] for the identification of COVID-19. They compared 

the performance of their model with several pre-trained 

models that were already used in a recent study to detect 

COVID-19 (including Inception V4, MobileNet, Inception-

ResNet V2, and VGG16). The best accuracy result that they 

achieved was 90% within 4 classes and 99% for 2 classes. In 

addition to the above, Haque et al. [49] proposed a model that 

can automatically detect COVID-19 by the use of fewer 

resources. They evaluated the model with 1501 X-ray images 

that consist of 70 images of COVID-19 and 1431 images of 

pneumonia patients while the accuracy result reached was 

97.56% and the precision was 95.34%. In another attempt, Jain 

et al. [50] developed a new CNN model that can detect 

COVID-19 with a 97% accuracy from the dataset of X-ray 

images (COVID-19/Normal) which are available on the 

Kaggle repository. Later, Che Azemin et al. [51] proposed a 

Deep learning model that totally relies on the pre-trained 

Resnet101 architecture. More than a thousand X-ray images 

were used for the training of the new model and a 71.9% 

accuracy result was obtained. On the other hand, Abbas et al. 

[52] proposed a deep learning model called (DeTraC) that has 

ability to detect COVID-19 from X-ray images. As well, in 

their methodology, they used a decomposition mechanism that 

can deal with any irregularities of the dataset by investigating 

the boundaries of the classes. Their highest accuracy value was 

93.1%.

 

 

 

 

408



 

3. MATERIALS AND METHODS 
 

Dataset 

 

Since COVID-19 is a new disease, the raw datasets are not 

quite easily available and appropriate to be used for deep 

learning studies. Therefore, we aimed to select a dataset that 

can be publicly available. We collected chest X-ray images 

from Zenodo [53]. The author collected the images from 

authenticated sources such as Radiopaedia, the radiological 

society of north America (RSNA) [54], COVID-19 image data 

collection [55], COVIDX, Kaggle, etc. from different patients 

that have a COVID-19. At the time of this current study, the 

database contained 250 COVID-19 images and 327 non-

COVID images, with a size of 250x250 pixels. In addition to 

X-ray images Figure 1, CT images were also used in this study. 

The number of CT images was 471, and 211 of them belong 

to COVID-19. CT images were downloaded from the open-

source repository Kaggle, SARS-COV-2 Ct-Scan Dataset. 

Figure 2 shows a sample of CT scan images. 
 

 

4. METHODOLOGY 
 

Implementation of the classifiers 

 

We selected different types of pre-trained deep learning 

models, which are namely (GoogleNet, AlexNet, VGG16, 

MobileNet-V2, ResNet50, DenseNet201, ResNet18, and 

Xception). All these experiments had been carried out on 

MATLAB (R2021a) with workstations (GPU NVIDIA 

GeForce GTX 1060 6GB, Intel processor i7-8700 @3.6HZ, 

Ram 16GB). The last fully connected layer was changed to a 

new one to classify only two classes. The parameters were 

fixed for all pre-trained networks, as the following learning 

rate as 0.00001, validation frequency as 5, batch size as 20, 

and the max epochs were set to 30. For each model, we set a 

stochastic gradient descent with a momentum (SGDM) 

optimizer. We used a 5-fold cross-validation method to avoid 

over-fitting. The dataset was divided into training and testing 

with a ratio of 7:3. The dataset was divided randomly between 

the training and test for all five parts. In order to increase the 

learning of the pre-training model, we used different types of 

augmentation of images such as vertical shift, horizontal shift, 

vertical flip, horizontal flip, rotation, brightness adjustment, 

and zoom in/out, which in turn positively affected the learning 

rate of this the model. The final performances of each model 

were computed through the average results that were obtained 

from the five stratified folds of the test results. Also, the data 

augmentation methods were applied in this study which 

includes cropping, rotation, reflection, and resizing images. 

Moreover, we used the L2-regularization method for the 

dropout Figure 3 clarifies the method used in this study. 

 

 
 

Figure 1. Illustration of the X-ray dataset, a random selection for two types, COVID-19 and non-COVID

 

 
 

Figure 2. Illustration of the CT dataset, a random selection for two types, COVID-19 and non-COVID 
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Figure 3. Illustration of the methodology used in this study 

 

 

5. TRANSFER LEARNING 

 

Transfer learning is an efficient method of deep learning 

models. The pre-training mechanism is performed with the use 

of many images, and the resulting networks serve as a basis 

for reuse in the presence of a low number of input images. In 

deep learning, we used popular methodologies that were 

implemented for transfer learning with pre-trained networks 

called fine-tuning. Whereas this technique is based on the 

weights of the new layers (replaced) that add to the models 

(the last three layers that we changed in the last CNN networks 

to be appropriate with the new dataset that was utilized as input 

for classification). 

 

5.1 Resnet 

 

The family of deep residual networks is the most popular 

convolutional neural network that is used in deep learning, it 

is proposed by He et al. [35], Al-Jumaili et al. [56]. The family 

comprises different kinds of models such as ResNet16, 

ResNet18, ResNet34, ResNet50, ResNet101, ResNet110, 

ResNet152, ResNet164, ResNet1202, and so on [57]. The 

number beside the ResNet name means the depth of the 

models (number of layers that are used inside the models). 

However, two major problems remained in the development 

of the CNN model. Especially when it started training in order 

to raise the depth, which are degradation and vanishing 

gradients. This is solved by executing the ResNet block by 

adding a skip connection that can prevent loss of information 

with the network when it will be deeper. Indeed, the major idea 

behind constructing ResNet is the residual module, which is 

illustrated in Figure 3. In Figure 4a, on the left side, two 

convolutional layers are present. They used 3x3 kernels and 

the spatial dimensions are preserved beside that. The right side 

is skipping connection by adding the input to the output which 

is a method used in the ResNet18 model. 

Different residual modules were used such as the bottleneck 

residual, which is illustrated in Figure 4b, where the input 

passes into two convolutional networks with 1x1 and 3x3 

kernel sizes. While the right way is skipping the connection 

that connects the module’s input to an additional operation 

with the output of the left path, ResNet101 and ResNet50 

models used this method. The deep residual network is built 

by using multiple residual modules to top of each other besides 

using a lot of different conventional convolution layers and 

pooling layers. In our study, we used two different depth types 

each one has its own mechanism which are ResNet50 and 

ResNet18. 

 
 

Figure 4. The ResNet18 (A) model used, and the bottleneck 

residual module used in ResNet50 (B) both of them 

explained with details in the study of He et al. [35] 

 n ut i a es resi ed to be 

fit with  re trained  odels

       

      

 le  et

Xce tion

 ense et   

 oo le et

 es et  

 es et  

     

Mobile et   

 or al

Covid  

 ast three layer

re laced in each

 odel

 ully 

connected  oftMa 

Classifier 

layer

Classification 

 ut ut

410



 

5.2 Xception 

 

The Xception model is one of the CNN architectures that 

gets inspired by the Inception model. In other word, we can 

say that it is an extended architecture of the Inception with tiny 

modifications by replacing the standard Inception modules 

with depthwise separable convolutions layers. The depthwise 

separable convolution composes several spatial convolution 

kernels having different sizes (3×3, 5×5, etc.). It is performed 

on each of the input channels to set the spatial correlations, and 

then in the next stage, pointwise convolution (1×1) is used to 

set the cross-channel correlations. The Xception architectures 

are fully dependent on the depthwise separable convolution 

layers, where the model is composed of 36 convolutional 

layers and 14 modules. Residual connections are used in all 

models except the first and last ones. Figure 5 explains the 

architectures of the Xception model. 

 

 
 

Figure 5. Xception architecture [58] 

 

5.3 Densenet201 

 

Densely connected convolutional Networks (DenseNets) 

are one of the CNN architectures that are presented by Huang 

et al. [37]. DenseNets come with various convincing 

characteristics such as achieving high performance, fostering 

feature reuse, consolidating feature propagation, diminishing 

vanishing gradients problems, and increasing computational 

efficiency. It has similarities with the ResNet model in the 

modification of the connections on the output. It used the 

convolutional layers in place of summing them up. 

Consequently, the output is a feature map for the next input 

layer. The model is visualized in Figure 6. 

 
 

Figure 6. Layer dense models with each layer showing the 

concatenated output to be the feature maps as input to the 

next layer [37] 

 

5.4 Mobilenet-V2 

 

 
 

Figure 7. MobileNetV2 architecture [56] 

 

MobileNetV2 is an improvement of the first generation 

MobileNetV1. The most important thing in the new model is 

the capability to feature extraction based on use. The basic unit 

used in this model is 1) linear bottlenecks between the layers, 

and 2) shortcut connections between the bottlenecks (Figure 

7). The architecture of the model is suitable for the varying 

performances with multiple types of input images. The 

architectures of the MobileNetV2 model consist of 53 layers 

with 3.5million parameters while the input image size is 

(width multiplier 224×224). 

 

5.5 Googlenet 

 

GoogleNet consists of 22 layers which leads to high 
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performance for the classification of images. The GoogleNet 

consists of 27 pooling layers where 9 inception blocks are 

stacked linearly. In each inception block, there are 4 parallel 

paths where the end of the inception block is connected to the 

global average pooling layer. Figure 8 clarifies the architecture 

of GoogleNet. 

 

 
 

Figure 8. GoogleNet architecture [30] 

 

5.6 Alexnet 

 

AlexNet is one of the best CNN models available due to its 

fast and high performance for classification images when 

compared to the other deep learning models. The architecture 

of the AlexNet is comprised of 8 layers in total. The first 5 are 

convolutional layers and the rest are all fully connected layers 

where two of them are connected with overlapping max-

pooling layers that are used to extract features from images. 

The third, fourth, and fifth convolutional layers are connected 

directly with fully connected layers. The output of all 

convolutional and fully connected layers is connected to the 

ReLu non-linear activation function. The last layer is SoftMax 

activation which produces 1000 classes. 

 

5.7 VGG16 

 

 
 

Figure 9. VGG16 architecture 

 

VGG16 is one of the popular pre-trained models that is used 

for classifying multiple types of images. The unique property 

in VGG16 is that the model uses the hyper-parameter that is 

focused on the convolution layers of the 3×3 filter with stride 

1. The same max pooling layer and padding of the 2×2 filter 

of stride 2 is used in the layers. The details about the 

architecture are shown in Figure 9. It illustrates the structure 

of VGG16, and Table 1 shows all the types of pre-trained 

models, the types of parameters, the dimensions of the images 

required for each model due to its impact on the results, and 

finally the number of images used for training each model 

separately. 

 

Table 1. Deep learning architectures for different models 

 

Name 
Image 

Input Size 
Size Layers 

Parameters 

(Millions) 

ResNet-18 224x224x3 44MB 18 11.7 

ResNet-50 224x224x3 96 MB 50 25.6 

Xception 299x299x3 85MB 71 22.9 

MobileNetV2 224x224x3 13MB 53 3.5 

Densenet201 224x224x3 77MB 201 20 

GoogleNet 224x224x3 27MB 22 7 

VGG16 224x224x3 515MB 16 138 

AlexNet 224x224x3 227MB 8 61 

 

 

6. EVALUATION METRICS 

 

We used various types of performance of evaluation metrics 

to check each model separately, using confusion matrix 

outcomes from the validation tests. The confusion matrix 

results have been used as an input to check the metrics such as 

accuracy, sensitivity, specificity, precision, negative 

predictive value (NPV), F1-score, Matthew’s correlation 

coefficient (MCC), and receiver operating characteristic curve 

(ROC). Accuracy is calculated as the number of the correct 

predictions from the whole dataset as shown in Eq. (1). The 

sensitivity is calculated as the number of correct positive 

predictions from the total positives number Eq. (2). Specificity 

is the true negative prediction that had been calculated from 

the whole negatives of the dataset and called true negative rate 

(TNR) Eq. (3). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (3) 

 

Correspondingly, Eq. (4), shows the precision, (positive 

predictive value (PPV)) as the ratio of correct positive 

predictions to the number of overall positive predictions. 

Whilst the negative predictive value (NPV) is given in Eq. (5). 

The Harmonic mean is known as F1-score and computed from 

precision and sensitivity, as shown in Eq. (6). Finally, 

Matthew’s correlation coefficient range (MCC) given in Eq. 
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(7) is used to calculate the correction coefficient based on 

confusion matrix values.  

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (4) 

 

negative predictive value (𝑁𝑃𝑉) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (5) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (6) 

 

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (7) 

 

 

7. RESULTS AND DISCUSSION 

 

This section presents the results of all experimental tests and 

configuration setups for deep learning network models. We 

discussed the results that were obtained using types of 

networks for both two types of datasets: X-ray and CT images. 

The confusion matrix is one of the most important accurate 

measurement tools that is used to check classifiers' 

performance. The confusion matrix comes out with four types 

of parameters namely (true-positive (TP), true negative (TN), 

false-positive (FP), and false-negative (FN)) which were used 

to check the performance of the models with different types of 

metrics. 

In the first scenario, as shown in Table 2, the confusion 

matrix was obtained using X-ray images for eight types of 

deep transfer learning; GoogleNet, AlexNet, VGG16, 

MobileNet-V2, ResNet50, DenseNet201 ResNet18, and 

Xception. As we observe from Table 2, the DenseNet201 

model achieved the highest classification accuracy. It can 

recognize 249 images within the labelled COVID-19 class, 

though only 3 images were classified as a non-COVID class. 

Besides, 324 images were classified correctly labelled as a 

non-COVID class, though only one image was classified as a 

COVID-19 class. The VGG16 model distinguished 208 

images and labelled them as a COVID-19 class, but 3 images 

were wrongly classified. 324 images are accurately classified 

as non-COVID, while 2 images are misclassified. Furthermore, 

both GoogleNet and ResNet50 are identical for the number of 

distinguished images related to COVID-19 where 246 images 

were correctly predicted. But, for misprediction, only 3 and 6 

images were being labelled as a non-COVID class, 

respectively. 

The ResNet18 model predicted 245 images correctly, 

although 4 images were mis-predicted and labelled as a non-

COVID class. Besides, 323 images are correctly predicted for 

the non-COVID class. But only 5 images were predicted as 

non-COVID. The AlexNet model predicted 242 images as in 

the COVID-19 class, though 10 images were falsely predicted. 

While 317 images were predicted as a non-COVID class. 

Lastly, MobileNetV2 and Xception models showed the lowest 

prediction compared to the former models for both COVID-19 

and non-COVID classes. Both models can predict 324 and 322 

images for non-COVID classes. However, these models were 

able to classify even 1 as well as 122 images as COVID-19, 

respectively. 
 

Table 2. Confusion matrices for different types of deep 

learning models. The results are an average of the 5-fold 

cross-validations through the applying of X-ray datasets 
 

CNN Name Classes Name Predicted Class 

AlexNet Actual Class 
COVID-19 242 10 

NON 8 317 

DenseNET201 Actual Class 
COVID-19 249 3 

NON 1 324 

GoogleNet Actual Class 
COVID-19 264 3 

NON 4 324 

MobileNet-V2 Actual Class 
COVID-19 209 5 

NON 1 322 

Resnet18 Actual Class 
COVID-19 245 4 

NON 5 323 

ResNet50 Actual Class 
COVID-19 246 6 

NON 4 321 

VGG16 Actual Class 
COVID-19 208 3 

NON 2 324 

Xception Actual Class 
COVID-19 128 3 

NON 122 324 
 

MobileNet-V2 and ResNet50 were identical in the 

sensitivity score. The Xception model attains the lowest 

average sensitivity results. The specificity scores of 

MobileNet-V2 and DenseNet201 were identical and on 

average they were approximately 99.6%. The specificity of 

VGG16 was approximated to the result of both former models. 

Among all these models, GoogleNet, ResNet50, and ResNet18 

obtained a fairly acceptable average specificity. On the other 

hand, the performance of the Xception was the lowest. The 

DenseNet201 demonstrated domination for all other metrics; 

precision, NPV, F1-score, and MCC, as 99.6%, 99.0%, 99.2%, 

and 98.5%, respectively. The DensNet model showed superior 

performance when compared to other models concerning all 

evaluation metrics as shown in Table 3.  

The accuracy obtained from the VGG16 model was 99.0%, 

which was the closest value to the DensNet model. GoogleNet, 

MobileNet-V2, ResNet50, and ResNet18 provide similar 

accuracy values at around 98%. Furthermore, from all models, 

Xception and AlexNet achieved the lowest results, 78.3%, and 

96.8%, respectively. The sensitivity metric for the models 

namely DenseNet201, GoogleNet, VGG16, and ResNet18 

achieved an average of around 98%. 

 

Table 3. Different types of metrics used to check the performance of various types of deep learning models using the X-ray 

dataset 
 

Dataset Types Model 
Evaluation Metrics 

Acc Sen Spe Pre NPV F1-Score MCC 

X-ray 

GoogleNet 98.7 98.7 98.7 98.4 99.0 98.5 97.5 

AlexNet 96.8 96.0 97.5 96.8 96.9 96.4 93.6 

VGG16 99.0 98.5 99.3 99.0 99.0 98.8 98.0 

MobileNet-V2 98.8 97.6 99.6 99.5 98.4 98.5 97.6 

ResNet50 98.2 97.6 98.6 98.4 98.1 98.0 96.4 

DenseNet201 99.3 98.8 99.6 99.6 99.0 99.2 98.5 

ResNet18 98.4 98.3 98.4 98.0 98.7 98.1 96.8 

Xception 78.3 97.7 72.6 51.2 99.0 69.1 59.4 
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Figure 10. The receiver operating characteristic (ROC) 

curves for various types of pre-trained models including, 

GoogleNet, AlexNet, ResNet50, ResNet18, VGG16, 

MobileNet-V2, DenseNet201, and Xception for X-ray dataset 

 

In order to make the models more visualizable for the results, 

we used ROC to visualize the performance of the different 

models. As presented in Figure 10, it is obvious that 

DenseNet201 achieved the best performance compared to the 

other models. Similar to the aforementioned, in the second 

scenario we utilized CT images as input to the different models 

including GoogleNet, AlexNet, VGG16, MobileNet-V2, 

ResNet50, DenseNet201 ResNet18, and Xception. The results 

of models for the confusion matrix are illustrated in Table 4. 

The DenseNet201 model obtained the highest prediction 

results. The model could predict all the images for both classes 

(COVID-19 and non-COVID) without error. The VGG16 and 

MobileNet-V2 are identical in the prediction of the COVID-

19 class with 259 images. The number of images detected in 

the non-COVID class was 211, and 210 images for each 

algorithm, respectively. The error rate was just one image in 

the MobileNet-V2 model for both classes (COVID-19 and 

non-COVID), but in the VGG16 model, the error rate was 4 

images within the COVID-19 class. 

The ResNet50 and ResNet18 have predicted all images 

correctly for the non-COVID class, but in the COVID-19 only 

one image was misclassified, which made them the closest 

result to DenseNet201. Regarding the GoogleNet model, the 

proportion of images that had been predicted for the COVID-

19 class was 245, although 3 images were counted in the non-

COVID class. The lowest prediction obtained by the models 

were AlexNet and Xception for both classes: for the COVID-

19 class for the AlexNet, only 227 images were correctly 

predicted, whereas 2 images were labelled as in non-COVID 

class. On the other hand, the Xception model predicts 257 

images for COVID-19, and just 3 images are labelled as a non-

COVID class. 

The DenseNet201 achieved the highest result with respect 

to all evaluation metrics of 100%. While VGG16, MobileNet-

V2, ResNet50, and ResNet18 scored 98-99% on all evaluation 

metrics. Regarding, GoogleNet achieved the results ranged 

between 97-99% for all assessment measures. The lowest 

results obtained were obtained by AlexNet and Xception 

which did not exceed 92% and 69%, respectively.  From all the 

model DensNet model showed superior performance when 

compared to other models concerning all evaluation metrics as 

shown in Table 5.

 

Table 4. Confusion matrices for different types of deep learning models. The results are an average of the 5-fold cross-

validations through the applying of CT scan datasets 

 
CNN Name Classes Name Predicted Class 

AlexNet Actual Class 
COVID-19 227 2 

NON 33 209 

DenseNET201 Actual Class 
COVID-19 260 0 

NON 0 211 

GoogleNet Actual Class 
COVID-19 259 4 

NON 1 207 

MobileNet-V2 Actual Class 
COVID-19 259 1 

NON 1 210 

Resnet18 Actual Class 
COVID-19 259 0 

NON 1 211 

ResNet50 Actual Class 
COVID-19 259 0 

NON 1 211 

VGG16 Actual Class 
COVID-19 260 4 

NON 0 207 

Xception Actual Class 
COVID-19 257 142 

NON 3 69 

Table 5. Different types of metrics used to check the performance of various types of deep learning models using the CT scan 

dataset whereas Sen refers to sensitivity, Spe refers to specificity, and Acc refers to accuracy 

 

Dataset Types Model 
Evaluation Metrics 

Acc Sen Spe Pre NPV F1-Score MCC 

CT 

GoogleNet 98.9 98.4 99.5 99.6 98.1 99.0 97.8 

AlexNet 92.5 99.1 86.3 87.3 99.0 92.8 85.9 

VGG16 99.1 98.4 100 100 98.1 99.2 98.2 

MobileNet-V2 99.5 99.6 99.5 99.6 99.5 99.6 99.1 

ResNet50 99.7 100 99.5 99.6 100 99.8 99.5 

DenseNet201 100 100 100 100 100 100 100 

ResNet18 99.7 100 99.5 99.6 100 99.8 99.5 

Xception 69.2 64.4 95.8 98.8 32.7 77.9 43.5 
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Table 6. Comparison between the state-of-art results published in deep learning models and our results using both dataset X-ray 

and CT scan, whereas Sen refers to sensitivity, Spe refers to specificity, and Acc refers to accuracy, F1 refers to F1-score 

 

Ref. Dataset 
Image 

Types 
DL Model Layers Num. Classifier Sen Spe F1 Acc 

[59] 
Different 

Datasets 
X-ray WRN 28 SoftMax 97.53 88.52 94.5 93 

[60] 
Different 

Datasets 
CT DenseNet Standard SoftMax NA NA 90 89 

[61] 
Different 

Datasets 
CT DenseNet 169  NA NA 85 86 

[62] 
Different 

Datasets 
X-ray Resnet18 Standard SoftMax 85 96 84 88 

[63] 
Different 

Datasets 
CT VGG Modified 

weakly 

supervised 
93 93 NA 94 

[64] 
Different 

Datasets 
CT ResNet-101, Xception Standard SoftMax 98 100 NA 99 

[65] SIRM CT VGG-16, GoogleNet and ResNet-50 Standard SVM 98.93 97.60 98.28 98.27 

[66] 
UCSD-

AI4H 
CT DECAPS developed HAMs NA 84.3 87.1 87.6 

[67] 
Different 

Datasets 
CT Alexnet Modified SoftMax 100 96 NA 98 

[68] Medical CT ResNet50 Modified Dense Layer 81.1 61.5 NA 76 

[69] Medical CT DRE-Net Modified MLP 93 93 93 93 

[70] Medical CT AFS-DF developed Ensemble 93.05 89.95 NA 91.79 

[71] 
Different 

Datasets 

CT/X-

ray 
ResNet101 Standard SoftMax 100 97.50 NA 98.75 

[72] Medical CT inception Modified 
Decision Tree 

and Adaboost 
81 84 77 82.9 

[73] Medical CT DenseNet Standard SoftMax 97 87 93 92 

[74] Medical 3D-CT ResNet18 29 

Noisy-OR 

Bayesian 

function 

NA NA 83.9 86.7 

[75] 
Different 

Datasets 
CT CNN as a feature extractor 12 LSTM NA NA NA 99.68 

[76] 
COVID-

CT-Dataset 
CT ResNet50 Modified SoftMax 80.85 91.43 NA 82.91 

[77] 
Different 

Datasets 
CT ResNet50 as a feature extractor 14 SoftMax 91.45 94.77 NA 93.01 

[78] 
Different 

Datasets 
CT CNN 7 NA 90 90 NA 92 

[79] COVIDx X-ray COVIDiagnosis-Net (SqueezeNet) Standard 
Decision-

Making 
95.13 95.3 96.51 98.08 

[80] 
Different 

Datasets 
X-ray DarkCovidNet 39 Linear NA 99 98 98 

[52] 
Different 

Datasets 
X-ray DeTraC (ResNet18) Standard SoftMax NA NA NA 95 

[81] COVIDx X-ray COVID-CAPS 9 Capsule Layer 90 95.8 NA 95.7 

[1] 
Different 

Datasets 
X-ray CoroNet Modified SoftMax 89.92 96.4 89.9 89.5 

[82] 
Different 

Datasets 
X-ray GSA-DenseNet121-COVID-19 Modified SoftMax 98 NA 98 98 

[83] 
Different 

Datasets 
X-ray DCSL Framework Modified SoftMax 97.09 NA 96.98 97.01 

[84] 
Different 

Datasets 
X-ray CNN 12 Grad-CAM NA NA NA 90.1 

[85] Kaggle X-ray CNN 11 SoftMax NA NA NA 93 

[86] COVIDx X-ray CoroNet 

2 separates 

(FPAE) + 

ResNet18 

SoftMax 93.50 NA 93.51 93.50 

[87] COVIDx X-ray DenseNet121 Modified SoftMax 92 NA 92 96.4 

[88] 
Different 

Datasets 

X-ray, 

CT 
Inception-ResNetV2 Standard 

MLP 

Classifier 
92.11 96.06 92.07 92.18 

[45] 
Different 

Datasets 
X-ray MobileNet Modified NA NA NA NA 96.78 

[89] 
Different 

Datasets 
X-ray 

mobilenetv2, Densenet121, Resnet 

(18,50,101,152), DenseNet 

(169,201), Resnext50, WRN (50,101) 

RresNext101 

Modified SoftMax NA NA 0.64 89.4 

[90] 
Different 

Datasets 
X-ray CAD-based YOLO Predictor 54 

Tensor of 

prediction 
85.15 99.05 84.81 97.40 
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[5] 
Clinical (3 

Datasets) 
X-ray CovXNet Various layer Grad-CAM 97.8 94.7 97.1 97.4 

[91] 
Different 

Datasets 
X-ray VGG16 Modified SoftMax 87.7 NA NA 84.1 

[47] 
Different 

Datasets 
X-ray ResNet50 Standard SVM 95.33 NA 95.34 95.33 

Our Zenodo X-ray DenseNet201 Modified SoftMax 98.8 99.6 99.2 99.3 

Our Kaggle CT DenseNet201 Modified SoftMax 100 100 100 100 

 

Various models were verified using the ROC to ensure the 

performance and to visualize the results of the different models 

in a more transparent and understandable way as shown in 

Figure 11. It is undeniable that the DensNet201 model 

achieves exceptional performances that exceed those of its 

peers. Finally, we compared our results with other leading-

edge studies recently published in the COVID-19 literature for 

X-ray and CT datasets. It is clear that our results outperformed 

the previous results published as shown in Table 6, whereas 

the best results achieved were written in bold. 

 

 
 

Figure 11. The receiver operating characteristic (ROC) 

curves for various types of pre-trained models including 

GoogleNet, AlexNet, ResNet50, ResNet18, VGG16, 

MobileNet-V2, DenseNet201, and Xception using CT scan 

dataset 

 

 

8. CONCLUSION 

 

The use of deep learning is one of the most crucial 

technologies currently available because of its ability to help 

and speed up decision-making. Especially under the current 

circumstances that the world is experiencing due to the 

existence of the COVID-19 pandemic, governments have 

supported deep learning to accelerate the identification of a 

diagnosis. In this study, eight types of pre-trained deep 

learning models were implemented, (GoogleNet, AlexNet, 

VGG16, MobileNet-V2, ResNet50, DenseNet201 ResNet18, 

and Xception) using the built-in routines of MATLAB. In the 

first scenario, X-ray images were adopted, and 577 images are 

divided into (COVID-19, non-COVID). Later, in the second 

scenario, we used CT images for the classification (471 

images). Similar to the X-ray image input set, DenseNet201 

achieved the highest accuracy value of 100%. The major 

limitation of the current paper is the small dataset, where this 

technique can both fine-tune the weights of pre-trained 

networks on small datasets and train the weights of networks 

on big datasets. Although this limitation exists, superior results 

were obtained by applying the techniques of regularization, 

learning rate schedulers, and data augmentation, which in turn 

increased the learning ability to be used for the classification 

of COVID-19. Due to pre-trained models having advantages 

such as reduced consumption time, and simplified 

implementation, there is no need for huge amounts of images 

(datasets) for training and testing, because they are already 

trained compared to developing a model from scratch that will 

be developed for a specific type of image. We conclude that 

applying a pre-trained model allows classification with perfect 

results for both types of datasets (CT and X-rays).   

The results that were obtained in the previous papers' 

published literature did not obtain impressive results 

compared to the results that we achieved, due to the images 

needed to train the developed model from scratch must be 

huge in order to obtain sufficient test accuracy results which 

can be adopted in hospitals. Based on these limitations found 

in previous studies, we used pre-trained models to classify 

COVID-19 with the best possible accuracy. 

To conclude, in this study, we presented that the 

classification of the COVID-19 and non-COVID radiological 

images is possible with the absence of error. In terms of 

applications, based on the results obtained, we can recommend 

the utilize this methodology with chest-related infectious 

diseases (radiographs), which lacks the amount of data that 

allows developing (training and testing) a convolutional neural 

network from scratch. 
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