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Abstract

The aim of this paper is to investigate some of the fundamental properties of weakly
e∗-continuous functions introduced by Ayhan and Özkoç in [3]. Moreover, several character-
izations and some properties concerning weakly e∗-continuous functions are obtained. Then,
we investigate relationships between weak e∗-continuity and some other types of continuity.
Also, we investigate the relationships between weakly e∗-continuous functions and connect-
edness and graph of functions.

Key words and phrases: e∗-open, weakly e∗-continuity, almost e∗-continuity, faintly
e∗-continuity.

Resumen

El objetivo de este trabajo es investigar algunas de las propiedades fundamentales de
las funciones e∗-continuas débilmente introducidas por Ayhan y Özkoç en [3]. Además, se
obtienen varias caracterizaciones y algunas propiedades relativas a funciones e∗-continuas
débilmente. Luego, investigamos las relaciones entre la dbil e∗-continuas débil y algunos otros
tipos de continuidad. Además, investigamos las relaciones entre las funciones e∗-continuas
débilmente y la conectividad y gráfica de funciones.

Palabras y frases clave: e∗-abierto, e∗-continuidad débil, casi e∗-continuidad, e∗-
continuidad ligera.

1 Introduction

One of the most important subjects in mathematics is the notion of continuity. Recently, several
studies have been carried out on continuous functions which are indispensable objects of topology.
In these studies, the concepts which are both stronger and weaker than the concept of continuity
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have been introduced and some fundamental results have been obtained. For instance in 1961,
the concept of weak continuity is introduced by Levine in [8]. In the following years various weak
forms of weak continuity were defined and studied by many mathematicians. The concept of
weak e∗-continuity which is defined by Ayhan and Özkoç in [3], weaker than weak e-continuity
introduced by Özkoç and Aslım in [12], weak β-continuity introduced by Popa and Noiri in
[14], weak b-continuity introduced by Şengül in [15], almost e∗-continuity and weak a-continuity
introduced by Ayhan and Özkoç in [3], but stronger than faint e∗-continuity introduced by Jafari
and Rajesh in [7]. In this paper, we study weak e∗-continuity via e∗-open sets defined by Ekici
in [5].

2 Preliminaries

Throughout this present paper, (X, τ) and (Y, σ) (or simply X and Y ) represent topological
spaces on which no seperation axioms are assumed. For a subset A of a space X, the closure
and the interior of A are denoted by cl(A) and int(A), respectively. The family of all open (resp.
closed, clopen) sets of a topological space X will be denoted by O(X) (resp. C(X), CO(X)). A
subset A of a topological space X is said to be regular open (regular closed) if A = int(cl(A))
(resp. A = cl(int(A))) (cf. [16]). The family of all regular open (regular closed) of a topological
space X is denoted by RO(X) (RC(X)). A point x of X is said to be δ-cluster point of A if
int(cl(U)) ∩ A 6= ∅ for each open neighbourhood U of x (cf. [17]). The set of all δ-cluster
points of A is called the δ-closure of A and is denoted by clδ(A) (cf. [17]). If A = clδ(A), then
A is called δ-closed, and the complement of a δ-closed set is called δ-open (cf. [17]). The set
{x : ∃ U ∈ RO(X) with x ∈ U ⊆ A} (equally {x : ∃ U ∈ τ with x ∈ U and int(cl(U)) ⊆ A}) is
called the δ-interior of A and is denoted by intδ(A).

A subset A is called a-open (resp. semiopen, preopen, b-open, β-open, e-open, e∗-open)
if A ⊆ int(cl(intδ(A))) (resp. A ⊆ cl(int(A)), A ⊆ int(cl(A)), A ⊆ cl(int(A)) ∪ int(cl(A)),
A ⊆ cl(int(cl(A))), A ⊆ cl(intδ(A)) ∪ int(clδ(A)), A ⊆ cl(int(clδ(A)))) (cf. [4, 9, 10, 2, 1, 6, 5]
respectively). The complement of an a-open (resp. semiopen, preopen, b-open, β-open, e-open,
e∗-open) set is called a-closed (resp. semiclosed, preclosed, b-closed, β-closed, e-closed, e∗-closed),
see [4, 9, 10, 2, 1, 6, 5] respectively. The intersection of all e∗-closed sets of X containing A is
called the e∗-closure of A and is denoted by e∗-cl(A) (cf. [5]). The union of all e∗-open sets of X
contained in A is called the e∗-interior of A and is denoted by e∗-int(A) (cf. [5]).

A point x of X is called a θ-cluster point of A if cl(U) ∩ A 6= ∅ for every open set U of X
containing x (cf. [17]). The set of all θ-cluster points of A is called the θ-closure of A and is
denoted by clθ(A) (cf. [17]). Equivalently clθ(A) =

⋂
{F : A ⊆ int(F ) and F ∈ C(X)}. A subset

A is said to be θ-closed if A = clθ(A) (cf. [17]). The complement of a θ-closed set is called a θ-
open set (cf. [17]). A point x of X said to be a θ-interior point of a subset A, denoted by intθ(A),
if there exists an open set U of X containing x such that cl(U) ⊆ A (cf. [17]). Equivalently
intθ(A) =

⋃
{U : cl(U) ⊆ A and U ∈ O(X)}.

The family of all open (resp. closed, e-open, e-closed, e∗-open, e∗-closed, β-open, β-closed,
δ-open, δ-closed, θ-open, θ-closed, semiopen, semiclosed, preopen, preclosed, a-open, a-closed)
subsets of X is denoted by O(X) (resp. C(X), eO(X), eC(X), e∗O(X), e∗C(X), βO(X), βC(X),
δO(X), δC(X), θO(X), θC(X), SO(X), SC(X), PO(X), PC(X), aO(X), aC(X)). The family
of all open (resp. closed, e∗-open, e∗-closed, β-open, β-closed, δ-open, δ-closed, θ-open, θ-closed,
semiopen, semiclosed, preopen, preclosed, a-open, a-closed) sets of X containing a point x of
X is denoted by O(X,x) (resp. C(X,x), eO(X,x), eC(X,x), e∗O(X,x), e∗C(X,x), βO(X,x),
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βC(X,x), δO(X,x), δC(X,x), θO(X,x), θC(X,x), SO(X,x), SC(X,x), PO(X,x), PC(X,x),
aO(X,x), aC(X,x)).

We shall use the well-known accepted language almost in the whole of the proofs of the
theorems in this article.

The following basic properties of e∗-closure and e∗-interior are useful in the sequel:

Lemma 2.1 (cf. [5]). Let A be a subset of a space X, then the followings hold:

1. e∗-cl(X \A) = X \ e∗-int(A).

2. x ∈ e∗-cl(A) if and only if A ∩ U 6= ∅ for every U ∈ e∗O(X,x).

3. A is e∗C(X) if and only if A = e∗-cl(A).

4. e∗-cl(A) ∈ e∗C(X).

5. e∗-int(A) = A ∩ cl(int(clδ(A))).

Lemma 2.2. Let X be a topological space and A ⊆ X. Then the following properties hold:

1. If A is an open set in X, then cl(A) = clδ(A) = clθ(A).

2. clθ(A) ∈ C(X).

Proof.

1. Let A ∈ O(X) and x ∈ clθ(A), then for all U ∈ O(X,x) is obtained cl(U) ∩ A 6= ∅.
Therefore, for all U ∈ O(X,x)) we get that cl(U ∩A) ⊇ cl(U)∩A 6= ∅, because A ∈ O(X).
So, for all U ∈ O(X,x), U ∩A 6= ∅ and, therefore, x ∈ cl(A). Then we have

clθ(A) ⊆ cl(A) (1)

On the other hand, we have always

cl(A) ⊆ clδ(A) ⊆ clθ(A) (2)

By equations (1) and (2) we get that cl(A) = clδ(A) = clθ(A).

2. It is obvious from the fact that clθ(A) =
⋂
{F : A ⊆ int(F ) and F ∈ C(X)}.

Lemma 2.3 (cf. [3]). Let X be a topological space and A,B ⊆ X. If A is an a-open set and B
is an e∗-open set, then A ∩B is an e∗-open set in X.

Lemma 2.4 (cf. [13]). Let X and Y two topological spaces and A ⊆ X and B ⊆ Y . Then

clδ(A×B) = clδ(A)× clδ(B).

Definition 2.1. A function f : X → Y is said to be:

1. δ-continuous if f−1[V ] is δ-open in X for each δ-open set V of Y (cf. [11]).

2. β-continuous if for each x ∈ X and each open set V of Y containing f(x), there exists
U ∈ βO(X,x) such that f [U ] ⊆ V (cf. [1]).
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3. e∗-continuous if for each x ∈ X and each open set V of Y containing f(x), there exists
U ∈ e∗O(X,x) such that f [U ] ⊆ V (cf. [5]).

4. Weakly b-continuous (briefly w.b.c.) if for each x ∈ X and each open set V of Y containing
f(x), there exists U ∈ BO(X,x) such that f [U ] ⊆ cl(V ) (cf. [15]).

5. Weakly β-continuous (briefly w.β.c.) if for each x ∈ X and each open set V of Y containing
f(x), there exists U ∈ βO(X,x) such that f [U ] ⊆ cl(V ) (cf. [14]).

6. Weakly e-continuous (briefly w.e.c.) if for each x ∈ X and each open set V of Y containing
f(x), there exists U ∈ eO(X,x) such that f [U ] ⊆ cl(V ) (cf. [12]).

7. Weakly a-continuous (briefly w.a.c.) if for each x ∈ X and each open set V of Y containing
f(x), there exists U ∈ aO(X,x) such that f [U ] ⊆ cl(V ) (cf. [3]).

8. Almost e∗-continuous (briefly a.e∗.c.) if for each x ∈ X and each open set V of Y containing
f(x), there exists U ∈ e∗O(X,x) such that f [U ] ⊆ int(cl(V )) (cf. [3]).

9. Faintly e∗-continuous (briefly f.e∗.c.) if for each x ∈ X and each θ-open set V of Y
containing f(x), there exists U ∈ e∗O(X,x) such that f [U ] ⊆ V (cf. [3]).

Lemma 2.5 (cf. [11]). Let f : X → Y be a function. Then the function is δ-continuous if and
only if f−1[clδ(A)] ⊆ clδ(f−1[A]) for each subset A of X.

3 Weakly e∗-continuous functions

Definition 3.1. Let X and Y be topological spaces. f : X → Y is a weakly e∗-continuous
(briefly w.e∗.c.) at x ∈ X if for each open set V containing f(x), there exists an e∗-open set U
in X containing x such that f [U ] ⊆ cl(V ) (cf. [3]). The function f is w.e∗.c. if and only if f is
w.e∗.c. for all x ∈ X.

Remark 3.1. From Definition 3.1 and Definition 2.1, we have the following diagram. The
converses of these implications are not true in general, as shown in the following examples. Also,
examples for the other implications are shown in the related papers.

weakly b-continuity −→ weakly β-continuity ←− β-continuity
↓ ↓

weakly e-continuity −→ weakly e∗-continuity ←− e∗-continuity
↗ ↓ ↖

almost e∗-continuity faintly e∗-continuity weakly a-continuity

Examples 3.1.

1. Let X = {a, b, c, d} and τ = {∅, X, {a}, {b}, {a, b}, {a, c}, {a, b, c}}. It is not difficult to see
e∗O(X) = 2X \ {{d}}. Define the function f : X → X by f = {(a, d), (b, b), (c, c), (d, a)}.
Then f is weakly e∗-continuous but it is not e∗-continuous.

2. Let X = {a, b, c, d} and τ = {∅, X, {a}, {b}, {a, b}, {a, c}, {a, b, c}}. It is not difficult to see
eO(X) = 2X \{{d}, {a, d}, {c, d}} and e∗O(X) = 2X \{{d}}. Define the function f : X → X
by f = {(a, b), (b, a), (c, c), (d, d)}. Then f is faintly e∗-continuous but it is not weakly e∗-
continuous.
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3. Let X = {a, b, c, d} and τ = {∅, X, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, d}}. It is not difficult
to see eO(X) = 2X \ {{d}, {a, d}, {c, d}} and e∗O(X) = 2X \ {{d}}. Define the function
f : X → X by f = {(a, d), (b, b), (c, c), (d, a)}. Then f is weakly e∗-continuous but it is not
weakly e-continuous.

4. Let X = {a, b, c, d} and τ = {∅, X, {a}, {b}, {a, b}, {a, c}, {b, d}, {a, b, c}, {a, b, d}} . It is
not difficult to see βO(X) = 2X \ {{c}, {d}, {a, d}, {b, c}, {c, d}, {a, c, d}, {b, c, d}} and
e∗O(X) = 2X . Define the function f : X → X by f = {(a, d), (b, b), (c, c), (d, a)}. Then
f is weakly e∗-continuous but it is not weakly β-continuous.

Theorem 3.1. The following properties are equivalent for a function f : X → Y :

1. f is weakly e∗-continuous at x ∈ X.

2. For each neighbourhood V of f(x), x ∈ cl(int(clδ(f−1[cl(V )]))).

3. For each neighbourhood V of f(x) and each neighbourhood U of x, there exists a nonempty
open set G ⊆ U such that G ⊆ clδ(f−1[cl(V )]).

4. For each neighbourhood V of f(x), there exists U ∈ SO(X,x) such that U ⊆ clδ(f−1[cl(V )]).

Proof.

1. ⇒ 2. Let V ∈ O(Y, f(x)). By item 1. we get that there exists U ∈ e∗O(X,x) such that
f [U ] ⊆ cl(V ). So, there exists U ∈ e∗O(X,x) such that U ⊆ f−1[cl(V )]. Then, there
exists U ∈ e∗O(X,x) such that U ⊆ cl(int(clδ(U))) ⊆ cl(int(clδ(f

−1[cl(V )]))). Therefore
x ∈ cl(int(clδ(f−1[cl(V )]))).

2. ⇒ 3. Let V ∈ O(Y, f(x)), then x ∈ cl(int(clδ(f
−1[cl(V )]))), by item 2.. Now, let U ∈

O(X,x), then x ∈ U∩cl(int(clδ(f−1[cl(V )]))). So, U∩cl(int(clδ(f−1[cl(V )]))) 6= ∅ and, therefore,
cl
(
U ∩ int(clδ(f−1[cl(V )]))

)
6= ∅. This implies that U ∩ int(clδ(f−1[cl(V )])) 6= ∅. Define now

G := U ∩ int(clδ(f−1[cl(V )])), then G ∈ τ \ {∅}, G ⊆ U and

G ⊆ int(clδ(f−1[cl(V )])) ⊆ clδ(f−1[cl(V )]).

3. ⇒ 4. Let V ∈ O(Y, f(x)) and U ∈ O(X,x), then by item 3. we get there exists GU ∈ τ \ {∅}
such that GU ⊆ U and GU ⊆ clδ(f−1[cl(V )]). Define now G :=

⋃
{GU |U ∈ O(X,x)}, then G ∈ τ ,

x ∈ cl(G) and G ⊆ clδ(f
−1[cl(V )]). Also, defining U0 := G ∪ {x}, we get that G ⊆ U0 ⊆ cl(G)

and U0 ⊆ clδ(f−1[cl(V )]). Therefore U0 ∈ SO(X,x) and U0 ⊆ clδ(f−1[cl(V )]).

4. ⇒ 1. Let V ∈ O(Y, f(x)). By item 4. we get that x ∈ f−1[V ] and there exists G ∈ SO(X,x)

such that G ⊆ clδ(f−1[cl(V )]) and, therefore

x ∈ f−1[V ] ∩G ⊆ f−1[cl(V )] ∩ cl(int(G)) ⊆ f−1[cl(V )] ∩ cl(int(clδ(f−1[cl(V )])))

Now defining U := e∗-int(f−1[cl(V )]) = f−1[cl(V )]∩cl(int(clδ(f−1[cl(V )]))), then U ∈ e∗O(X,x)
and f [U ] ⊆ cl(V ).

Theorem 3.2. The following properties are equivalent for a function f : X → Y :

1. f is weakly e∗-continuous.

2. e∗-cl(f−1[int(cl(B))]) ⊆ f−1[cl(B)] for every subset B of Y .
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3. e∗-cl(f−1[int(F )]) ⊆ f−1[F ] for every regular closed set F of Y .

4. f−1[B] ⊆ e∗-int(f−1[cl(B)]) for every regular open set B of Y .

5. e∗-cl(f−1[V ]) ⊆ f−1[cl(V )] for every open set V of Y .

6. f−1[int(F )] ⊆ e∗-int(f−1[F ]) for every closed set F of Y .

7. f−1[V ] ⊆ e∗-int(f−1[cl(V )]) for every open set V of Y .

8. e∗-cl(f−1[int(F )]) ⊆ f−1[F ] for every closed set F of Y .

9. f−1[V ] ⊆ cl(int(clδ(f−1[cl(V )]))) for every open set V of Y .

10. int(cl(intδ(f
−1[int(F )]))) ⊆ f−1[F ] for every closed set F of Y .

Proof.

1. ⇒ 2. Let B ⊆ Y and x /∈ f−1[cl(B)], then f(x) /∈ cl(B) and there exists V ∈ O(Y, f(x)) such
that V ∩B = ∅. So, there exists V ∈ O(Y, f(x)) such that cl(V ) ∩ int(cl(B)) = ∅. Also, by item
1., there exists U ∈ e∗O(X,x) such that f [U ] ∩ int(cl(B)) ⊆ cl(V ) ∩ int(cl(B)). So, there exists
U ∈ e∗O(X,x) such that U ∩ f−1[int(cl(B))] = ∅ and, therefore x /∈ e∗-cl(f−1[int(cl(B))].

2. ⇒ 3. Let F ∈ RC(Y ), then F ∈ C(Y ) and therefore F = cl(F ). Now, by item 2., we get

e∗-cl(f−1[int(F )]) = e∗-cl(f−1[int(cl(F ))]) ⊆ f−1[cl(F )] = f−1[F ].

3. ⇒ 4. Straightforward.

4. ⇒ 5. Let V ∈ O(Y ), therefore Y \ cl(V ) ∈ RO(Y ). So, by item 4., we get

f−1[Y \ cl(V )] ⊆ e∗-int(f−1[cl(Y \ cl(V ))])

Then, X \ f−1[cl(V )] ⊆ X \ e∗-cl(f−1[int(cl(V ))]) and, therefore

e∗-cl(f−1[V ]) ⊆ e∗-cl(f−1[int(cl(V ))]) ⊆ f−1[cl(V )].

5. ⇒ 6. Straightforward.

6. ⇒ 7. Let V ∈ O(Y ), then cl(V ) ∈ C(Y ). So, by item 6., we get

f−1[V ] ⊆ f−1[int(cl(V ))] ⊆ e∗-int(f−1[cl(V )]).

7. ⇒ 8. Straightforward.

8. ⇒ 9. Let V ∈ O(Y ), then Y \ V ∈ C(Y ). So, by item 8., we get that

e∗-cl(f−1[int(Y \ V )]) ⊆ f−1[Y \ V ]

Then, X \ e∗-int(f−1[cl(V )]) ⊆ X \ f−1[V ] and

f−1[V ] ⊆ e∗-int(f−1[cl(V )]) = f−1[cl(V )] ∩ cl(int(clδ(f−1[cl(V )])))

Therefore, f−1[V ] ⊆ cl(int(clδ(f−1[cl(V )]))).
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9. ⇒ 10. Straightforward.

10. ⇒ 1. Let x ∈ X and V ∈ O(Y, f(x)), then Y \V ∈ C(Y ) and x ∈ f−1[V ]. Now, by item 10.,
we get that int(cl(intδ(f

−1[int(Y \ V )]))) ⊆ f−1[Y \ V ]. So, f−1[V ] ⊆ cl(int(clδ(f
−1[cl(V )])))

and, therefore, x ∈ cl(int(clδ(f−1[cl(V )]))).

Theorem 3.3. The following properties are equivalent for a function f : X → Y :

1. f is weakly e∗-continuous.

2. e∗-cl(f−1[V ]) ⊆ f−1[cl(V )] for each V ∈ PO(Y ).

3. f−1[int(F )] ⊆ e∗-int(f−1[F ]) for each F ∈ PC(Y ).

4. f−1[V ] ⊆ e∗-int(f−1[cl(V )]) for each V ∈ PO(Y ).

5. e∗-cl(f−1[int(F )]) ⊆ f−1[F ] for each F ∈ PC(Y ).

Proof.

1. ⇒ 2. Let V ∈ PO(Y ) and x /∈ f−1[cl(V )], then f(x) /∈ cl(V ) and there exists W ∈ O(Y, f(x))
such that V ∩W = ∅. So,

V ∩ cl(W ) ⊆ int(cl(V )) ∩ cl(W ) ⊆ cl[int(cl(V )) ∩W ] = cl[int(cl(V ) ∩W )]

⊆ cl(int(cl(V ∩W ))) ⊆ cl(V ∩W ) = ∅

By item 1., we get that there exists U ∈ e∗O(X,x) such that V ∩ f [U ] ⊆ V ∩ cl(W ). So, there
exists U ∈ e∗O(X,x) such that f−1[V ] ∩ U = ∅ and, therefore, x /∈ e∗-cl(f−1[V ]).

2. ⇒ 3. Straightforward.

3. ⇒ 4. Let V ∈ PO(Y ), then cl(V ) ∈ PC(Y ) and V ⊆ int(cl(V )). Now, by item 3.

f−1[V ] ⊆ f−1[int(cl(V ))] ⊆ e∗-int(f−1[cl(V )]).

4. ⇒ 5. Straightforward.

5. ⇒ 1. This follows from item 6. of Theorem 3.2, since every closed set is preclosed.

Theorem 3.4. The following properties are equivalent for a function f : X → Y :

1. f is weakly e∗-continuous.

2. f [e∗-cl(A)] ⊆ clθ(f [A]) for each subset A of X.

3. e∗-cl(f−1[B]) ⊆ f−1[clθ(B)] for each subset B of Y .

4. e∗-cl(f−1[int(clθ(B))]) ⊆ f−1[clθ(B)] for each subset B of Y .

Proof.

1. ⇒ 2. Let A ⊆ X, x ∈ e∗-cl(A) and V ∈ O(Y, f(x)). By item 1., we get that there exists
U ∈ e∗O(X,x) such that f [U ] ⊆ cl(V ). So, U ∩ A 6= ∅ and ∅ 6= f [U ] ∩ f [A] ⊆ cl(V ) ∩ f [A].
Therefore, cl(V ) ∩ f [A] 6= ∅. Then we have f(x) ∈ clθ(f [A]).
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2. ⇒ 3. Let B ⊆ Y , so f−1[B] ⊆ X. By item 2., we get that

f [e∗-cl(f−1[B])] ⊆ clθ(f [f−1[B]]) ⊆ clθ(B)

Then, e∗-cl(f−1[B]) ⊆ f−1[clθ(B)].

3. ⇒ 4. Let B ⊆ Y , then int(clθ(B)) ⊆ Y . By item 3. we get that

e∗-cl(f−1[int(clθ(B))]) ⊆ f−1[clθ(int(clθ(B)))]

Lemma 2.2(1)
= f−1[cl(int(clθ(B)))]

Lemma 2.2(2)

⊆ f−1[clθ(B)].

4. ⇒ 1. It is obvious from item 7. from Theorem 3.2.

Corollary 3.1. Let f : X → Y be a function. If f is w.e∗.c., then f−1[V ] is e∗-closed in X for
every θ-closed set V of Y .

Proof. Let V ∈ θC(Y ), then clθ(V ) = V . Since f is w.e∗.c. and, taking into consideration the
item 3. from Theorem 3.4, we get that e∗-cl(f−1[V ]) ⊆ f−1[clθ(V )] = f−1[V ] and, therefore,
f−1[V ] ∈ e∗C(X).

Corollary 3.2. Let f : X → Y be a function. If f−1[clθ(B)] is e∗-closed in X for every subset
B of Y , then f is w.e∗.c.

Proof. Let B ⊆ Y , by hypothesis we get that f−1[clθ(B)] ∈ e∗C(X). So,

e∗-cl(f−1[B]) ⊆ e∗-cl(f−1[clθ(B)]) = f−1[clθ(B)]

Then f is w.e∗.c. by item 3. from Theorem 3.4.

Theorem 3.5. Let X and Y be two topological spaces, and f : X → Y a function. If the graph
function g : X → X × Y of f , defined by g(x) = (x, f(x)) for each x ∈ X, is w.e∗.c., then f is
w.e∗.c.

Proof. Let x ∈ X and V ∈ O(Y, f(x)), so X × V ∈ O(X × Y, g(x)). Since g is w.e∗.c., then
there exists U ∈ e∗O(X,x) such that g[U ] ⊆ cl(X × V ) = X × cl(V ) and, therefore, there exists
U ∈ e∗O(X,x) such that f [U ] ⊆ cl(V ).

Corollary 3.3. If in addition X is regular, then the converse of Theorem 3.5 is true.

Proof. Let x ∈ X and W ∈ O(X × Y, g(x)), then there exists U1 ∈ O(X) and V ∈ O(Y )
such that g(x) ∈ U1 × V ⊆ W . Since f is w.e∗.c., then there exists U2 ∈ e∗O(X,x) such that
f [U2] ⊆ cl(V ). By the other hand, X is regular and, therefore, O(X) = δO(X) ⊆ aO(X). Now,
taking into consideration the Lemma 2.3 and defining U := U1 ∩ U2 ∈ e∗O(X,x), we get that
g[U ] ⊆ cl(W ).
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4 Some fundamental properties

Lemma 4.1. If f : X → Y is w.e∗.c. and g : Y → Z is continuous, then the composition
g ◦ f : X → Z is w.e∗.c.

Proof. Let x ∈ X and W ∈ O(Z, g ◦ f(x)). Since g is continuous, then g−1[W ] ∈ O(Y, f(x)).
Now, since f is w.e∗.c., we get that there exists U ∈ e∗O(X,x) such that

(g ◦ f)[U ] ⊆ g[cl(g−1[W ])] ⊆ cl(W ).

Lemma 4.2. Let f : X → Y be an open δ-continuous surjection and g : Y → Z a function. If
g ◦ f : X → Z is w.e∗.c., then g is w.e∗.c.

Proof. Let V ∈ O(Z). Since g ◦ f is w.e∗.c., and taking into consideration the item 1. from
Theorem 3.2, we get that

(g ◦ f)−1[V ] ⊆ cl(int(clδ((g ◦ f)−1[cl(V )]))) = cl(int(clδ(f
−1[g−1[cl(V )]])))

Since f is δ-continuous, and taking account the Lemma 2.5, we obtain that

(g ◦ f)−1[V ] = f−1[g−1[V ]] ⊆ cl(int(f−1[clδ(g
−1[cl(V )])]))

Now, since f is surjection, we get that

g−1[V ] ⊆ f [cl(int(f−1[clδ(g
−1[cl(V )])]))]

Lemma 2.2(1)
= f [clδ(int(f

−1[clδ(g
−1[cl(V )])]))]

f is δ-con.

⊆ clδ(f [int(f−1[clδ(g
−1[cl(V )])])])

f is open

⊆ clδ(int(f [f−1[clδ(g
−1[cl(V )])]]))

f is surjection
= clδ(int(clδ(g

−1[cl(V )])))

Lemma 2.2(1)
= cl(int(clδ(g

−1[cl(V )]))).

Then g is w.e∗.c. by item 1. from Theorem 3.2.

Let {Xα : α ∈ I} and {Yα : α ∈ I} be any two families of topological spaces with the same
index set I. The product space of {Xα : α ∈ I} (resp. {Yα : α ∈ I}) is simply denoted by

∏
α∈I

Xα

(resp.
∏
α∈I

Yα). Let fα : Xα → Yα be a function for each α ∈ I. Let f :
∏
α∈I

Xα →
∏
α∈I

Yα be the

product function defined as follows: f({xα}) = {fα(xα)} for each {xα} ∈
∏
α∈I

Xα. The natural

projection of
∏
α∈I

Xα (resp.
∏
α∈I

Yα) onto Xβ (resp. Yβ) is denoted by pβ :
∏
α∈I

Xα → Xβ (resp.

qβ :
∏
α∈I

Yα → Yβ).
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Lemma 4.3. Let Aα be a subset of Xα for each α ∈ I and A =
n∏
i=1

Aαi ×
n∏

α6=αi

Xα a nonempty

subset of
∏
α∈I

Xα, where n is a positive integer. Then A ∈ e∗O
( ∏
α∈I

Xα

)
if and only if Aαi

∈

e∗O(Xαi
) for each i = 1, 2, . . . , n.

Proof. Let α ∈ I and A =
n∏
i=1

Aαi
×

n∏
α6=αi

Xα, then

cl(int(clδ(A))) = cl

(
int

(
clδ

(
n∏
i=1

Aαi
×

n∏
α6=αi

Xα

)))

Lemma 2.4
= cl

(
int

[
clδ

(
n∏
i=1

Aαi

)
× clδ

(
n∏

α 6=αi

Xα

)])

= cl

(
int

[
n∏
i=1

clδ (Aαi
)×

n∏
α6=αi

Xα

])

= cl

[
int

(
n∏
i=1

clδ (Aαi)

)
× int

(
n∏

α6=αi

Xα

)]

= cl

[
n∏
i=1

int (clδ (Aαi
))×

n∏
α6=αi

Xα

]

= cl

(
n∏
i=1

int (clδ (Aαi))

)
× cl

(
n∏

α6=αi

Xα

)

=
n∏
i=1

cl (int (clδ (Aαi
)))×

n∏
α6=αi

Xα

Theorem 4.1. If fα : Xα → Yα is w.e∗.c. for each α ∈ I, then f :
∏
α∈I

Xα →
∏
α∈I

Yα is w.e∗.c.

Proof. Let x = {xα}α∈I ∈
∏
α∈I

Xα andW ∈ O(
∏
α∈I

Yα, f(x)), then there exists J = {α1, α2, . . . , αn} ⊆

I. Defining

Vα :=

{
Vαj ∈ O(Yαj ) , α ∈ J

Yα , α /∈ J
we get that

∏
α∈I

Vα ∈ O(
∏
α∈I

Yα, f(x)) and
∏
α∈I

Vα ⊆ W . Since, for all α ∈ I, fα is w.e∗.c., then

there exists Uα ∈ e∗O(Xα, xα) such that fα[Uα] ⊆ cl(Vα). Now, defining U :=
n∏
j=1

Uαj ×
∏
α/∈J

Xα

and taking into consideration the Lemma 4.3, we get that U ∈ e∗O(
∏
α∈I

Xα, x) and, therefore

f [U ] ⊆
n∏
j=1

fα
[
Uαj

]
×
∏
α/∈J

Yα ⊆
n∏
j=1

cl
(
Vαj

)
×
∏
α/∈J

Yα ⊆ cl(W ).
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Corollary 4.1. If in addition
∏
α∈I

Xα is regular, then the converse of Theorem 4.1 is true.

Proof. Let f be w.e∗.c. and β ∈ I. Since qβ is continuous, and taking into consideration the
Lemma 4.1, we get that qβ ◦ f is w.e∗.c. Besides, fβ ◦ pβ = qβ ◦ f and therefore

fβ ◦ pβ is w.e∗.c. (3)

By the other hand
∏
α∈I

Xα is regular, then

pβ is continuous⇔ pβ is δ-continuous (4)

So, by equations 3 and 4 and taking into consideration the Lemma 4.2, we get that fβ is w.e∗.c.

Theorem 4.2. If f : X → Y is w.e∗.c. and g : X → Y is w.a.c. and Y is Urysohn, then the set
A = {x ∈ X : f(x) = g(x)} is e∗-closed in X.

Proof. Let x /∈ A, then f(x) 6= g(x). As Y is Urysohn, then there exists V ∈ O (Y, f(x)) and
W ∈ O (Y, g(x)) such that cl(V )∩ cl(W ) = ∅. Since f is w.e∗.c. and g is w.a.c., then there exists
G ∈ e∗O (X,x) and H ∈ aO (X,x) such that f [G] ∩ g[H] ⊆ cl(V ) ∩ cl(W ) = ∅. Now, defining
U := G ∩ H and taking into consideration the Lemma 2.3, we get that U ∈ e∗O (X,x) and
f [U ] ∩ g[U ] ⊆ f [G] ∩ g[H] = ∅. So, U ∈ e∗O (X,x) and U ∩A = ∅. Therefore x /∈ e∗-cl(A).

Theorem 4.3. If f : X → Y is a w.e∗.c. surjection and X is e∗-connected, then Y is connected.

Proof. Suppose that Y is not connected, then there exists V,W ∈ τ \ {∅} such that V ∩W = ∅
and V ∪W = Y , therefore V,W ∈ CO(X)\{∅}. Since f is w.e∗.c., and taking into consideration
the item 7. from Theorem 3.2, we get that

f−1[V ] ⊆ e∗-int(f−1[cl(V )]) = e∗-int(f−1[V ])

f−1[W ] ⊆ e∗-int(f−1[cl(W )]) = e∗-int(f−1[W ])

Also, f−1[V ∩W ] = ∅ and f−1[V ∪W ] = X. But f is surjection and, therefore, we get that
f−1[V ], f−1[W ] ∈ e∗O(X) \ {∅} with

f−1
[
V ] ∩ f−1[W

]
= ∅ and f−1

[
V ] ∪ f−1[W

]
= X.

Corollary 4.2. If f : X → Y is an a.e∗.c. surjection and X is e∗-connected, then Y is connected.

Proof. It is obvious from the fact that almost e∗-continuity implies weakly e∗-continuity.
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